000836893 001__ 836893
000836893 005__ 20210129231124.0
000836893 0247_ $$2doi$$a10.1103/PhysRevE.94.060601
000836893 0247_ $$2ISSN$$a1063-651X
000836893 0247_ $$2ISSN$$a1095-3787
000836893 0247_ $$2ISSN$$a1539-3755
000836893 0247_ $$2ISSN$$a1550-2376
000836893 0247_ $$2ISSN$$a2470-0045
000836893 0247_ $$2ISSN$$a2470-0053
000836893 0247_ $$2Handle$$a2128/15145
000836893 0247_ $$2WOS$$aWOS:000400692500001
000836893 037__ $$aFZJ-2017-05925
000836893 041__ $$aEnglish
000836893 082__ $$a530
000836893 1001_ $$0P:(DE-HGF)0$$aPeng, H. L.$$b0$$eCorresponding author
000836893 245__ $$aVelocity autocorrelation function in supercooled liquids: Long-time tails and anomalous shear-wave propagation
000836893 260__ $$aWoodbury, NY$$bInst.$$c2016
000836893 3367_ $$2DRIVER$$aarticle
000836893 3367_ $$2DataCite$$aOutput Types/Journal article
000836893 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520523135_23728
000836893 3367_ $$2BibTeX$$aARTICLE
000836893 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836893 3367_ $$00$$2EndNote$$aJournal Article
000836893 500__ $$aWeb-Year 2016
000836893 520__ $$aMolecular dynamic simulations are performed to reveal the long-time behavior of the velocity autocorrelation function (VAF) by utilizing the finite-size effect in a Lennard-Jones binary mixture. Whereas in normal liquids the classical positive t−3/2 long-time tail is observed, we find in supercooled liquids a negative tail. It is strongly influenced by the transfer of the transverse current wave across the period boundary. The t−5/2 decay of the negative long-time tail is confirmed in the spectrum of VAF. Modeling the long-time transverse current within a generalized Maxwell model, we reproduce the negative long-time tail of the VAF, but with a slower algebraic t−2 decay.
000836893 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000836893 536__ $$0G:(DE-Juel1)jiff07_20160501$$aDynamics of glasses and their melts (jiff07_20160501)$$cjiff07_20160501$$fDynamics of glasses and their melts$$x1
000836893 588__ $$aDataset connected to CrossRef
000836893 7001_ $$0P:(DE-Juel1)130955$$aSchober, H. R.$$b1$$ufzj
000836893 7001_ $$0P:(DE-HGF)0$$aVoigtmann, Th.$$b2
000836893 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.94.060601$$gVol. 94, no. 6, p. 060601$$n6$$p060601 (R)$$tPhysical review / E$$v94$$x1063-651X$$y2016
000836893 8564_ $$uhttps://juser.fz-juelich.de/record/836893/files/PhysRevE.94.060601.pdf$$yOpenAccess
000836893 8564_ $$uhttps://juser.fz-juelich.de/record/836893/files/PhysRevE.94.060601.gif?subformat=icon$$xicon$$yOpenAccess
000836893 8564_ $$uhttps://juser.fz-juelich.de/record/836893/files/PhysRevE.94.060601.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000836893 8564_ $$uhttps://juser.fz-juelich.de/record/836893/files/PhysRevE.94.060601.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000836893 8564_ $$uhttps://juser.fz-juelich.de/record/836893/files/PhysRevE.94.060601.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000836893 8564_ $$uhttps://juser.fz-juelich.de/record/836893/files/PhysRevE.94.060601.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000836893 909CO $$ooai:juser.fz-juelich.de:836893$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000836893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130955$$aForschungszentrum Jülich$$b1$$kFZJ
000836893 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000836893 9141_ $$y2017
000836893 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836893 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836893 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836893 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836893 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836893 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836893 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836893 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000836893 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836893 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2015
000836893 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836893 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836893 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000836893 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000836893 980__ $$ajournal
000836893 980__ $$aVDB
000836893 980__ $$aI:(DE-Juel1)PGI-2-20110106
000836893 980__ $$aI:(DE-82)080012_20140620
000836893 980__ $$aUNRESTRICTED
000836893 9801_ $$aFullTexts