001     836880
005     20240711085640.0
024 7 _ |a 10.1016/j.memsci.2017.08.016
|2 doi
024 7 _ |a 0376-7388
|2 ISSN
024 7 _ |a 1873-3123
|2 ISSN
024 7 _ |a 2128/15448
|2 Handle
024 7 _ |a WOS:000411334200009
|2 WOS
037 _ _ |a FZJ-2017-05912
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Deibert, Wendelin
|0 P:(DE-Juel1)144923
|b 0
|u fzj
245 _ _ |a Ion-Conducting Ceramic Membrane Reactors for High-Temperature Applications
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1507110459_26425
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ion-conducting ceramic membrane reactors offer an opportunity to combine membrane separation processes directly with chemical reactions, leading to process intensification and, hence, benefits with regard to efficiency. Current research activities focus on membrane reactors due to their high intrinsic efficiency and great potential for the production of a large variety of commodity chemicals, energy carriers, and synthetic fuels. This includes the reduction of CO2 emissions and the utilisation of CO2.In this review, different concepts and principles of membrane reactor operation are presented followed by a comprehensive overview and discussion of different application cases. These applications are clustered according to the targeted products. The article discusses and evaluates the potential of the different concepts from the authors’ current perspective. We have not undertaken a ranking with respect to cost efficiency, process efficiency and applicability since the development levels are very different and in general at very low technology readiness levels (TRLs). However, the demonstration of one (or a few) membrane reactors at a commercially relevant size and price is urgently required in order to initiate more focussed research and development.The present review of membrane reactors aims to provide a broad overview of ongoing research activities regarding ceramic ion-conducting membrane reactors within the last ten years in the light of sustainable energy and chemical production.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Baumann, Stefan
|0 P:(DE-Juel1)129587
|b 1
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 2
|u fzj
700 1 _ |a Meulenberg, Wilhelm A.
|0 P:(DE-Juel1)129637
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Ivanova, Mariya
|0 P:(DE-Juel1)129617
|b 4
|u fzj
773 _ _ |a 10.1016/j.memsci.2017.08.016
|g p. S0376738817311833
|0 PERI:(DE-600)1491419-0
|p 79-97
|t Journal of membrane science
|v 543
|y 2017
|x 0376-7388
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/836880/files/1-s2.0-S0376738817311833-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/836880/files/1-s2.0-S0376738817311833-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/836880/files/1-s2.0-S0376738817311833-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/836880/files/1-s2.0-S0376738817311833-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/836880/files/1-s2.0-S0376738817311833-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/836880/files/1-s2.0-S0376738817311833-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:836880
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144923
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129637
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129617
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MEMBRANE SCI : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MEMBRANE SCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21