000836825 001__ 836825
000836825 005__ 20210129231111.0
000836825 0247_ $$2doi$$a10.1175/MWR-D-16-0435.1
000836825 0247_ $$2ISSN$$a0027-0644
000836825 0247_ $$2ISSN$$a1520-0493
000836825 0247_ $$2WOS$$aWOS:000412896100018
000836825 0247_ $$2Handle$$a2128/20686
000836825 0247_ $$2altmetric$$aaltmetric:24373497
000836825 037__ $$aFZJ-2017-05867
000836825 041__ $$aEnglish
000836825 082__ $$a550
000836825 1001_ $$0P:(DE-HGF)0$$aGisinger, Sonja$$b0$$eCorresponding author
000836825 245__ $$aAtmospheric Conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE)
000836825 260__ $$aWashington, DC [u.a.]$$bAMS87486$$c2017
000836825 3367_ $$2DRIVER$$aarticle
000836825 3367_ $$2DataCite$$aOutput Types/Journal article
000836825 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1503659191_30056
000836825 3367_ $$2BibTeX$$aARTICLE
000836825 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836825 3367_ $$00$$2EndNote$$aJournal Article
000836825 520__ $$aThis paper describes results of a comprehensive analysis of the atmospheric conditions during the DEEPWAVE campaign in austral winter 2014. Different datasets and diagnostics are combined to characterize the background atmosphere from the troposphere to the upper mesosphere. We report on how weather regimes and the atmospheric state compare to climatological conditions and also explore how they relate to the airborne and ground-based gravity wave observations. Key results of this study are the dominance of tropospheric blocking situations and low-level southwesterly flows over New Zealand during June, July, and August 2014. A varying tropopause inversion layer was found to be connected to varying vertical energy fluxes and is, therefore, an important feature with respect to wave reflection. The subtropical jet was frequently diverted south from its climatological position at 30°S and was most often involved in strong forcing events of mountain waves at the Southern Alps. The polar front jet was typically responsible for moderate and weak tropospheric forcing of mountain waves. The stratospheric planetary wave activity amplified in July leading to a displacement of the Antarctic polar vortex. This reduced the stratospheric wind minimum by about 10 m s-1 above New Zealand making breaking of large amplitude gravity waves more likely. Satellite observations in the upper stratosphere revealed that orographic gravity wave variances for 2014 were largest in May, June and July, i.e. the period of the DEEPWAVE field phase.
000836825 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000836825 588__ $$aDataset connected to CrossRef
000836825 7001_ $$0P:(DE-HGF)0$$aDörnbrack, Andreas$$b1
000836825 7001_ $$0P:(DE-HGF)0$$aMatthias, Vivien$$b2
000836825 7001_ $$0P:(DE-HGF)0$$aDoyle, James D.$$b3
000836825 7001_ $$0P:(DE-HGF)0$$aEckermann, Stephen D.$$b4
000836825 7001_ $$0P:(DE-HGF)0$$aEhard, Benedikt$$b5
000836825 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b6
000836825 7001_ $$0P:(DE-HGF)0$$aKaifler, Bernd$$b7
000836825 7001_ $$0P:(DE-HGF)0$$aKruse, Christopher G.$$b8
000836825 7001_ $$0P:(DE-HGF)0$$aRapp, Markus$$b9
000836825 773__ $$0PERI:(DE-600)2033056-X$$a10.1175/MWR-D-16-0435.1$$gp. MWR-D-16-0435.1$$pMWR-D-16-0435.1$$tMonthly weather review$$v145$$x1520-0493$$y2017
000836825 8564_ $$uhttps://juser.fz-juelich.de/record/836825/files/mwr-d-16-0435.1.pdf$$yOpenAccess
000836825 909CO $$ooai:juser.fz-juelich.de:836825$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000836825 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b6$$kFZJ
000836825 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000836825 9141_ $$y2017
000836825 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836825 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836825 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMON WEATHER REV : 2015
000836825 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836825 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836825 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836825 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836825 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000836825 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836825 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836825 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836825 920__ $$lyes
000836825 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000836825 980__ $$ajournal
000836825 980__ $$aVDB
000836825 980__ $$aUNRESTRICTED
000836825 980__ $$aI:(DE-Juel1)JSC-20090406
000836825 9801_ $$aFullTexts