001     836859
005     20210129231117.0
024 7 _ |a 10.1016/j.envsoft.2017.06.046
|2 doi
024 7 _ |a 1364-8152
|2 ISSN
024 7 _ |a 1873-6726
|2 ISSN
024 7 _ |a WOS:000408356600029
|2 WOS
037 _ _ |a FZJ-2017-05895
082 _ _ |a 690
100 1 _ |a Grosz, Balázs
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a The implication of input data aggregation on up-scaling soil organic carbon changes
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1502699696_6475
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In up-scaling studies, model input data aggregation is a common method to cope with deficient data availability and limit the computational effort. We analyzed model errors due to soil data aggregation for modeled SOC trends. For a region in North West Germany, gridded soil data of spatial resolutions between 1 km and 100 km has been derived by majority selection. This data was used to simulate changes in SOC for a period of 30 years by 7 biogeochemical models. Soil data aggregation strongly affected modeled SOC trends. Prediction errors of simulated SOC changes decreased with increasing spatial resolution of model output. Output data aggregation only marginally reduced differences of model outputs between models indicating that errors caused by deficient model structure are likely to persist even if requirements on the spatial resolution of model outputs are low.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |0 G:(DE-BLE)2812-ERA-158
|x 1
|c 2812-ERA-158
|a MACSUR - Modelling European Agriculture with Climate Change for Food Security (2812-ERA-158)
|f FACCE MACSUR
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dechow, Rene
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gebbert, Sören
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hoffmann, Holger
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhao, Gang
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Constantin, Julie
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Raynal, Helene
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wallach, Daniel
|0 0000-0003-3500-8179
|b 7
700 1 _ |a Coucheney, Elsa
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Lewan, Elisabet
|0 0000-0001-9662-3410
|b 9
700 1 _ |a Eckersten, Henrik
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Specka, Xenia
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kersebaum, Kurt-Christian
|0 0000-0002-3679-8427
|b 12
700 1 _ |a Nendel, Claas
|0 0000-0003-0664-642X
|b 13
700 1 _ |a Kuhnert, Matthias
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Yeluripati, Jagadeesh
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Haas, Edwin
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Teixeira, Edmar
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Bindi, Marco
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Trombi, Giacomo
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Moriondo, Marco
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Doro, Luca
|0 0000-0003-1404-2255
|b 21
700 1 _ |a Roggero, Pier Paolo
|0 0000-0002-7269-4334
|b 22
700 1 _ |a Zhao, Zhigan
|0 0000-0003-1533-7215
|b 23
700 1 _ |a Wang, Enli
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Tao, Fulu
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Rötter, Reimund
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Kassie, Belay
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Cammarano, Davide
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Asseng, Senthold
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Weihermüller, Lutz
|0 P:(DE-Juel1)129553
|b 30
|u fzj
700 1 _ |a Siebert, Stefan
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Gaiser, Thomas
|0 0000-0002-5820-2364
|b 32
700 1 _ |a Ewert, Frank
|0 P:(DE-HGF)0
|b 33
773 _ _ |a 10.1016/j.envsoft.2017.06.046
|g Vol. 96, p. 361 - 377
|0 PERI:(DE-600)2027304-6
|p 361 - 377
|t Environmental modelling & software
|v 96
|y 2017
|x 1364-8152
856 4 _ |u https://juser.fz-juelich.de/record/836859/files/1-s2.0-S1364815217301160-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836859/files/1-s2.0-S1364815217301160-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836859/files/1-s2.0-S1364815217301160-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836859/files/1-s2.0-S1364815217301160-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836859/files/1-s2.0-S1364815217301160-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836859/files/1-s2.0-S1364815217301160-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:836859
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 30
|6 P:(DE-Juel1)129553
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON MODELL SOFTW : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21