000836892 001__ 836892
000836892 005__ 20210129231123.0
000836892 0247_ $$2doi$$a10.1063/1.4944081
000836892 0247_ $$2WOS$$aWOS:000373644400042
000836892 0247_ $$2Handle$$a2128/18951
000836892 0247_ $$2altmetric$$aaltmetric:6285130
000836892 0247_ $$2pmid$$apmid:27036459
000836892 037__ $$aFZJ-2017-05924
000836892 041__ $$aEnglish
000836892 082__ $$a540
000836892 1001_ $$0P:(DE-HGF)0$$aHan, X. J.$$b0
000836892 245__ $$aHigh temperature breakdown of the Stokes-Einstein relation in a computer simulated Cu-Zr melt
000836892 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2016
000836892 3367_ $$2DRIVER$$aarticle
000836892 3367_ $$2DataCite$$aOutput Types/Journal article
000836892 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1502799416_5376
000836892 3367_ $$2BibTeX$$aARTICLE
000836892 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836892 3367_ $$00$$2EndNote$$aJournal Article
000836892 520__ $$aTransport properties and the Stokes-Einstein (SE) relation in liquid Cu8Zr3 are studied by molecular dynamics simulation with a modified embedded atom potential. The critical temperature Tc of mode coupling theory (MCT) is derived as 930 K from the self-diffusion coefficient D and viscosity η. The SE relation breaks down around TSE = 1900 K, which is far above Tc. At temperatures below TSE, the product of D and η fluctuates around a constant value, similar to the prediction of MCT near Tc. The influence of the microscopic atomic motion on macroscopic properties is investigated by analyzing the time dependent liquid structure and the self-hole filling process. The self-holes for the two components are preferentially filled by atoms of the same component. The self-hole filling dynamics explains the different breakdown behaviors of the SE relation in Zr-rich liquid CuZr2 compared to Cu-rich Cu8Zr3. At TSE, a kink is found in the temperature dependence of both partial and total coordination numbers for the three atomic pair combinations and of the typical time of self-hole filling. This indicates a strong correlation between liquid structure, atomic dynamics, and the breakdown of SE relation. The previously suggested usefulness of the parameter d(D1/D2)/dT to predict TSE is confirmed. Additionally we propose a viscosity criterion to predict TSE in the absence of diffusion data.
000836892 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000836892 7001_ $$0P:(DE-HGF)0$$aLi, J. G.$$b1
000836892 7001_ $$0P:(DE-Juel1)130955$$aSchober, Herbert R.$$b2$$eCorresponding author$$ufzj
000836892 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.4944081$$n12$$p124505$$tThe journal of chemical physics$$v144$$x0021-9606$$y2016
000836892 8564_ $$uhttps://juser.fz-juelich.de/record/836892/files/1.4944081.pdf$$yOpenAccess
000836892 8564_ $$uhttps://juser.fz-juelich.de/record/836892/files/1.4944081.gif?subformat=icon$$xicon$$yOpenAccess
000836892 8564_ $$uhttps://juser.fz-juelich.de/record/836892/files/1.4944081.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000836892 8564_ $$uhttps://juser.fz-juelich.de/record/836892/files/1.4944081.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000836892 909CO $$ooai:juser.fz-juelich.de:836892$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000836892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130955$$aForschungszentrum Jülich$$b2$$kFZJ
000836892 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000836892 9141_ $$y2017
000836892 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836892 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836892 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2015
000836892 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836892 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836892 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836892 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836892 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000836892 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836892 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836892 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836892 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836892 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836892 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836892 920__ $$lyes
000836892 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000836892 980__ $$ajournal
000836892 980__ $$aVDB
000836892 980__ $$aUNRESTRICTED
000836892 980__ $$aI:(DE-Juel1)PGI-2-20110106
000836892 9801_ $$aFullTexts