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Abstract We review lattice results related to pion, kaon,
D- and B-meson physics with the aim of making them easily
accessible to the particle-physics community. More specif-
ically, we report on the determination of the light-quark
masses, the form factor f (0), arising in the semileptonic
K — 7 transition at zero momentum transfer, as well as

#e-mail: juettner @soton.ac.uk

the decay constant ratio fg/fr and its consequences for
the CKM matrix elements V,; and V,,. Furthermore, we
describe the results obtained on the lattice for some of the
low-energy constants of SU(2);, x SU(2)g and SU(3), X
SU (3) g Chiral Perturbation Theory. We review the determi-
nation of the Bg parameter of neutral kaon mixing as well
as the additional four B parameters that arise in theories of
physics beyond the Standard Model. The latter quantities are
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an addition compared to the previous review. For the heavy-
quark sector, we provide results for m, and m; (also new
compared to the previous review), as well as those for D- and
B-meson-decay constants, form factors, and mixing param-
eters. These are the heavy-quark quantities most relevant for
the determination of CKM matrix elements and the global
CKM unitarity-triangle fit. Finally, we review the status of
lattice determinations of the strong coupling constant .

Contents
I Introduction . .. ... ... ... ......... 3
1.1 FLAG composition, guidelines andrules . . . . 4
1.2 Citationpolicy . . . . . ... ... ... .... 6
1.3 Generalissues . . . . . . ... ... ... ... 6
2 Quality criteria, averaging and error estimation . . . 8§
2.1 Systematic errors and colour code . . . . . .. 8
2.1.1 Systematic effects and rating criteria . . . 9
2.1.2 Heavy-quark actions . . . . .. ... .. 11
2.1.3 Conventions for the figures . . . . . . .. 11
2.2 Averages and estimates . . . . .. ... .... 12
2.3 Averaging procedure and error analysis . . . . 13
3 Quarkmasses . . . . ... e e 13
3.1 Masses of the lightquarks . . . . . ... ... 15
3.1.1 Contributions from the electromagnetic
interaction. . . . . . .. ... ... ... 15
3.1.2 Pion and kaon masses in the isospin limit 17
3.1.3 Lattice determination of my and m,q . . . 18
3.1.4 Lattice determinations of mg/m,q . . . . 23
3.1.5 Lattice determination of m, andmy . . . 25
3.1.6 EstimatesforRand Q . .. .. ... .. 28
3.2 Charm-quarkmass . . ... ... ....... 30
321 Ny =2+1+1results. . . ... .... 30
322 Ny=2+1results . . .. ........ 32
323 Np=2results . ... .......... 32
3.2.4 Lattice determinations of the ratio m./mg; 32
3.3 Bottom-quark mass . . . . ... ... .. ... 34
331 Np=2+1+1 ... ... ... ... 34
332 Np=2+1.... .. ... ....... 35
333 Np=2 ... ..o 35
3.3.4 Averages formp(mp) . . . . . ... ... 35
4 Leptonic and semileptonic kaon and pion decay
and |Vygland |[Vig| . . . o o o oo oo 36
4.1 Experimental information concerning | Vy4l, | Vs,
S+O)and fr=/frt oo 36
4.2 Lattice results for f4(0) and fg=/frx . . . . . 37
4.3 Direct determination of f (0) and fx=/fr+ . . 39
4.4 Tests of the Standard Model . . . . . ... .. 43
4.5 Analysis within the Standard Model . . . . . . 44
4.6 Direct determination of fg+ and f,+ . ... . 45
5 Low-energy constants . . . . . ... ........ 47
5.1 Chiral perturbation theory . . . . . .. ... .. 47

@ Springer

5.1.1 Quark-mass dependence of pseudoscalar

masses and decay constants . . . . . . . 48
5.1.2 Pion form factors and charge radii . . . . 49
5.1.3 Partially quenched and mixed action for-
mulations . . ... ... 50
5.1.4 Correlation functions in the e-regime . . 51
5.1.5 Energy levels of the QCD Hamiltonian in
abox and §-regime . . . ... ... ... 52
5.1.6 Other methods for the extraction of the
low-energy constants . . . . . ... ... 52
5.2 Extraction of SU(2) low-energy constants . . . 53
5.2.1 Results for the LO SU(2) LECs . . . . . 59
5.2.2 Results for the NLO SU(2) LECs . ... 60
523 Epilogue . . ... ... ... ... ... 61
5.3 Extraction of SU (3) low-energy constants . . . 61
5.3.1 Epilogue . ... ... .......... 62
Kaonmixing . . . . ... ... ... ... ..... 64
6.1 Indirect CP violation and ex inthe SM . . . . . 64
6.2 Lattice computationof Bg . . . . . ... ... 67
6.3 Kaon BSM B parameters . . . . ... ... .. 72
D-meson-decay constants and form factors . . . . . 74
7.1 Leptonic decay constants fp and fp, . .. .. 74
7.2 Semileptonic form factors for D — mfv and
D—KCv..... . ... ... 78
7.2.1 Resultsfor f4.(0) . . .. ... ... ... 79
7.3 Determinations of |V.4| and |V,s| and test of
second-row CKM unitarity . . . ... ... .. 81
B-meson-decay constants, mixing parameters and
formfactors. . . . . ... ..o 83
8.1 Leptonic decay constants fg and fp . . . . . . 85
8.2 Neutral B-meson mixing matrix elements . . . 91
8.3 Semileptonic form factors for B decays to light
flavours . . .. ... oo 95
8.3.1 Parameterizations of semileptonic form
factors . . . . . ... 95
8.3.2 Form factors for B — wfv . . . . .. .. 98
8.3.3 Form factors for By — K¢v . . .. ... 101
8.3.4 Form factors for rare and radiative B-
semileptonic decays to light flavours . . . 102
8.4 Semileptonic form factors for B — D{v, B —
D*fv,and B— Dtv . . ... ... .. .... 104
84.1 By — Dy decays. . .. ... ... .. 105
8.4.2 Ratios of B — D/{v form factors . . . . . 108
843 B— D*decays . ............ 108
8.5 Semileptonic form factors for A, — pfv and
Ap—> Alv . . ... 109
8.6 Determinationof |Vyp| . . . . . ... ... .. 110
8.7 Determinationof |V.p| . . .. .. .. .. ... 111
The strong coupling org . . . . . . . .. ... .. 113
9.1 Introduction . . . ... ... .. ... ..... 113
9.1.1 Scheme and scale dependence of a; and Agcp . 114
9.1.2 Overview of the review of ¢y . . . . . . . 115

9.1.3 Differences compared to the FLAG 13 report . 115



Eur. Phys. J. C (2017) 77:112

Page 3 of 228 112

9.2 Discussion of criteria for computations entering

theaverages . . . . .. ... ... ... ..., 115
9.3 «y from the Schrodinger functional . . . . . . . 118
9.3.1 General considerations . . . . . ... .. 118
9.3.2 Discussion of computations . . . . . . . 119

9.4« from the potential at short distances . . . . . 120
9.4.1 General considerations
9.4.2 Discussion of computations . . . . . . . 120

9.5 «ag from the vacuum polarization at short distances122
9.5.1 General considerations . . . . . ... .. 122
9.5.2 Discussion of computations . . . . . . . 122

9.6 «, from observables at the lattice-spacing scale 123

9.6.1 General considerations . . . .. .. ... 123
9.6.2 Continuum limit . . . ... .... ... 123
9.6.3 Discussion of computations . . . . . . . 124

9.7 «y from current 2-point functions . . . . . . . . 125
9.7.1 General considerations
9.7.2 Discussion of computations

9.8 agyfromQCD vertices . . . .. ... ...... 128

9.8.1 General considerations . . . . . ... .. 128

9.8.2 Discussion of computations . . . . . . . 129

9.9 Summary ... ................. 129
9.9.1 The present situation . . . . ... .. .. 129

9.9.2 Our range for oz% ............ 131

9.9.3 Ranges for [rgA1V? and Aggg . . . . . . 134

994 Conclusions . . . . ... ......... 135
Appendix A: Glossary . . . . . .. . ... ... 136
A.l Lattice actions . . . . . ... ... ....... 136
A.l.1 Gaugeactions . . . . . . .. ... .... 136

A.1.2 Light-quark actions . . . . .. ... ... 136

A.1.3 Heavy-quark actions . . . ... ... .. 140

A2 Settingthescale . . ... ... ......... 146
A.3 Matching and running . . . . . ... ... ... 147
A.4 Chiral extrapolation . . . . . ... ....... 148
A.5 Summary of simulated lattice actions . . . . . . 149
Appendix B:Notes . . . .. ... ... ........ 151
B.1 Notes to Sect. 3 on quark masses . . . . . . .. 151
B.2 Notes to Sect. 4 on |V,4] and | V5| . . . . . .. 159

B.3 Notes to Sect. 5 on low-energy constants . . . . 166

B.4 Notes to Sect. 6 on Kaon mixing . . .. .. .. 171
B.4.1 Kaon B-parameter By . . . . . ... .. 171
B.4.2 Kaon BSM B-parameters . . . . . . . .. 177

B.5 Notes to Sect. 7 on D-meson-decay constants
and formfactors . . . . ... ... L. 179
B.5.1 D()-meson-decay constants . . . . . . . 179
B.52 D — nfvand D — K/{v form factors . 185

B.6 Notes to Sect. 8 on B-meson-decay constants and
mixing parameters . . . . . . ... ... ... 186
B.6.1 B(s)-meson-decay constants . . . . . .. 186

B.6.2 B(5)-meson mixing matrix elements . . . 193
B.6.3 Form factors entering determinations of
|Vup| (B — mwlv, By — Klv, Ap — plv) 197

B.6.4 Form factors for B — K£1~

B.6.5 Form factors entering determinations of
|Vep| (B — D*lv, B — DIlv, By —
Dglv, Ap — Aclv)and R(D)) . . . . .. 201

B.7 Notes to Sect. 9 on the strong coupling g . . . . 204
B.7.1 Renormalization scale and perturbative
behaviour . . . ... ... ... 204
B.7.2 Continuum limit . . . . ... ... ... 207
References210

1 Introduction

Flavour physics provides an important opportunity for
exploring the limits of the Standard Model of particle physics
and for constraining possible extensions that go beyond it. As
the LHC explores a new energy frontier and as experiments
continue to extend the precision frontier, the importance of
flavour physics will grow, both in terms of searches for sig-
natures of new physics through precision measurements and
in terms of attempts to construct the theoretical framework
behind direct discoveries of new particles. A major theoret-
ical limitation consists in the precision with which strong-
interaction effects can be quantified. Large-scale numerical
simulations of lattice QCD allow for the computation of these
effects from first principles. The scope of the Flavour Lat-
tice Averaging Group (FLAG) is to review the current sta-
tus of lattice results for a variety of physical quantities in
low-energy physics. Set up in November 2007 it comprises
experts in Lattice Field Theory, Chiral Perturbation Theory
and Standard Model phenomenology. Our aim is to provide
an answer to the frequently posed question “What is cur-
rently the best lattice value for a particular quantity?” in a
way that is readily accessible to nonlattice-experts. This is
generally not an easy question to answer; different collabo-
rations use different lattice actions (discretizations of QCD)
with a variety of lattice spacings and volumes, and with a
range of masses for the u- and d-quarks. Not only are the
systematic errors different, but also the methodology used to
estimate these uncertainties varies between collaborations.
In the present work we summarize the main features of each
of the calculations and provide a framework for judging and
combining the different results. Sometimes it is a single result
that provides the “best” value; more often it is a combination
of results from different collaborations. Indeed, the consis-
tency of values obtained using different formulations adds
significantly to our confidence in the results.

The first two editions of the FLAG review were published
in 2011 [1] and 2014 [2]. The second edition reviewed results
related to both light (u-, d- and s-), and heavy (c- and b-)
flavours. The quantities related to pion and kaon physics were
light-quark masses, the form factor f5 (0) arising in semilep-
tonic K — s transitions (evaluated at zero momentum trans-
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Table 1 Summary of the main results of this review, grouped in terms
of Ny, the number of dynamical quark flavours in lattice simulations.
Quark masses and the quark condensate are given in the MS scheme at
running scale © = 2 GeV or as indicated; the other quantities listed are
specified in the quoted sections. For each result we list the references
that entered the FLAG average or estimate. From the entries in this col-

umn one can also read off the number of results that enter our averages
for each quantity. We emphasize that these numbers only give a very
rough indication of how thoroughly the quantity in question has been
explored on the lattice and recommend to consult the detailed tables
and figures in the relevant section for more significant information and
for explanations on the source of the quoted errors

Quantity Sects. Ny=2+1+1 Refs. Nyp=2+1 Refs. Ny=2 Refs.

ms [MeV] 3.13 93.9(1.1) [4.5] 92.0(2.1) [6-10] 101(3) [11,12]
myq [MeV] 3.13 3.70(17) [4] 3.373(80) [7-10,13] 3.6(2) [11]

mg /Mg 3.14 27.30(34) [4,14] 27.43(31) [6-8,10] 27.3(9) [11]

m, [MeV] 3.15 2.36(24) [4] 2.16(9)(7) 4 2.40(23) [16]

mg [MeV] 3.15 5.03(26) [4] 4.68(14)(7) a 4.80(23) [16]

my /mg 3.15 0.470(56) [4] 0.46(2)(2) 4 0.50(4) [16]

m:(3 GeV) [GeV] 32 0.996(25) [4,5] 0.987(6) [9,17] 1.03(4) [11]
me/mg 324 11.70(6) [4,5,14] 11.82(16) [17,18] 11.74(35) [11,132]
my(mp) [GeV] 334 4.190(21) [5,19] 4.164(23) [9] 4.256(81) [20,21]
f+(0) 43 0.9704(24)(22) [22] 0.9677(27) [23,24] 0.9560(57)(62) [25]

Frs /[t 43 1.193(3) [14,26,27] 1.192(5) [28-31] 1.205(6)(17) [32]

Sfrt [MeV] 4.6 130.2(1.4) [28,29,31]

fr+ [MeV] 4.6 155.6(4) [14,26,27] 155.9(9) [28,29,31] 157.5(2.4) [32]

=13 [MeV] 5.2.1 280(8)(15) [33] 274(3) [10,13,34,35] 266(10) [33,36-38]
Fy/F 5.2.1 1.076(2)(2) [39] 1.064(7) [10,29,34,35,40] 1.073(15) [36-38,41]
2 522 3.70(7)(26) [39] 2.81(64) [10,29,34,35,40] 3.41(82) [36,37,41]
i 522 4.67(3)(10) [39] 4.10(45) [10,29,34,35,40] 4.51(26) [36,37,41]
£ 522 15.1(1.2) [37,41]
Bk 6.1 0.717(18)(16) [42] 0.7625(97) [10,43-45] 0.727(22)(12) [46]

4 This is a FLAG estimate, based on x PT and the isospin averaged up- and down-quark mass m,4 [7-10,13]

fer), the decay constants fx and f5, and the Bx parameter
from neutral kaon mixing. Their implications for the CKM
matrix elements V,; and V,; were also discussed. Further-
more, results were reported for some of the low-energy con-
stants of SU2)r x SU®)g and SUB3); x SU(3)r Chi-
ral Perturbation Theory. The quantities related to D- and
B-meson physics that were reviewed were the B- and D-
meson-decay constants, form factors, and mixing parame-
ters. These are the heavy-light quantities most relevant to
the determination of CKM matrix elements and the global
CKM unitarity-triangle fit. Last but not least, the current sta-
tus of lattice results on the QCD coupling oy was reviewed.

In the present paper we provide updated results for all
the above-mentioned quantities, but also extend the scope of
the review in two ways. First, we now present results for the
charm and bottom quark masses, in addition to those of the
three lightest quarks. Second, we review results obtained for
the kaon mixing matrix elements of new operators that arise
in theories of physics beyond the Standard Model. Our main
results are collected in Tables 1 and 2.

Our plan is to continue providing FLAG updates, in the
form of a peer reviewed paper, roughly on a biennial basis.
This effort is supplemented by our more frequently updated

@ Springer

website http://itpwiki.unibe.ch/flag [3], where figures as well
as pdf-files for the individual sections can be downloaded.
The papers reviewed in the present edition have appeared
before the closing date 30 November 2015.

This review is organized as follows. In the remainder of
Sect. 1 we summarize the composition and rules of FLAG
and discuss general issues that arise in modern lattice calcu-
lations. In Sect. 2 we explain our general methodology for
evaluating the robustness of lattice results. We also describe
the procedures followed for combining results from different
collaborations in a single average or estimate (see Sect. 2.2
for our definition of these terms). The rest of the paper con-
sists of sections, each dedicated to a single (or groups of
closely connected) physical quantity(ies). Each of these sec-
tions is accompanied by an Appendix with explicatory notes.

1.1 FLAG composition, guidelines and rules

FLAG strives to be representative of the lattice community,
both in terms of the geographical location of its members and
the lattice collaborations to which they belong. We aspire to
provide the particle-physics community with a single source
of reliable information on lattice results.
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Table 2 Summary of the main results of this review, grouped in terms
of Ny, the number of dynamical quark flavours in lattice simulations.
The quantities listed are specified in the quoted sections. For each result
we list the references that entered the FLAG average or estimate. From
the entries in this column one can also read off the number of results that

enter our averages for each quantity. We emphasize that these numbers
only give a very rough indication of how thoroughly the quantity in
question has been explored on the lattice and recommend to consult the
detailed tables and figures in the relevant section for more significant
information and for explanations on the source of the quoted errors

Quantity Sects. Ny=2+1+1 Refs. Ny=2+1 Refs. Ny=2 Refs.
fp [MeV] 7.1 212.15(1.45) [14,27] 209.2(3.3) [47,48] 208(7) [20]
fp, [MeV] 7.1 248.83(1.27) [14,27] 249.8(2.3) [17,48,49] 250(7) [20]
o,/ fp 7.1 1.1716(32) [14,27] 1.187(12) [47,48] 1.20(2) [20]
P (0) 72 0.666(29) [50]
FPK ) 7.2 0.747(19) [51]
f5 [MeV] 8.1 186(4) [52] 192.0(4.3) [48,53-56] 188(7) [20,57,58]
fB, [MeV] 8.1 224(5) [52] 228.4(3.7) [48,53-56] 227(7) [20,57,58]
S8,/ B 8.1 1.205(7) [52] 1.201(16) [48,53-55] 1.206(23) [20,57,58]
f8,+/ Bs, MeV] 8.2 219(14) [54,59] 216(10) [20]
f5,+/ Bs, [MeV] 8.2 270(16) [54,59] 262(10) [20]
Bg, 8.2 1.26(9) [54,59] 1.30(6) [20]
Bg, 8.2 1.32(6) [54,59] 1.32(5) [20]
£ 8.2 1.239(46) [54,60] 1.225(31) [20]
Bp,/Bg, 8.2 1.039(63) [54,60] 1.007(21) [20]
Quantity Sects. Ny=2+1land Ny =2+1+1 Refs.
a%(Mz) 9.9 0.1182(12) [5,9,61-63]
A2, [MeV] 9.9 211(14) [5,9,61-63]

In order to work reliably and efficiently, we have adopted — Quark masses L. Lellouch, T. Blum, and V. Lubicz
a formal structure and a set of rules by which all FLAG - Vus, Vua  S. Simula, P. Boyle,] and T. Kaneko

members abide. The collaboration presently consists of an
Advisory Board (AB), an Editorial Board (EB), and seven
Working Groups (WG). The r6le of the Advisory Board is
that of general supervision and consultation. Its members
may interfere at any point in the process of drafting the paper,
expressing their opinion and offering advice. They also give
their approval of the final version of the preprint before it is
rendered public. The Editorial Board coordinates the activi-
ties of FLAG, sets priorities and intermediate deadlines, and
takes care of the editorial work needed to amalgamate the
sections written by the individual working groups into a uni-
form and coherent review. The working groups concentrate
on writing up the review of the physical quantities for which
they are responsible, which is subsequently circulated to the
whole collaboration for critical evaluation.

The current list of FLAG members and their Working
Group assignments is:

e Advisory Board (AB): S. Aoki, C. Bernard, M. Golter-
man, H. Leutwyler, and C. Sachrajda

e Editorial Board (EB): G. Colangelo, A. liittner,
S. Hashimoto, S. Sharpe, A. Vladikas, and U. Wenger

e Working Groups (coordinator listed first):

— LEC S. Diirr, H. Fukaya, and U.M. Heller

- Bk H. Wittig, P. Dimopoulos, and R. Mawhinney

- fB(S) s fD(S), Bp M. DellaMorte, Y. Aoki, and D. Lin

— By, D semileptonic and radiative decays E. Lunghi,
D. Becirevic, S. Gottlieb, and C. Pena

R. Sommer, R. Horsley, and T. Onogi

- O

As some members of the WG on quark masses were faced
with unexpected hindrances, S. Simula has kindly assisted in
the completion of the relevant section during the final phases
of its composition.

The most important FLAG guidelines and rules are the
following:

e the composition of the AB reflects the main geographi-
cal areas in which lattice collaborations are active, with
members from America, Asia/Oceania and Europe;

' Peter Boyle had participated actively in the early stages of the current
FLAG effort. Unfortunately, due to other commitments, it was impos-
sible for him to contribute until the end, and he decided to withdraw
from the collaboration.
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e the mandate of regular members is not limited in time,
but we expect that a certain turnover will occur naturally;

e whenever a replacement becomes necessary this has to
keep, and possibly improve, the balance in FLAG, so
that different collaborations, from different geographical
areas are represented;

e in all working groups the three members must belong to
three different lattice collaborations:?

e a paper is in general not reviewed (nor colour-coded, as
described in the next section) by any of its authors;

e lattice collaborations not represented in FLAG will be
consulted on the colour coding of their calculation;

e there are also internal rules regulating our work, such as
voting procedures.

1.2 Citation policy

We draw attention to this particularly important point. As
stated above, our aim is to make lattice QCD results easily
accessible to nonlattice-experts and we are well aware that
it is likely that some readers will only consult the present
paper and not the original lattice literature. It is very impor-
tant that this paper be not the only one cited when our results
are quoted. We strongly suggest that readers also cite the
original sources. In order to facilitate this, in Tables 1 and 2,
besides summarizing the main results of the present review,
we also cite the original references from which they have
been obtained. In addition, for each figure we make a bibtex-
file available on our webpage [3] which contains the bibtex-
entries of all the calculations contributing to the FLAG aver-
age or estimate. The bibliography at the end of this paper
should also make it easy to cite additional papers. Indeed we
hope that the bibliography will be one of the most widely
used elements of the whole paper.

1.3 General issues

Several general issues concerning the present review are thor-
oughly discussed in Sect. 1.1 of our initial 2010 paper [1] and
we encourage the reader to consult the relevant pages. In the
remainder of the present subsection, we focus on a few impor-
tant points. Though the discussion has been duly updated, it
is essentially that of Sect. 1.2 of the 2013 review [2].

The present review aims to achieve two distinct goals:
first, to provide a description of the work done on the lat-
tice concerning low-energy particle physics; and, second, to
draw conclusions on the basis of that work, summarizing the
results obtained for the various quantities of physical interest.

The core of the information as regards the work done on
the lattice is presented in the form of tables, which not only

2 The WG on semileptonic D and B decays has currently four mem-
bers, but only three of them belong to lattice collaborations.
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list the various results, but also describe the quality of the
data that underlie them. We consider it important that this
part of the review represents a generally accepted description
of the work done. For this reason, we explicitly specify the
quality requirements> used and provide sufficient details in
appendices so that the reader can verify the information given
in the tables.

On the other hand, the conclusions drawn on the basis
of the available lattice results are the responsibility of FLAG
alone. Preferring to err on the side of caution, in several cases
we draw conclusions that are more conservative than those
resulting from a plain weighted average of the available lat-
tice results. This cautious approach is usually adopted when
the average is dominated by a single lattice result, or when
only one lattice result is available for a given quantity. In
such cases one does not have the same degree of confidence
in results and errors as when there is agreement among sev-
eral different calculations using different approaches. The
reader should keep in mind that the degree of confidence
cannot be quantified, and it is not reflected in the quoted
errors.

Each discretization has its merits, but also its shortcom-
ings. For most topics covered in this review we have an
increasingly broad database, and for most quantities lattice
calculations based on totally different discretizations are now
available. This is illustrated by the dense population of the
tables and figures in most parts of this review. Those calcu-
lations that do satisfy our quality criteria indeed lead to con-
sistent results, confirming universality within the accuracy
reached. In our opinion, the consistency between indepen-
dent lattice results, obtained with different discretizations,
methods, and simulation parameters, is an important test of
lattice QCD, and observing such consistency also provides
further evidence that systematic errors are fully under con-
trol.

In the sections dealing with heavy quarks and with
oy, the situation is not the same. Since the b-quark mass
cannot be resolved with current lattice spacings, all lat-
tice methods for treating b quarks use effective field the-
ory at some level. This introduces additional complica-
tions not present in the light-quark sector. An overview
of the issues specific to heavy-quark quantities is given in
the introduction of Sect. 8. For B and D meson leptonic
decay constants, there already exist a good number of dif-
ferent independent calculations that use different heavy-
quark methods, but there are only one or two indepen-
dent calculations of semileptonic B and D meson form
factors and B meson mixing parameters. For o, most lat-
tice methods involve a range of scales that need to be
resolved and controlling the systematic error over a large

”» (LI

3 We also use terms like “quality criteria”, “rating”, “colour coding”
etc. when referring to the classification of results, as described in Sect. 2.
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range of scales is more demanding. The issues specific to
determinations of the strong coupling are summarized in
Sect. 9.

Number of sea quarks in lattice simulations:

Lattice QCD simulations currently involve two, three or
four flavours of dynamical quarks. Most simulations set the
masses of the two lightest quarks to be equal, while the
strange and charm quarks, if present, are heavier (and tuned
to lie close to their respective physical values). Our nota-
tion for these simulations indicates which quarks are non-
degenerate, e.g. Ny = 2+ 1if my, = myg < my and
Ny =2+1+1ifm, = my < mg < m,. Calculations
with Ny = 2, i.e. two degenerate dynamical flavours, often
include strange valence quarks interacting with gluons, so
that bound states with the quantum numbers of the kaons can
be studied, albeit neglecting strange sea-quark fluctuations.
The quenched approximation (N s = 0), in which sea-quark
contributions are omitted, has uncontrolled systematic errors
and is no longer used in modern lattice simulations with rele-
vance to phenomenology. Accordingly, we will review results
obtained with Ny =2, Ny =2+ l,and Ny =2+ 1+ 1,
but omit earlier results with Ny = 0. The only exception
concerns the QCD coupling constant «. Since this observ-
able does not require valence light quarks, it is theoretically
well defined also in the Ny = O theory, which is simply
pure gluon-dynamics. The N y-dependence of a, or more
precisely of the related quantity ro Ay, is a theoretical issue
of considerable interest; here r( is a quantity with the dimen-
sion of length, which sets the physical scale, as discussed
in Appendix A.2. We stress, however, that only results with
Ny > 3 are used to determine the physical value of a; at a
high scale.

Lattice actions, simulation parameters and scale setting:
The remarkable progress in the precision of lattice calcu-
lations is due to improved algorithms, better computing
resources and, last but not least, conceptual developments.
Examples of the latter are improved actions that reduce lat-
tice artefacts and actions that preserve chiral symmetry to
very good approximation. A concise characterization of the
various discretizations that underlie the results reported in
the present review is given in Appendix A.1.

Physical quantities are computed in lattice simulations in
units of the lattice spacing so that they are dimensionless.
For example, the pion decay constant that is obtained from a
simulation is f;a, where a is the spacing between two neigh-
bouring lattice sites. To convert these results to physical units
requires knowledge of the lattice spacing a at the fixed values
of the bare QCD parameters (quark masses and gauge cou-
pling) used in the simulation. This is achieved by requiring
agreement between the lattice calculation and experimen-
tal measurement of a known quantity, which thus “sets the

scale” of a given simulation. A few details of this procedure
are provided in Appendix A.2.

Renormalization and scheme dependence:

Several of the results covered by this review, such as quark
masses, the gauge coupling, and B-parameters, are for quan-
tities defined in a given renormalization scheme and at a
specific renormalization scale. The schemes employed (e.g.
regularization-independent MOM schemes) are often chosen
because of their specific merits when combined with the lat-
tice regularization. For a brief discussion of their properties,
see Appendix A.3. The conversion of the results, obtained in
these so-called intermediate schemes, to more familiar reg-
ularization schemes, such as the MS-scheme, is done with
the aid of perturbation theory. It must be stressed that the
renormalization scales accessible in simulations are limited,
because of the presence of an ultraviolet (UV) cutoff of
~/a. To safely match to MS, a scheme defined in per-
turbation theory, Renormalization Group (RG) running to
higher scales is performed, either perturbatively or nonper-
turbatively (the latter using finite-size scaling techniques).

Extrapolations:

Because of limited computing resources, lattice simulations
are often performed at unphysically heavy pion masses,
although results at the physical point have become increas-
ingly common. Further, numerical simulations must be done
at nonzero lattice spacing, and in a finite (four-dimensional)
volume. In order to obtain physical results, lattice data are
obtained at a sequence of pion masses and a sequence of
lattice spacings, and then extrapolated to the physical-pion
mass and to the continuum limit. In principle, an extrap-
olation to infinite volume is also required. However, for
most quantities discussed in this review, finite-volume effects
are exponentially small in the linear extent of the lattice
in units of the pion mass and, in practice, one often ver-
ifies volume independence by comparing results obtained
on a few different physical volumes, holding other param-
eters equal. To control the associated systematic uncertain-
ties, these extrapolations are guided by effective theories.
For light-quark actions, the lattice-spacing dependence is
described by Symanzik’s effective theory [64,65]; for heavy
quarks, this can be extended and/or supplemented by other
effective theories such as Heavy-Quark Effective Theory
(HQET). The pion-mass dependence can be parameterized
with Chiral Perturbation Theory (xPT), which takes into
account the Nambu—Goldstone nature of the lowest excita-
tions that occur in the presence of light quarks. Similarly,
one can use Heavy-Light Meson Chiral Perturbation Theory
(HMx PT) to extrapolate quantities involving mesons com-
posed of one heavy (b or c) and one light quark. One can
combine Symanzik’s effective theory with x PT to simulta-
neously extrapolate to the physical-pion mass and the contin-
uum; in this case, the form of the effective theory depends on
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the discretization. See Appendix A.4 for a brief description
of the different variants in use and some useful references.
Finally, xPT can also be used to estimate the size of finite-
volume effects measured in units of the inverse pion mass,
thus providing information on the systematic error due to
finite-volume effects in addition to that obtained by compar-
ing simulations at different volumes.

Critical slowing down:

The lattice spacings reached in recent simulations go down
to 0.05 fm or even smaller. In this regime, long autocor-
relation times slow down the sampling of the configura-
tions [66—75]. Many groups check for autocorrelations in a
number of observables, including the topological charge, for
which a rapid growth of the autocorrelation time is observed
with decreasing lattice spacing. This is often referred to as
topological freezing. A solution to the problem consists in
using open boundary conditions in time, instead of the more
common antiperiodic ones [76]. More recently two other
approaches have been proposed, one based on a multiscale
thermalization algorithm [77] and another based on defin-
ing QCD on a nonorientable manifold [78]. The problem
is also touched upon in Sect. 9.2, where it is stressed that
attention must be paid to this issue. While large-scale simula-
tions with open boundary conditions are already far advanced
[79], unfortunately so far no results reviewed here have been
obtained with any of the above methods. It is usually assumed
that the continuum limit can be reached by extrapolation from
the existing simulations and that potential systematic errors
due to the long autocorrelation times have been adequately
controlled.

Simulation algorithms and numerical errors:

Most of the modern lattice-QCD simulations use exact algo-
rithms such as those of Refs. [80,81], which do not produce
any systematic errors when exact arithmetic is available. In
reality, one uses numerical calculations at double (or in some
cases even single) precision, and some errors are unavoid-
able. More importantly, the inversion of the Dirac operator is
carried out iteratively and it is truncated once some accuracy
is reached, which is another source of potential systematic
error. In most cases, these errors have been confirmed to
be much less than the statistical errors. In the following we
assume that this source of error is negligible. Some of the
most recent simulations use an inexact algorithm in order to
speed-up the computation, though it may produce systematic
effects. Currently available tests indicate that errors from the
use of inexact algorithms are under control.

2 Quality criteria, averaging and error estimation

The essential characteristics of our approach to the problem
of rating and averaging lattice quantities have been outlined
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in our first publication [1]. Our aim is to help the reader assess
the reliability of a particular lattice result without necessarily
studying the original article in depth. This is a delicate issue,
since the ratings may make things appear simpler than they
are. Nevertheless, it safeguards against the common prac-
tice of using lattice results, and drawing physics conclusions
from them, without a critical assessment of the quality of the
various calculations. We believe that, despite the risks, it is
important to provide some compact information as regards
the quality of a calculation. We stress, however, the impor-
tance of the accompanying detailed discussion of the results
presented in the various sections of the present review.

2.1 Systematic errors and colour code

The major sources of systematic error are common to most
lattice calculations. These include, as discussed in detail
below, the chiral, continuum and infinite-volume extrapo-
lations. To each such source of error for which systematic
improvement is possible we assign one of three coloured
symbols: green star, unfilled green circle (which replaced in
Ref. [2] the amber disk used in the original FLAG review [1])
or red square. These correspond to the following ratings:

Y the parameter values and ranges used to generate the
datasets allow for a satisfactory control of the system-
atic uncertainties;

O the parameter values and ranges used to generate the
datasets allow for a reasonable attempt at estimat-
ing systematic uncertainties, which, however, could be
improved;

B the parameter values and ranges used to generate the
datasets are unlikely to allow for a reasonable control
of systematic uncertainties.

The appearance of a red tag, even in a single source of sys-
tematic error of a given lattice result, disqualifies it from
inclusion in the global average.

The attentive reader will notice that these criteria differ
from those used in Refs. [1,2]. In the previous FLAG edi-
tions we used the three symbols in order to rate the relia-
bility of the systematic errors attributed to a given result by
the paper’s authors. This sometimes proved to be a daunt-
ing task, as the methods used by some collaborations for
estimating their systematics are not always explained in
full detail. Moreover, it is sometimes difficult to disentan-
gle and rate different uncertainties, since they are inter-
woven in the error analysis. Thus, in the present edition
we have opted for a different approach: the three sym-
bols rate the quality of a particular simulation, based on
the values and range of the chosen parameters, and its
aptness to obtain well-controlled systematic uncertainties.
They do not rate the quality of the analysis performed
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by the authors of the publication. The latter question is
deferred to the relevant sections of the present review, which
contain detailed discussions of the results contributing (or
not) to each FLAG average or estimate. As a result of
this different approach to the rating criteria, as well as
changes of the criteria themselves, the colour coding of some
papers in the current FLAG version differs from that of
Ref. [2].

For most quantities the colour-coding system refers to the
following sources of systematic errors: (i) chiral extrapola-
tion; (ii) continuum extrapolation; (iii) finite volume. As we
will see below, renormalization is another source of system-
atic uncertainties in several quantities. This we also classify
using the three coloured symbols listed above, but now with
a different rationale: they express how reliably these quan-
tities are renormalized, from a field-theoretic point of view
(namely nonperturbatively, or with two-loop or one-loop per-
turbation theory).

Given the sophisticated status that the field has attained,
several aspects, besides those rated by the coloured symbols,
need to be evaluated before one can conclude whether a par-
ticular analysis leads to results that should be included in an
average or estimate. Some of these aspects are not so easily
expressible in terms of an adjustable parameter such as the
lattice spacing, the pion mass or the volume. As a result of
such considerations, it sometimes occurs, albeit rarely, that
a given result does not contribute to the FLAG average or
estimate, despite not carrying any red tags. This happens,
for instance, whenever aspects of the analysis appear to be
incomplete (e.g. an incomplete error budget), so that the pres-
ence of inadequately controlled systematic effects cannot be
excluded. This mostly refers to results with a statistical error
only, or results in which the quoted error budget obviously
fails to account for an important contribution.

Of course any colour coding has to be treated with caution;
we emphasize that the criteria are subjective and evolving.
Sometimes a single source of systematic error dominates the
systematic uncertainty and it is more important to reduce this
uncertainty than to aim for green stars for other sources of
error. In spite of these caveats we hope that our attempt to
introduce quality measures for lattice simulations will prove
to be auseful guide. In addition we would like to stress that the
agreement of lattice results obtained using different actions
and procedures provides further validation.

2.1.1 Systematic effects and rating criteria

The precise criteria used in determining the colour coding are
unavoidably time-dependent; as lattice calculations become
more accurate, the standards against which they are mea-
sured become tighter. For this reason, some of the quality
criteria related to the light-quark sector have been tightened
up between the first [1] and second [2] editions of FLAG.

In the second edition we have also reviewed quantities
related to heavy-quark physics [2]. The criteria used for light-
and heavy-flavour quantities were not always the same. For
the continuum limit, the difference was more a matter of
choice: the light-flavour Working Groups defined the ratings
using conditions involving specific values of the lattice spac-
ing, whereas the heavy-flavour Working Groups preferred
more data-driven criteria. Also, for finite-volume effects, the
heavy-flavour groups slightly relaxed the boundary between
Y and O, compared to the light-quark case, to account for
the fact that heavy-quark quantities are less sensitive to the
finiteness of the volume.

In the present edition we have opted for simplicity and
adopted unified criteria for both light- and heavy-flavoured
quantities.* The colour code used in the tables is specified as
follows:

e Chiral extrapolation:

K My min < 200 MeV
O 200 MeV < My min <400 MeV
® 400 MeV < Mz min

It is assumed that the chiral extrapolation is performed with
at least a 3-point analysis; otherwise this will be explicitly
mentioned. This condition is unchanged from Ref. [2].

e Continuum extrapolation:

Y at least three lattice spacings and at least 2 points
below 0.1 fm and a range of lattice spacings satisfying
[amax/amin]2 >2

O at least two lattice spacings and at least 1 point below
0.1 fm and a range of lattice spacings satisfying
[amax/amin]2 >14

B otherwise

It is assumed that the lattice action is O (a)-improved (i.e.
the discretization errors vanish quadratically with the lattice
spacing); otherwise this will be explicitly mentioned. For
unimproved actions an additional lattice spacing is required.
This condition has been tightened compared to that of Ref. [2]
by the requirements concerning the range of lattice spacings.

e Finite-volume effects:

* []‘47r,min/]w7r,ﬁd]2 exp{4 — Mn,min[L(Mn,min)]max}
< 1, or at least 3 volumes
O [Zwﬂ,min/]Mﬂ,ﬁd]2 exp{3 — Mﬂ,min[L(Mn,min)]max}
< 1, or at least 2 volumes
m otherwise

4 We note, however, that the data-driven criteria can be used by indi-
vidual working groups in order to rate the reliability of the analyses for
specific quantities.
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It is assumed here that calculations are in the p-regime’

of chiral perturbation theory, and that all volumes used
exceed 2 fm. Here we are using a more sophisticated con-
dition than that of Ref. [2]. The new condition involves
the quantity [ L (M min)max, Which is the maximum box
size used in the simulations performed at smallest pion
mass My min, as well as a fiducial pion mass M 4, which
we set to 200 MeV (the cutoff value for a green star in
the chiral extrapolation).

The rationale for this condition is as follows. Finite-
volume effects contain the universal factor exp{—L My},
and if this were the only contribution a criterion based
on the values of My minL would be appropriate. This is
what we used in Ref. [2] (with My minL > 4 for *
and My minL > 3 for O). However, as pion masses
decrease, one must also account for the weakening of
the pion couplings. In particular, one-loop chiral pertur-
bation theory [82] reveals a behaviour proportional to
M% exp{—L My }. Our new condition includes this weak-
ening of the coupling and ensures, for example, that sim-
ulations with My min = 135 MeV and L My pin = 3.2
are rated equivalently to those with M nin = 200 MeV
and L My min = 4.

e Renormalization (where applicable):

s nonperturbative
O one-loop perturbation theory or higher with a reason-
able estimate of truncation errors
B otherwise

In Ref. [1], we assigned a red square to all results which
were renormalized at one-loop in perturbation theory. In
Ref. [2] we decided that this was too restrictive, since the
error arising from renormalization constants, calculated
in perturbation theory at one-loop, is often estimated con-
servatively and reliably.

e Renormalization Group (RG) running (where applica-
ble):
For scale-dependent quantities, such as quark masses
or Bk, it is essential that contact with continuum per-
turbation theory can be established. Various different
methods are used for this purpose (cf. Appendix A.3):
Regularization-independent Momentum Subtraction
(RI/MOM), the Schrodinger functional, and direct com-
parison with (resummed) perturbation theory. Irrespec-
tive of the particular method used, the uncertainty asso-
ciated with the choice of intermediate renormalization
scales in the construction of physical observables must
be brought under control. This is best achieved by
performing comparisons between nonperturbative and

> We refer to Sect. 5.1 and Appendix A.4 in the Glossary for an expla-
nation of the various regimes of chiral perturbation theory.
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perturbative running over a reasonably broad range of
scales. These comparisons were initially only made in
the Schrodinger functional approach, but are now also
being performed in RI/MOM schemes. We mark the data
for which information as regards nonperturbative run-
ning checks is available and give some details, but do not
attempt to translate this into a colour code.

The pion mass plays an important role in the criteria rele-
vant for chiral extrapolation and finite volume. For some of
the regularizations used, however, it is not a trivial matter to
identify this mass.

In the case of twisted-mass fermions, discretization effects
give rise to a mass difference between charged and neutral
pions even when the up- and down-quark masses are equal:
the charged pion is found to be the heavier of the two for
twisted-mass Wilson fermions (cf. Ref. [83]). In early work,
typically referring to Ny = 2 simulations (e.g. Refs. [83]
and [36]), chiral extrapolations are based on chiral pertur-
bation theory formulae which do not take these regulariza-
tion effects into account. After the importance of keeping
the isospin breaking when doing chiral fits was shown in
Ref. [84], later work, typically referringto Ny =2+ 1+ 1
simulations, has taken these effects into account [4]. We use
M+ for My min in the chiral-extrapolation rating criterion.
On the other hand, sea quarks (corresponding to both charged
and neutral “sea pions® in an effective-chiral-theory logic)
as well as valence quarks are intertwined with finite-volume
effects. Therefore, we identify My min with the root mean
square (RMS) of M+, M- and M_o in the finite-volume
rating criterion.®

In the case of staggered fermions, discretization effects
give rise to several light states with the quantum numbers of
the pion.” The mass splitting among these “taste” partners
represents a discretization effect of O(a?), which can be sig-
nificant at large lattice spacings but shrinks as the spacing is
reduced. In the discussion of the results obtained with stag-
gered quarks given in the following sections, we assume that
these artefacts are under control. We conservatively iden-
tify My min With the root mean square (RMS) average of the
masses of all the taste partners, both for chiral-extrapolation
and finite-volume criteria.®

The strong coupling «; is computed in lattice QCD with
methods differing substantially from those used in the calcu-
lations of the other quantities discussed in this review. There-

6 This is a change from Ref. [2], where we used the charged pion mass
when evaluating both chiral-extrapolation and finite-volume effects.

7 We refer the interested reader to a number of good reviews on the
subject [85-89].

8 InRef.[2], the RMS value was used in the chiral-extrapolation criteria
throughout the paper. For the finite-volume rating, however, My mi, was
identified with the RMS value only in Sects. 4 and 6, while in Sects. 3, 5,
7 and 8 it was identified with the mass of the lightest pseudoscalar state.
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fore we have established separate criteria for o results, which
will be discussed in Sect. 9.2.

2.1.2 Heavy-quark actions

In most cases, and in particular for the b quark, the dis-
cretization of the heavy-quark action follows a very different
approach to that used for light flavours. There are several
different methods for treating heavy quarks on the lattice,
each with their own issues and considerations. All of these
methods use Effective Field Theory (EFT) at some point in
the computation, either via direct simulation of the EFT, or
by using EFT as a tool to estimate the size of cutoff errors, or
by using EFT to extrapolate from the simulated lattice quark
masses up to the physical b-quark mass. Because of the use
of an EFT, truncation errors must be considered together with
discretization errors.

The charm quark lies at an intermediate point between the
heavy and light quarks. In our previous review, the bulk of the
calculations involving charm quarks treated it using one of
the approaches adopted for the b quark. Many recent calcu-
lations, however, simulate the charm quark using light-quark
actions, in particular the Ny = 2 + 1 + 1 calculations. This
has become possible thanks to the increasing availability of
dynamical gauge field ensembles with fine lattice spacings.
But clearly, when charm quarks are treated relativistically,
discretization errors are more severe than those of the corre-
sponding light-quark quantities.

In order to address these complications, we add a new
heavy-quark treatment category to the rating system. The
purpose of this criterion is to provide a guideline for the level
of action and operator improvement needed in each approach
to make reliable calculations possible, in principle.

A description of the different approaches to treating heavy
quarks on the lattice is given in Appendix A.1.3, includ-
ing a discussion of the associated discretization, truncation,
and matching errors. For truncation errors we use HQET
power counting throughout, since this review is focussed on
heavy-quark quantities involving B and D mesons rather than
bottomonium or charmonium quantities. Here we describe
the criteria for how each approach must be implemented
in order to receive an acceptable (") rating for both the
heavy-quark actions and the weak operators. Heavy-quark
implementations without the level of improvement described
below are rated not acceptable (™). The matching is evalu-
ated together with renormalization, using the renormaliza-
tion criteria described in Sect. 2.1.1. We emphasize that
the heavy-quark implementations rated as acceptable and
described below have been validated in a variety of ways,
such as via phenomenological agreement with experimental
measurements, consistency between independent lattice cal-
culations, and numerical studies of truncation errors. These
tests are summarized in Sect. 8.

Relativistic heavy-quark actions:

v at least tree-level O(a) improved action and weak opera-
tors.

This is similar to the requirements for light-quark actions. All
current implementations of relativistic heavy-quark actions
satisfy this criterion.

NRQCD

v tree-level matched through O(1/mj;) and improved
through O(a?).

The current implementations of NRQCD satisfy this crite-
rion, and also include tree-level corrections of O(1/ m%) in
the action.

HQET

v tree-level matched through O(1/my) with discretization
errors starting at O(a2).

The current implementation of HQET by the ALPHA Col-
laboration satisfies this criterion, since both action and weak
operators are matched nonperturbatively through O(1/my,).
Calculations that exclusively use a static-limit action do not
satisfy this criterion, since the static-limit action, by defini-
tion, does not include 1/mj terms. We therefore consider
static computations in our final estimates only if truncation
errors (in 1/my,) are discussed and included in the systematic
uncertainties.

Light-quark actions for heavy quarks

/ discretization errors starting at O (a?) or higher.

This applies to calculations that use the tmWilson action,
a nonperturbatively improved Wilson action, or the HISQ
action for charm-quark quantities. It also applies to calcula-
tions that use these light-quark actions in the charm region
and above together with either the static limit or with an
HQET inspired extrapolation to obtain results at the physical
b quark mass. In these cases, the continuum extrapolation
criteria described earlier must be applied to the entire range
of heavy-quark masses used in the calculation.

2.1.3 Conventions for the figures

For a coherent assessment of the present situation, the quality
of the data plays a key role, but the colour coding cannot be
carried over to the figures. On the other hand, simply showing
all data on equal footing would give the misleading impres-
sion that the overall consistency of the information available
on the lattice is questionable. Therefore, in the figures we
indicate the quality of the data in a rudimentary way, using
the following symbols:

B corresponds to results included in the average or estimate
(i.e. results that contribute to the black square below);

[l corresponds to results that are not included in the average
but pass all quality criteria;

L] corresponds to all other results;
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B corresponds to FLAG averages or estimates; they are also
highlighted by a grey vertical band.

The reason for not including a given result in the average is
not always the same: the result may fail one of the quality
criteria; the paper may be unpublished; it may be superseded
by newer results; or it may not offer a complete error budget.

Symbols other than squares are used to distinguish results
with specific properties and are always explained in the cap-
tion.”?

Often nonlattice data are also shown in the figures for
comparison. For these we use the following symbols:

e corresponds to nonlattice results;
A corresponds to Particle Data Group (PDG) results.

2.2 Averages and estimates

FLAG results of a given quantity are denoted either as aver-
ages or as estimates. Here we clarify this distinction. To start
with, both averages and estimates are based on results with-
out any red tags in their colour coding. For many observables
there are enough independent lattice calculations of good
quality, with all sources of error (not merely those related to
the colour-coded criteria), as analysed in the original papers,
appearing to be under control. In such cases it makes sense
to average these results and propose such an average as the
best current lattice number. The averaging procedure applied
to this data and the way the error is obtained is explained in
detail in Sect. 2.3. In those cases where only a sole result
passes our rating criteria (colour coding), we refer to it as
our FLAG average, provided it also displays adequate con-
trol of all other sources of systematic uncertainty.

On the other hand, there are some cases in which this pro-
cedure leads to a result that, in our opinion, does not cover all
uncertainties. Systematic error estimates are by their nature
often subjective and difficult to estimate, and may thus end
up being underestimated in one or more results that receive
green symbols for all explicitly tabulated criteria. Adopting
a conservative policy, in these cases we opt for an estimate
(or a range), which we consider as a fair assessment of the
knowledge acquired on the lattice at present. This estimate is
not obtained with a prescribed mathematical procedure, but
reflects what we consider the best possible analysis of the
available information. The hope is that this will encourage
more detailed investigations by the lattice community.

9 For example, for quark mass results we distinguish between pertur-
bative and nonperturbative renormalization, for low-energy constants
we distinguish between the p- and e-regimes, and for heavy flavour
results we distinguish between those from leptonic and semi-leptonic
decays.
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There are two other important criteria that also play a role
in this respect, but that cannot be colour coded, because a
systematic improvement is not possible. These are: (i) the
publication status, and (ii) the number of sea-quark flavours
Ny. As far as the former criterion is concerned, we adopt the
following policy: we average only results that have been pub-
lished in peer-reviewed journals, i.e. they have been endorsed
by referee(s). The only exception to this rule consists in
straightforward updates of previously published results, typ-
ically presented in conference proceedings. Such updates,
which supersede the corresponding results in the published
papers, are included in the averages. Note that updates of
earlier results rely, at least partially, on the same gauge-field-
configuration ensembles. For this reason, we do not average
updates with earlier results. Nevertheless, all results are listed
in the tables,'? and their publication status is identified by the
following symbols:

e Publication status:
A published or plain update of published results
P preprint
C conference contribution.

In the present edition, the publication status on the 30th of
November 2015 is relevant. If the paper appeared in print
after that date, this is accounted for in the bibliography, but
does not affect the averages.

As noted above, in this review we present results from
simulations with Ny =2, Ny =2+ 1land Ny =2+ 1+1
(except for ro Ayg where we also give the Ny = 0 result).
We are not aware of an a priori way to quantitatively estimate
the difference between results produced in simulations with a
different number of dynamical quarks. We therefore average
results at fixed Ny separately; averages of calculations with
different Ny will not be provided.

To date, no significant differences between results with
different values of Ny have been observed in the quanti-
ties listed in Tables 1 and 2. In the future, as the accuracy
and the control over systematic effects in lattice calcula-
tions increases, it will hopefully be possible to see a dif-
ference between results from simulations with Ny = 2 and
Ny = 2+ 1, and thus determine the size of the Zweig-
rule violations related to strange-quark loops. This is a very
interesting issue per se, and one which can be quantitatively
addressed only with lattice calculations.

The question of differences between results with Ny =
2+ 1and Ny = 2+ 1+ 1 is more subtle. The dominant
effect of including the charm sea quark is to shift the lat-
tice scale, an effect that is accounted for by fixing this scale

10 Whenever figures turn out to be overcrowded, older, superseded
results are omitted. However, all the most recent results from each col-
laboration are displayed.
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nonperturbatively using physical quantities. For most of the
quantities discussed in this review, it is expected that resid-
ual effects are small in the continuum limit, suppressed by
o (m.) and powers of A2 / mg Here A is a hadronic scale that
can only be roughly estimated and depends on the process
under consideration. Note that the A%/m? effects have been
addressed in Ref. [90]. Assuming that such effects are small,
it might be reasonable to average the results from Ny = 2+1
and Ny = 2+ 1+ 1 simulations. This is not yet a pressing
issue in this review, since there are relatively few results with
Ny = 2+1+1, butit will become a more important question
in the future.

2.3 Averaging procedure and error analysis

In the present report we repeatedly average results obtained
by different collaborations and estimate the error on the
resulting averages. We follow the procedure of the previous
edition [2], which we describe here in full detail.

One of the problems arising when forming averages is that
not all of the datasets are independent. In particular, the same
gauge-field configurations, produced with a given fermion
discretization, are often used by different research teams with
different valence-quark lattice actions, obtaining results that
are not really independent. Our averaging procedure takes
such correlations into account.

Consider a given measurable quantity Q, measured by M
distinct, not necessarily uncorrelated, numerical experiments
(simulations). The result of each of these measurement is
expressed as

Oi=xitoV+ 0P +...+ 5", (1)

where x; is the value obtained by the ith experiment (i =
1,...,M)and al.(k) (fork =1, ..., E) are the various errors.
Typically ai(l) stands for the statistical error and ai(k) (k>72)
are the different systematic errors from various sources. For
each individual result, we estimate the total error o; by adding
statistical and systematic errors in quadrature:

Qi = x; o,

@

Oj

With the weight factor of each total error estimated in stan-

dard fashion:
072
0 ==y )
2 i=10;

the central value of the average over all simulations is given
by

M
X = 3 %o 4)

i=1

The above central value corresponds to a xéin weighted aver-
age, evaluated by adding statistical and systematic errors in
quadrature. If the fit is not of good quality (Xr%lin/d.o.f. > 1),
the statistical and systematic error bars are stretched by a
factor § = /x2/d.o.f.

Next we examine error budgets for individual calcula-
tions and look for potentially correlated uncertainties. Spe-
cific problems encountered in connection with correlations
between different data sets are described in the text that
accompanies the averaging. If there is reason to believe that
a source of error is correlated between two calculations, a
100% correlation is assumed. The correlation matrix C;; for
the set of correlated lattice results is estimated by a prescrip-
tion due to Schmelling [91]. This consists in defining

/
o= [y lo/7P, ©)
(k)

with Z/(k) running only over those errors of x; that are corre-
lated with the corresponding errors of measurement x ;. This
expresses the part of the uncertainty in x; that is correlated
with the uncertainty in x;. If no such correlations are known
to exist, then we take oy, ; = 0. The diagonal and off-diagonal
elements of the correlation matrix are then taken to be

Ci=d? (i=1,....,M),
@ #)). ©)
Finally the error of the average is estimated by

M M
Gazvzzzwia)j Cij, (7)

i=1 j=1

Cij = 0i:j 0}

and the FLAG average is
Qav = Xay T Oay. (8)

3 Quark masses

Quark masses are fundamental parameters of the Standard
Model. An accurate determination of these parameters is
important for both phenomenological and theoretical appli-
cations. The charm and bottom masses, for instance, enter
the theoretical expressions of several cross sections and decay
rates in heavy-quark expansions. The up-, down- and strange-
quark masses govern the amount of explicit chiral symme-
try breaking in QCD. From a theoretical point of view, the
values of quark masses provide information as regards the
flavour structure of physics beyond the Standard Model. The
Review of Particle Physics of the Particle Data Group con-
tains a review of quark masses [92], which covers light as
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well as heavy flavours. Here we also consider light- and
heavy- quark masses, but focus on lattice results and dis-
cuss them in more detail. We do not discuss the top quark,
however, because it decays weakly before it can hadronize,
and the nonperturbative QCD dynamics described by present
day lattice simulations is not relevant. The lattice determi-
nation of light- (up, down, strange), charm- and bottom-
quark masses is considered in Sects. 3.1, 3.2, and 3.3, respec-
tively.

Quark masses cannot be measured directly in experiment
because quarks cannot be isolated, as they are confined inside
hadrons. On the other hand, quark masses are free parameters
of the theory and, as such, cannot be obtained on the basis
of purely theoretical considerations. Their values can only
be determined by comparing the theoretical prediction for
an observable, which depends on the quark mass of interest,
with the corresponding experimental value.

In the last edition of this review [2], quark-mass deter-
minations came from two- and three-flavour QCD calcu-
lations. Moreover, these calculations were most often per-
formed in the isospin limit, where the up- and down-quark
masses (especially those in the sea) are set equal. In addi-
tion, some of the results retained in our light-quark mass
averages were based on simulations performed at values
of m,4 which were still substantially larger than its phys-
ical value imposing a significant extrapolation to reach the
physical up- and down-quark mass point. Among the cal-
culations performed near physical m,; by PACS-CS [93—
95], BMW [7,8] and RBC/UKQCD [31], only the ones in
Refs. [7,8] did so while controlling all other sources of sys-
tematic error.

Today, however, the effects of the charm quark in the sea
are more and more systematically considered and most of the
new quark-mass results discussed below have been obtained
in Ny = 2+1+1 simulations by ETM [4], HPQCD [14] and
FNAL/MILC [5]. In addition, RBC/UKQCD [10], HPQCD
[14] and FNAL/MILC [5] are extending their calculations
down to up-down-quark masses at or very close to their phys-
ical values while still controlling other sources of systematic
error. Another aspect that is being increasingly addressed
are electromagnetic and (mg — m,,), strong isospin-breaking
effects. As we will see below these are particularly important
for determining the individual up- and down-quark masses.
But with the level of precision being reached in calculations,
these effects are also becoming important for other quark
masses.

Three-flavour QCD has four free parameters: the strong
coupling, oy (alternatively Agcp) and the up-, down- and
strange-quark masses, m,, mq and m. Four-flavour calcula-
tions have an additional parameter, the charm-quark mass
m.. When the calculations are performed in the isospin
limit, up- and down-quark masses are replaced by a single
parameter: the isospin-averaged up- and down-quark mass,
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Myq = %(mu +mg). A lattice determination of these param-
eters, and in particular of the quark masses, proceeds in two
steps:

1. One computes as many experimentally measurable quan-
tities as there are quark masses. These observables should
obviously be sensitive to the masses of interest, prefer-
ably straightforward to compute and obtainable with high
precision. They are usually computed for a variety of
input values of the quark masses which are then adjusted
to reproduce experiment. Another observable, such as
the pion decay constant or the mass of a member of the
baryon octet, must be used to fix the overall scale. Note
that the mass of a quark, such as the b, which is not
accounted for in the generation of gauge configurations,
can still be determined. For that an additional valence-
quark observable containing this quark must be computed
and the mass of that quark must be tuned to reproduce
experiment.

2. The input quark masses are bare parameters which
depend on the lattice spacing and particulars of the lattice
regularization used in the calculation. To compare their
values at different lattice spacings and to allow a contin-
uum extrapolation they must be renormalized. This renor-
malization is a short-distance calculation, which may
be performed perturbatively. Experience shows that one-
loop calculations are unreliable for the renormalization
of quark masses: usually at least two loops are required to
have trustworthy results. Therefore, it is best to perform
the renormalizations nonperturbatively to avoid poten-
tially large perturbative uncertainties due to neglected
higher-order terms. Nevertheless we will include in our
averages one-loop results if they carry a solid estimate
of the systematic uncertainty due to the truncation of the
series.

In the absence of electromagnetic corrections, the renormal-
ization factors for all quark masses are the same at a given
lattice spacing. Thus, uncertainties due to renormalization are
absent in ratios of quark masses if the tuning of the masses
to their physical values can be done lattice spacing by lattice
spacing and significantly reduced otherwise.

We mention that lattice QCD calculations of the b-quark
mass have an additional complication which is not present in
the case of the charm- and light-quarks. At the lattice spacings
currently used in numerical simulations the direct treatment
of the b quark with the fermionic actions commonly used
for light quarks will result in large cutoff effects, because
the b-quark mass is of order one in lattice units. There are
a few widely used approaches to treat the b quark on the
lattice, which have been already discussed in the FLAG 13
review (see Section 8 of Ref. [2]). Those relevant for the
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determination of the b-quark mass will be briefly described
in Sect. 3.3.

3.1 Masses of the light quarks

Light-quark masses are particularly difficult to determine
because they are very small (for the up and down quarks) or
small (for the strange quark) compared to typical hadronic
scales. Thus, their impact on typical hadronic observables is
minute, and it is difficult to isolate their contribution accu-
rately.

Fortunately, the spontaneous breaking of SU3); X
SU (3)g chiral symmetry provides observables which are
particularly sensitive to the light-quark masses: the masses
of the resulting Nambu—Goldstone bosons (NGB), i.e. pions,
kaons and etas. Indeed, the Gell-Mann—Oakes—Renner rela-
tion [96] predicts that the squared mass of a NGB is directly
proportional to the sum of the masses of the quark and anti-
quark which compose it, up to higher-order mass corrections.
Moreover, because these NGBs are light and are composed
of only two valence particles, their masses have a partic-
ularly clean statistical signal in lattice-QCD calculations.
In addition, the experimental uncertainties on these meson
masses are negligible. Thus, in lattice calculations, light-
quark masses are typically obtained by renormalizing the
input quark mass and tuning them to reproduce NGB masses,
as described above.

3.1.1 Contributions from the electromagnetic interaction

As mentioned in Sect. 2.1, the present review relies on the
hypothesis that, at low energies, the Lagrangian Locp +
Lgep describes nature to a high degree of precision. How-
ever, most of the results presented below are obtained in pure
QCD calculations, which do not include QED. Quite gener-
ally, when comparing QCD calculations with experiment,
radiative corrections need to be applied. In pure QCD simu-
lations, where the parameters are fixed in terms of the masses
of some of the hadrons, the electromagnetic contributions to
these masses must be accounted for. Of course, once QED is
included in lattice calculations, the subtraction of e.m. con-
tributions is no longer necessary.

The electromagnetic interaction plays a particularly impor-
tant role in determinations of the ratio m,/mg4, because
the isospin-breaking effects generated by this interaction
are comparable to those from m, # mg4 (see Sect. 3.1.5).
In determinations of the ratio mg/m,q, the electromagnetic
interaction is less important, but at the accuracy reached, it
cannot be neglected. The reason is that, in the determina-
tion of this ratio, the pion mass enters as an input parameter.
Because M represents a small symmetry-breaking effect, it
is rather sensitive to the perturbations generated by QED.

The decomposition of the sum Locp + Lggp into two
parts is not unique and specifying the QCD part requires a
convention. In order to give results for the quark masses in
the Standard Model at scale © = 2GeV, on the basis of
a calculation done within QCD, it is convenient to match
the parameters of the two theories at that scale. We use this
convention throughout the present review.!!

Such a convention allows us to distinguish the physical
mass Mp, P € {n ™+, 7% K+, K°}, from the mass M p within
QCD. The e.m. self-energy is the difference between the two,
M}; = Mp — Mp. Because the self-energy of the Nambu—
Goldstone bosons diverges in the chiral limit, it is convenient
to replace it by the contribution of the e.m. interaction to the
square of the mass,

AV = M3 — M3 =2MpM} 4 O(e*). )

The main effect of the e.m. interaction is an increase in the
mass of the charged particles, generated by the photon cloud
that surrounds them. The self-energies of the neutral ones are
comparatively small, particularly for the Nambu—Goldstone
bosons, which do not have a magnetic moment. Dashen’s
theorem [102] confirms this picture, as it states that, to lead-
ing order (LO) of the chiral expansion, the self-energies
of the neutral NGBs vanish, while the charged ones obey
A2+ = AZ+. It is convenient to express the self-energies of
the neutral particles as well as the mass difference between
the charged and neutral pions within QCD in units of the
observed mass difference, A, = Mg — M;O:
AJ};O =€,0 Ay, A}I/(O =€go Ay, Mfﬁ. — Mﬁo =€, Ay
(10)

In this notation, the self-energies of the charged particles are
given by

AV = (14 €0 —€n) Ay,

A, =(1+€+ego—en) Ag, (11)
where the dimensionless coefficient € parameterizes the vio-
lation of Dashen’s theorem, 2

Ay = AV = Al + AT =€y (12)

1" Note that a different convention is used in the analysis of the

precision measurements carried out in low-energy pion physics (e.g.
Ref. [97]). When comparing lattice results with experiment, it is impor-
tant to fix the QCD parameters in accordance with the convention used
in the analysis of the experimental data (for a more detailed discussion,
see Refs. [98-101]).

12 Sometimes, e.g. in Ref. [103], the violation of Dashen’s theorem
is given in terms of a different quantity, € = (Ai+ — AJI’{O) / (Aj;, —
A;O)f 1. This parameter is related to € used here throughe = (1—¢,,)€.
Given the value of €, (see Eq. (13)), these two quantities differ by 4%
only.
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Any determination of the light-quark masses based on a
calculation of the masses of 77, KT and K° within QCD
requires an estimate for the coefficients €, €0, €go and €.

The first determination of the self-energies on the lattice
was carried out by Duncan, Eichten and Thacker [104]. Using
the quenched approximation, they arrived at M I’;+ — M};O =
1.9 MeV. Actually, the parameterization of the masses given
in that paper yields an estimate for all but one of the coeffi-
cients introduced above (since the mass splitting between the
charged and neutral pions in QCD is neglected, the param-
eterization amounts to setting €,, = 0 ab initio). Evaluating
the differences between the masses obtained at the physical
value of the electromagnetic coupling constant and ate = 0,
we obtain € = 0.50(8), €0 = 0.034(5) and €xo = 0.23(3).
The errors quoted are statistical only: an estimate of lat-
tice systematic errors is not possible from the limited results
of Ref. [104]. The result for € indicates that the violation of
Dashen’s theorem is sizeable: according to this calculation,
the nonleading contributions to the self-energy difference of
the kaons amount to 50% of the leading term. The result for
the self-energy of the neutral pion cannot be taken at face
value, because it is small, comparable to the neglected mass
difference I\;Iﬂ+ — A;Ino. To illustrate this, we note that the
numbers quoted above are obtained by matching the parame-
terization with the physical masses for 7°, K+ and K. This
gives a mass for the charged pion that is too high by 0.32
MeV. Tuning the parameters instead such that M+ comes
out correctly, the result for the self-energy of the neutral pion
becomes larger: €0 = 0.10(7) where, again, the error is
statistical only.

In an update of this calculation by the RBC Collabo-
ration [105] (RBC 07), the electromagnetic interaction is
still treated in the quenched approximation, but the strong
interaction is simulated with Ny = 2 dynamical quark
flavours. The quark masses are fixed with the physical
masses of 70, K+ and K°. The outcome for the differ-
ence in the electromagnetic self-energy of the kaons reads
My, — My, = 1.443(55)MeV. This corresponds to a
remarkably small violation of Dashen’s theorem. Indeed, a
recent extension of this work to Ny = 2 + 1 dynamical
flavours [103] leads to a significantly larger self-energy dif-
ference: M};+ - MI);O = 1.87(10) MeV, in good agreement
with the estimate of Eichten et al. Expressed in terms of
the coefficient € that measures the size of the violation of
Dashen’s theorem, it corresponds to € = 0.5(1).

The input for the electromagnetic corrections used by
MILC is specified in Ref. [106]. In their analysis of the lattice
data, €0, €go and ¢, are set equal to zero. For the remaining
coefficient, which plays a crucial role in determinations of
the ratio m, /mg, the very conservative range ¢ = 1(1) was
used in MILC 04 [107], while in MILC 09 [89] and MILC
09A [6] this input has been replaced by € = 1.2(5), as sug-
gested by phenomenological estimates for the corrections to
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Dashen’s theorem [108, 109]. Results of an evaluation of the
electromagnetic self-energies based on Ny = 2 + 1 dynam-
ical quarks in the QCD sector and on the quenched approxi-
mation in the QED sector have also been reported by MILC
in Refs. [110-112] and updated recently in Refs. [113,114].
Their latest (preliminary) result is € = 0.84(5)(19), where
the first error is statistical and the second systematic, coming
from discretization and finite-volume uncertainties added in
quadrature. With the estimate for ¢€,, given in Eq. (13), this
result corresponds to € = 0.81(5)(18).

Preliminary results have also been reported by the BMW
Collaboration in conference proceedings [115—117], with the
updated result being € = 0.57(6)(6), where the first error is
statistical and the second systematic.

The RM123 Collaboration employs a new technique to
compute e.m. shifts in hadron masses in 2-flavour QCD: the
effects are included at leading order in the electromagnetic
coupling « through simple insertions of the fundamental elec-
tromagnetic interaction in quark lines of relevant Feynman
graphs [16]. They find ¢ = 0.79(18)(18), where the first
error is statistical and the second is the total systematic error
resulting from chiral, finite-volume, discretization, quench-
ing and fitting errors all added in quadrature.

Recently [118] the QCDSF/UKQCD Collaboration has
presented results for several pseudoscalar meson masses
obtained from Ny = 2 + 1 dynamical simulations of QCD
+ QED (at a single lattice spacing @ ~ 0.07 fm). Using the
experimental values of the 79, K% and Kt mesons masses
to fix the three light-quark masses, they find € = 0.50(6),
where the error is statistical only.

The effective Lagrangian that governs the self-energies
to next-to-leading order (NLO) of the chiral expansion was
set up in Ref. [119]. The estimates made in Refs. [108,109]
are obtained by replacing QCD with a model, matching
this model with the effective theory and assuming that the
effective coupling constants obtained in this way represent
a decent approximation to those of QCD. For alternative
model estimates and a detailed discussion of the problems
encountered in models based on saturation by resonances,
see Refs. [120-122]. In the present review of the information
obtained on the lattice, we avoid the use of models altogether.

There is an indirect phenomenological determination of
€, which is based on the decay » — 3w and does not rely
on models. The result for the quark-mass ratio Q, defined
in Eq. (32) and obtained from a dispersive analysis of this
decay, implies € = 0.70(28) (see Sect. 3.1.5). While the
values found in older lattice calculations [103—-105] are a lit-
tle less than one standard deviation lower, the most recent
determinations [16,110-116,123], though still preliminary,
are in excellent agreement with this result and have signifi-
cantly smaller error bars. However, even in the more recent
calculations, e.m. effects are treated in the quenched approx-
imation. Thus, we choose to quote ¢ = 0.7(3), which is
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essentially the n — 3 result and covers the range of post-
2010 lattice results. Note that this value has an uncertainty
which is reduced by about 40% compared to the result quoted
in the first edition of the FLAG review [1].

We add a few comments concerning the physics of the
self-energies and then specify the estimates used as an input
in our analysis of the data. The Cottingham formula [124]
represents the self-energy of a particle as an integral over
electron scattering cross sections; elastic as well as inelastic
reactions contribute. For the charged pion, the term due to
elastic scattering, which involves the square of the e.m. form
factor, makes a substantial contribution. In the case of the
79, this term is absent, because the form factor vanishes on
account of charge conjugation invariance. Indeed, the con-
tribution from the form factor to the self-energy of the 7™
roughly reproduces the observed mass difference between the
two particles. Furthermore, the numbers given in Refs. [125—
127] indicate that the inelastic contributions are significantly
smaller than the elastic contributions to the self-energy of the
7. The low-energy theorem of Das, Guralnik, Mathur, Low
and Young [128] ensures that, in the limit m,, mg — 0, the
e.m. self-energy of the 7 vanishes, while the one of the 7+
is given by an integral over the difference between the vec-
tor and axial-vector spectral functions. The estimates for €0
obtained in Ref. [104] and more recently in Ref. [118] are
consistent with the suppression of the self-energy of the 7°
implied by chiral SU(2) x SU (2). In our opinion, as already
done in the FLAG 13 review [2], the value €0 = 0.07(7) still
represents a quite conservative estimate for this coefficient.
The self-energy of the K ¥ is suppressed less strongly, because
it remains different from zero if m,, and m, are taken massless
and only disappears if m; is turned off as well. Note also that,
since the e.m. form factor of the K © is different from zero, the
self-energy of the K does pick up an elastic contribution.
The recent lattice result e zo = 0.2(1) obtained in Ref. [118]
indicates that the violation of Dashen’s theorem is smaller
than in the case of €. Following the FLAG 13 review [2] we
confirm the choice of the conservative value exo = 0.3(3).

Finally, we consider the mass splitting between the
charged and neutral pions in QCD. This effect is known to be
very small, because it is of second order in m,, —m . There is
a parameter-free prediction, which expresses the difference
A;IiJr — Mio in terms of the physical masses of the pseu-
doscalar octet and is valid to NLO of the chiral perturbation
series. Numerically, the relation yields €, = 0.04 [129],
indicating that this contribution does not play a significant
role at the present level of accuracy. We attach a conserva-
tive error also to this coefficient: €,, = 0.04(2). The lattice
result for the self-energy difference of the pions, reported
inRef. [103], M), — M, = 4.50(23) MeV, agrees with this
estimate: expressed in terms of the coefficient €, that mea-
sures the pion-mass splitting in QCD, the result corresponds
to €, = 0.04(5). The corrections of next-to-next-to-leading

order (NNLO) have been worked out in Ref. [130], but the
numerical evaluation of the formulae again meets with the
problem that the relevant effective coupling constants are not
reliably known.

In summary, we use the following estimates for the
e.m. corrections:

€ =0703), €,0=007(7), exo=030),
em = 0.04(2). (13)

While the range used for the coefficient € affects our anal-
ysis in a significant way, the numerical values of the other
coefficients only serve to set the scale of these contributions.
The range given for €0 and € g0 may be overly generous, but
because of the exploratory nature of the lattice determina-
tions, we consider it advisable to use a conservative estimate.

Treating the uncertainties in the four coefficients as sta-
tistically independent and adding errors in quadrature, the
numbers in Eq. (13) yield the following estimates for the
e.m. self-energies,

M, =47(3) MeV, M;O =0.3(3) MeV,
MY, - M;O = 4.4(1) MeV,
My, =25(5) MeV, My, =0.4(4)MeV,
My, — My, =2.1(4) MeV, (14)

and for the pion and kaon masses occurring in the QCD sector
of the Standard Model,

M.+ = 134.83) MeV, M_o = 134.6(3) MeV,
M+ — Mo =0.2(1) MeV,
Mg+ =491.2(5 MeV, Mo = 497.2(4) MeV,
Mg+ — Mygo = —6.1(4) MeV. (15)

The self-energy difference between the charged and neutral
pion involves the same coefficient €, that describes the mass
difference in QCD — this is why the estimate for M, — M,
is so precise.

3.1.2 Pion and kaon masses in the isospin limit

As mentioned above, most of the lattice calculations con-
cerning the properties of the light mesons are performed in
the isospin limit of QCD (m,, — my — 0 at fixed m,, + my).
We denote the pion and kaon masses in that limit by M and
M g, respectively. Their numerical values can be estimated
as follows. Since the operation u <> d interchanges 7+ with
7~ and KT with K, the expansion of the quantities ]\;IJZTJr
and %(MIZ<+ + A;Ilz(o) in powers of m, — mg only contains
even powers. As shown in Ref. [131], the effects generated
by m, —mg in the mass of the charged pion are strongly sup-
pressed: the difference M§+ — Mﬁ represents a quantity of
O[(my, —my)*(m, +my)] and is therefore small compared to
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the difference M§+ - ]\;IJZTO, for which an estimate was given

A A —2
above. In the case of %(Mlz<+ + M12<0) — Mg, the expan-
sion does contain a contribution at NLO, determined by the
combination 2Lg— L5 of low-energy constants, but the lattice
results for that combination show that this contribution is very
small, too. Numerically, the effects generated by m, — my
in M2, and in 5(M%. + M3,) are negligible compared to
the uncertainties in the electromagnetic self-energies. The
estimates for these given in Eq. (15) thus imply

M, = M,+ = 134.8(3) MeV,

— 1 - N
My = 1/E(M,z<+ + M3,) = 494.2(3) MeV. (16)

This shows that, for the convention used above to specify the
QCD sector of the Standard Model, and within the accuracy
to which this convention can currently be implemented, the
mass of the pion in the isospin limit agrees with the physical
mass of the neutral pion: My — M_ o = —0.2(3) MeV.

3.1.3 Lattice determination of ms and mq

We now turn to a review of the lattice calculations of the
light-quark masses and begin with m, the isospin-averaged
up- and down-quark mass, m,,4, and their ratio. Most groups
quote only m,4, not the individual up- and down-quark
masses. We then discuss the ratio m, /my and the individ-
ual determination of m, and m,.

Quark masses have been calculated on the lattice since the
mid-1990s. However, early calculations were performed in
the quenched approximation, leading to unquantifiable sys-
tematics. Thus in the following, we only review modern,
unquenched calculations, which include the effects of light
sea quarks.

Tables 3, 4 and 5 list the results of Ny =2, Ny =2+ 1
and Ny = 2 + 1 + 1 lattice calculations of m and mq.
These results are given in the MS scheme at 2 GeV, which is
standard nowadays, though some groups are starting to quote
results at higher scales (e.g. Ref. [31]). The tables also show
the colour coding of the calculations leading to these results.
As indicated earlier in this review, we treat calculations with
different numbers, Ny, of dynamical quarks separately.

Ny = 2 lattice calculations For Ny = 2, no new calcu-
lations have been performed since the previous edition of
the FLAG review [2]. A quick inspection of Table 3 indi-
cates that only the more recent calculations, ALPHA 12 [12]
and ETM 10B [11], control all systematic effects — the spe-
cial case of Diirr 11 [132] is discussed below. Only ALPHA
12 [12], ETM 10B [11] and ETM 07 [133] really enter the
chiral regime, with pion masses down to about 270 MeV for
ALPHA and ETM. Because this pion mass is still quite far
from the physical-pion mass, ALPHA 12 refrain from deter-
mining m,4 and give only m. All the other calculations have

@ Springer

significantly more massive pions, the lightest being about
430 MeV, in the calculation by CP-PACS 01 [134]. More-
over, the latter calculation is performed on very coarse lat-
tices, with lattice spacings a > 0.11 fm and only one-loop
perturbation theory is used to renormalize the results.

ETM 10B’s [11] calculation of m,y4 and my is an update
of the earlier twisted-mass determination of ETM 07 [133].
In particular, they have added ensembles with a larger vol-
ume and three new lattice spacings, a = 0.054, 0.067 and
0.098 fm, allowing for a continuum extrapolation. In addi-
tion, it features analyses performed in SU(2) and SU(3)
xPT.

The ALPHA 12 [12] calculation of my is an update of
ALPHA 05 [135], which pushes computations to finer lattices
and much lighter pion masses. It also importantly includes
a determination of the lattice spacing with the decay con-
stant Fx, whereas ALPHA 05 converted results to physical
units using the scale parameter r( [136], defined via the force
between static quarks. In particular, the conversion relied on
measurements of 79/a by QCDSF/UKQCD 04 [137] which
differ significantly from the new determination by ALPHA
12. As in ALPHA 05, in ALPHA 12 both nonperturbative
running and nonperturbative renormalization are performed
in a controlled fashion, using Schrodinger functional meth-
ods.

The conclusion of our analysis of Ny = 2 calculations is
that the results of ALPHA 12 [12] and ETM 10B [11] (which
update and extend ALPHA 05 [135] and ETM 07 [133],
respectively), are the only ones to date which satisfy our
selection criteria. Thus we average those two results for m,
obtaining 101(3) MeV. Regarding m,,4, for which only ETM
10B [11] gives a value, we do not offer an average but simply
quote ETM’s number. Thus, we quote as our estimates:

my; = 101(3) MeV Refs. [11,12],

Nf =2: (17)
myuq = 3.6(2) MeV Ref. [11].

The errors on these results are 3 and 6%, respectively. How-
ever, these errors do not account for the fact that sea strange-
quark mass effects are absent from the calculation, a trun-
cation of the theory whose systematic effects cannot be
estimated a priori. Thus, these results carry an additional
unknown systematic error. It is worth remarking that the dif-
ference between ALPHA 12’s [12] central value for m; and
that of ETM 10B [11] is 7(7) MeV.

We have not included the results of Diirr 11 [132] in
the averages of Eq. (17), despite the fact that they sat-
isfy our selection criteria. The reason for this is that the
observable which they actually compute on the lattice is
me/mg = 11.27(30)(26), reviewed in Sect. 3.2.4. They
obtain mg by combining that value of m./m, with already
existing phenomenological calculations of m .. Subsequently
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Table 5 Ny =2+ 1+ 1 lattice results for the masses m,, and m, (see Table 3 for notation)

mg

Myd

Renormalization Running

Finite

Continuum

Chiral

Publication

status

Refs.

Collaboration

volume

extrapolation

extrapolation

93.7(8)

(51
[4]

* As explained in the text, m;y is obtained by combining the results m.(5 GeV; Ny = 4) = 0.8905(56) GeV and (m./my)(Nf = 4) = 11.652(65), determined on the same dataset. A subsequent

scale and scheme conversion, performed by the authors leads, to the value 93.6(8). In the table we have converted this to m(2 GeV; Ny = 4), which makes a very small change

HPQCD 14A?
ETM 142

99.6(3.6)(2.3)

3.70(13)(11)

they obtain m,, by combining this result for m; with the
Ny =2+ 1 calculation of m,/m,q of BMW 10A, 10B [7,8]
discussed below. Thus, their results for mg and m,4 are not
per se lattice results, nor do they correspond to Ny = 2. The
value of the charm-quark mass which they use is an average
of phenomenological determinations, which they estimate to
be m.(2GeV) = 1.093(13) GeV, with a 1.2% total uncer-
tainty. This value for m leads to the results for mg and m 4
in Table 3 which are compatible with the averages given in
Eq. (17) and have similar uncertainties. Note, however, that
their determination of m./m is about 1.5 combined standard
deviations below the only other Ny = 2 result which satisfies
our selection criteria, ETM 10B’s [11] result, as discussed in
Sect. 3.2.4.

Ny =2+ 1 lattice calculations We turnnow to Ny =2+ 1
calculations. These and the corresponding results for m,4
and my are summarized in Table 4. Given the very high pre-
cision of a number of the results, with total errors on the
order of 1%, it is important to consider the effects neglected
in these calculations. Since isospin-breaking and e.m. effects
are small on m,y; and mg, and have been approximately
accounted for in the calculations that will be retained for
our averages, the largest potential source of uncontrolled
systematic error is that due to the omission of the charm
quark in the sea. Beyond the small perturbative corrections
that come from matching the Ny = 3 to the Ny = 4 MS
scheme at m. (~ — 0.2%), the charm sea-quarks affect the
determination of the light-quark masses through contribu-
tions of order 1 /mg. As these are further suppressed by
the Okubo-Zweig-lizuka rule, they are also expected to
be small, but are difficult to quantify a priori. Fortunately,
as we will see below, m; has been directly computed with
Ny = 2+1+1 simulations. In particular, HPQCD 14 [5] has
computed m; in QCD4 with very much the same approach
as it had used to obtain the QCD3 result of HPQCD 10 [9].
Their results for mg(Ny = 3,2 GeV) are 93.8(8) MeV [5]
and 92.2(1.3) MeV [9], where the Ny = 4 result has been
converted perturbatively to Ny = 3 in Ref. [5]. This leads to
a relative difference of 1.7(1.6)%. While the two results are
compatible within one combined standard deviation, a ~2%
effect cannot be excluded. Thus, we will retain this 2% uncer-
tainty and add it to the averages for m; and m,4 given below.

The only new calculation since the last FLAG report [2]
is that of RBC/UKQCD 14 [10]. It significantly improves
on their RBC/UKQCD 12 [31] work by adding three new
domain-wall fermion simulations to three used previously.
Two of the new simulations are performed at essentially
physical-pion masses (M =~ 139 MeV) on lattices of about
5.4fm in size and with lattice spacings of 0.114 fm and
0.084 fm. It is complemented by a third simulation with
M, >~ 371 MeV, a >~ 0.063 and a rather small L ~ 2.0 fm.
Altogether, this gives them six simulations with six unitary
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M ’s in the range of 139 to 371 MeV and effectively three
lattice spacings from 0.063 to 0.114 fm. They perform a com-
bined global continuum and chiral fit to all of their results for
the 7 and K masses and decay constants, the €2 baryon mass
and two Wilson-flow parameters. Quark masses in these fits
are renormalized and run nonperturbatively in the RISMOM
scheme. This is done by computing the relevant renormal-
ization constant for a reference ensemble and determining
those for other simulations relative to it by adding appropri-
ate parameters in the global fit. This new calculation passes
all of our selection criteria. Its results will replace the older
RBC/UKQCD 12 results in our averages.

Ny = 2 + 1 MILC results for light-quark masses go
back to 2004 [107,148]. They use rooted staggered fermions.
By 2009 their simulations covered an impressive range of
parameter space, with lattice spacings which go down to
0.045 fm and valence-pion masses down to approximately
180 MeV [6]. The most recent MILC Ny = 2+ 1 results, i.e.
MILC 10A [13] and MILC 09A [6], feature large statistics
and two-loop renormalization. Since these datasets subsume
those of their previous calculations, these latest results are
the only ones that must be kept in any world average.

The PACS-CS 12 [143] calculation represents an impor-
tant extension of the collaboration’s earlier 2010 computa-
tion [95], which already probed pion masses down to M, =~
135MeV, i.e. down to the physical-mass point. This was
achieved by reweighting the simulations performed in PACS-
CS 08 [93] at M, ~ 160 MeV. If adequately controlled, this
procedure eliminates the need to extrapolate to the physical-
mass point and, hence, the corresponding systematic error.
The new calculation now applies similar reweighting tech-
niques to include electromagnetic and m, #* mg isospin-
breaking effects directly at the physical-pion mass. Further,
as in PACS-CS 10 [95], renormalization of quark masses
is implemented nonperturbatively, through the Schrodinger
functional method [153]. As it stands, the main drawback of
the calculation, which makes the inclusion of its results in a
world average of lattice results inappropriate at this stage, is
that for the lightest quark mass the volume is very small, cor-
responding to LM, =~ 2.0, a value for which finite-volume
effects will be difficult to control. Another problem is that the
calculation was performed at a single lattice spacing, forbid-
ding a continuum extrapolation. Further, it is unclear at this
point what might be the systematic errors associated with the
reweighting procedure.

The BMW 10A, 10B [7,8] calculation still satisfies our
stricter selection criteria. They reach the physical up- and
down-quark mass by interpolation instead of by extrapola-
tion. Moreover, their calculation was performed at five lattice
spacings ranging from 0.054 to 0.116 fm, with full nonper-
turbative renormalization and running and in volumes of up
to (6 fm)? guaranteeing that the continuum limit, renormal-
ization and infinite-volume extrapolation are controlled. It
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does neglect, however, isospin-breaking effects, which are
small on the scale of their error bars.

Finally we come to another calculation which satisfies our
selection criteria, HPQCD 10 [9]. It updates the staggered
fermions calculation of HPQCD 09A [18]. In these papers
the renormalized mass of the strange quark is obtained by
combining the result of a precise calculation of the renormal-
ized charm-quark mass, m., with the result of a calculation
of the quark-mass ratio, m./m;. As described in Ref. [152]
and in Sect. 3.2, HPQCD determines m. by fitting Euclidean-
time moments of the cc pseudoscalar density 2-point func-
tions, obtained numerically in lattice QCD, to fourth-order,
continuum perturbative expressions. These moments are nor-
malized and chosen so as to require no renormalization with
staggered fermions. Since m./mg requires no renormaliza-
tion either, HPQCD’s approach displaces the problem of lat-
tice renormalization in the computation of m; to one of com-
puting continuum perturbative expressions for the moments.
To calculate m,,; HPQCD 10 [9] use the MILC 09 determi-
nation of the quark-mass ratio mg/m,q [89].

HPQCD 09A [18] obtains m./m; = 11.85(16) [18]
fully nonperturbatively, with a precision slightly larger than
1%. HPQCD 10’s determination of the charm-quark mass,
me(me) = 1.268(6),13 is even more precise, achieving an
accuracy better than 0.5%. While these errors are, perhaps,
surprisingly small, we take them at face value as we do those
of RBC/UKQCD 14, since we will add a 2% error due to the
quenching of the charm on the final result.

This discussion leaves us with four results for our final
average for my: MILC 09A [6], BMW 10A, 10B [7,8],
HPQCD 10 [9] and RBC/UKQCD 14 [10]. Assuming that
the result from HPQCD 10 is 100% correlated with that of
MILC 09A, asitis based on a subset of the MILC 09A config-
urations, we find my =92.0(1.1) MeV witha x?/d.o.f.=1.8.

For the light-quark mass m,4, the results satisfying our
criteria are RBC/UKQCD 14B, BMW 10A, 10B, HPQCD
10, and MILC 10A. For the error, we include the same 100%
correlation between statistical errors for the latter two as for
the strange case, resulting in m, s = 3.373(43) at 2 GeV in
the MS scheme (x2/d.o.f. = 1.5). Adding the 2% estimate
for the missing charm contribution, our final estimates for
the light-quark masses are

myg = 3.373(80) MeV  Refs. [7-10,13],

Np=2+1:
mg = 92.0(2.1) MeV Refs. [6-10].

(18)

Ny = 2+1+1 lattice calculations One of the novelties since
the last edition of this review [2] is the fact that Ny = 2 +

13 To obtain this number, we have used the conversion from n=3GeV
to m given in Ref. [152].
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FLAG average for N¢=2+1+1
HPQCD 14A
ETM 14

Ne=24+14+1

FLAG average for Ne=2+1

RBC/UKQCD 14B

RBC/UKQCD 12

HH PACS-CS 12
BMW 10A, 10B
PACS-CS 10

[ ] HPQCD 10
RBC/UKQCD 10A
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PACS-CS 09
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H Darr 11
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[ ] Vainshtein 78 158]

70 80 90 100 110 120 MeV

pheno

Fig. 1 MS mass of the strange quark (at 2 GeV scale) in MeV. The
upper three panels show the lattice results listed in Tables 3, 4 and 5,
while the bottom panel collects a few sum rule results and also indi-
cates the current PDG estimate. Diamonds and squares represent results
based on perturbative and nonperturbative renormalization, respec-
tively. The black squares and the grey bands represent our estimates
(17),(18) and (19). The significance of the colours is explained in Sect. 2

1 4 1 results for the light-quark masses have been published.
These and the features of the corresponding calculations are
summarized in Table 5. Note that the results of Ref. [5] are
reported as m;(2GeV; Ny = 3) and those of Ref. [4] as
Myuq(s)(2GeV; Ny = 4). We convert the former to Ny =
4 and obtain m;(2GeV; Ny = 4) = 93.7(8) MeV. The
average of ETM 14 and HPQCD 14A is 93.9(1.1) MeV with
x?%/d.o.f. = 1.8. For the lightOquark average we use the sole
available value from ETM 14A. Our averages are

myuq = 3.70(17) MeV  Ref. [4],

Ny=2+1+1
ms =93.9(1.1) MeV  Refs. [4,5].

19)

In Figs. 1 and 2 the lattice results listed in Tables 3, 4
and 5 and the FLAG averages obtained at each value of Ny
are presented and compared with various phenomenological
results.

3.1.4 Lattice determinations of mg/m,q

The lattice results for mg/m,; are summarized in Table 6.
In the ratio mg/m, 4, one of the sources of systematic error —
the uncertainties in the renormalization factors — drops out.
Also, we can compare the lattice results with the leading-
order formula of x PT,
2 72 2

ms LO MK+ +MK0 - Mn+

= 2 , (20)
Myd M=,

T

~ FIAG2016 Mud
T T T T T
: HlH FLAG average for N,=2+1+1
~ HEH ETM 14
L'_ FLAG average for Ne=2+1
P4 RBC/UKQCD 14B
RBC/UKQCD 12
PACS-CS 12
Laiho 11
BMW 10A, 10B
— —{— PACS-CS 10
+ MILC 10A
HPQCD 10
N RBC/UKQCD 10A
I Blum 10
Z“‘ —{ PACS-CS 09
HPQCD 09A
MILC 09A
MILC 09
& PACS-CS 08
RBC/UKQCD 08
CP-PACS/JLQCD 07
HPQCD 05
»—<>—< MILC 04, HPQCD/MILC/UKQCD 04
FLAG average for N¢=2
Dirr 11
ETM 10B
o~ [ ] JLQCD/TWQCD 08A
1 1 RBC 07
w —H +— ETM 07
zZ H—{— QCDSF/UKQCD 06
—{ SPQcdR 05
——{ = QCDSF/UKQCD 04
O JLQCD 02
CP-PACS 01
o —A— PDG 151
c —@— Dominguez 09 154
(V] —@— Narison 06 157
< —— Maltman 01 159
o L . | . h
2 3 4 5 6 MeV

Fig. 2 Mean mass of the two lightest quarks, m, 4 = %(mu +myg) (for
details see Fig. 1)

which relates the quantity m /myq to aratio of meson masses
in QCD. Expressing these in terms of the physical masses and
the four coefficients introduced in Egs. (10)—(12), linearizing
the result with respect to the corrections and inserting the
observed mass values, we obtain

mg

2250 0.0e+1960—0.1ego — 186, (21
myd

If the coefficients €, €,.0, €xo0 and €, are set equal to zero, the
right hand side reduces to the value mg/m,q = 25.9, which
follows from Weinberg’s leading-order formulae for m,, /mg4
and mgz/mg [161], in accordance with the fact that these do
account for the e.m. interaction at leading chiral order, and
neglect the mass difference between the charged and neutral
pions in QCD. Inserting the estimates (13) gives the effect of
chiral corrections to the e.m. self-energies and of the mass
difference between the charged and neutral pions in QCD.
With these, the LO prediction in QCD becomes

msg

©95.9(1), 22)

mMyd

leaving the central value unchanged at 25.9. The corrections
parameterized by the coefficients of Eq. (13) are small for this
quantity. Note that the quoted uncertainty does not include an
estimate of higher-order chiral contributions to this LO QCD
formula, but only accounts for the error bars in the coef-
ficients. However, even this small uncertainty is no longer
irrelevant given the high precision reached in lattice deter-
minations of the ratio mg/myg.
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Table 6 Lattice results for the ratio m/myq

Collaboration Refs. Ny Publication Chiral Continuum Finite mg/myq

status extrapolation extrapolation  volume
FNAL/MILC 14A [14] 24141 A * * * 27.35(5)1’%0
ETM 14 [4] 24141 A @) * O 26.66(32)(2)
RBC/UKQCD 14B [10] 2+1 P * * * 27.34(21)
RBC/UKQCD 12¢ [31] 2+1 A * o * 27.36(39)(31)(22)
PACS-CS 120 [143] 2+1 A * [ [ 26.8(2.0)
Laiho 11 [44] 241 C (@) * * 28.4(0.5)(1.3)
BMW 10A, 10B¢ [7,8] 241 A * * * 27.53(20)(8)
RBC/UKQCD 10A [144] 241 A O o * 26.8(0.8)(1.1)
Blum 104 [103] 241 A O u O 28.31(0.29)(1.77)
PACS-CS 09 [94] 241 A * u L] 31.2(2.7)
MILC 09A [6] 241 C (@) * * 27.41(5)(22)(0)(4)
MILC 09 [89] 2+1 A O * * 27.2(1)(3)(0)(0)
PACS-CS 08 [93] 2+1 A * L] L] 28.8(4)
RBC/UKQCD 08 [145] 2+1 A (@) u * 28.8(0.4)(1.6)
MILC 04, HPQCD/MILC/UKQCD 04 [107,148] 2+1 A O o (@) 27.4(1)(@)(0)(1)
ETM 14D [160] 2 C * u u 27.63(13)
ETM 10B [11] 2 A O * O 27.3(5)(7)
RBC 074 [105] 2 A L] u * 28.10(38)
ETM 07 [133] 2 A O u O 27.3(0.3)(1.2)
QCDSF/UKQCD 06 [139] 2 A L] * L] 27.2(3.2)

4 The errors are statistical, chiral and finite volume

® The calculation includes e.m. and m,, # my effects through reweighting

¢ The fermion action used is tree-level improved
4 The calculation includes quenched e.m. effects

The lattice results in Table 6, which satisfy our selection
criteria, indicate that the corrections generated by the non-
leading terms of the chiral perturbation series are remarkably
small, in the range 3—10%. Despite the fact that the SU (3)-
flavour-symmetry-breaking effects in the Nambu—Goldstone
boson masses are very large (M2 ~ 13 M72,), the mass spec-
trum of the pseudoscalar octet obeys the SU(3) x SU(3)
Eq. (20) very well.

Ny = 2 lattice calculations With respect to the FLAG 13
review [2] there is only one new result, ETM 14D [160],
based on recent ETM gauge ensembles generated close to
the physical point with the addition of a clover term to the
tmQCD action. The new simulations are performed at a single
lattice spacing of ~~0.09 fm and at a single box size L >~ 4 fm
and therefore their calculations do not pass our criteria for
the continuum extrapolation and finite-volume effects.
Therefore the FLAG average at Ny = 2 is still obtained
by considering only the ETM 10B result (described already
in the previous section), namely
Ny=2:

my/mug = 27.3 (9) Ref. [11], (23)

with an overall uncertainty equal to 3.3%.

@ Springer

Ny = 2 + 1 lattice calculations For Ny = 2 4 1 our aver-
age of mgy/myq is based on the new result RBC/UKQCD
14B, which replaces RBC/UKQCD 12 (see Sect. 3.1.3), and
on the results MILC 09A and BMW 10A, 10B. The value
quoted by HPQCD 10 does not represent independent infor-
mation as it relies on the result for mg/m, obtained by the
MILC Collaboration. Averaging these results according to
the prescriptions of Sect. 2.3 gives mg/m,q = 27.43(13)
with x2/d.o.f. > 0.2. Since the errors associated with renor-
malization drop out in the ratio, the uncertainties are even
smaller than in the case of the quark masses themselves: the
above number for mg/m,,; amounts to an accuracy of 0.5%.
At this level of precision, the uncertainties in the elec-
tromagnetic and strong isospin-breaking corrections are not
completely negligible. The error estimate in the LO result
(22) indicates the expected order of magnitude. In view of
this, we ascribe conservatively a 1.0% uncertainty to this
source of error. Thus, our final conservative estimate is

Ny = 24+1:
mg/myq = 27.43 (13) (27) = 27.43 (31) Refs. [6-8,10], (24)

with a total 1.1% uncertainty. It is also fully consistent with
the ratio computed from our individual quark masses in
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Eq. (18),mg/m,q = 27.6(6), which has a larger 2.2% uncer-
tainty. In Eq. (24) the first error comes from the averaging of
the lattice results, and the second is the one that we add to
account for the neglect of isospin-breaking effects.

Ny = 24141 lattice calculations For Ny = 2+ 141 there
are two results, ETM 14 [4] and FNAL/MILC 14A [14], both
of which satisfy our selection criteria.

ETM 14 uses 15 twisted-mass gauge ensembles at three
lattice spacings ranging from 0.062 to 0.089 fm (using f
as input), in boxes of size ranging from 2.0 to 3.0 fm and
pion masses from 210 to 440 MeV (explaining the tag O
in the chiral extrapolation and the tag % for the continuum
extrapolation). The value of M, L at their smallest pion mass
is 3.2 with more than two volumes (explaining the tag © in
the finite-volume effects). They fix the strange mass with the
kaon mass.

FNAL/MILC 14A employs HISQ staggered fermions.
Their result is based on 21 ensembles at 4 values of the cou-
pling B corresponding to lattice spacings in the range from
0.057 to 0.153 fm, in boxes of sizes up to 5.8 fm and with
taste-Goldstone pion masses down to 130 MeV and RMS
pion masses down to 143 MeV. They fix the strange mass with
M, corrected for e.m. effects with € = 0.84(20) [113]. All
of our selection criteria are satisfied with the tag Y . Thus our
average is given by mg/m,q = 27.30 (20), where the error
includes a large stretching factor equal to \/x2/d.o.f. ~ 2.1,
coming from our rules for the averages discussed in Sect. 2.2.
Nevertheless the above number amounts still to an accuracy
0f0.7%. Asin the case of our average for Ny = 2+1, we add
a 1.0% uncertainty related to the neglect of isospin-breaking
effects, leading to

Np=2+1+1: my/mu=27.30(20) (27)
— 27.30 (34) Refs. [4,14], 25)

which corresponds to an overall uncertainty equal to 1.3%.

All the lattice results listed in Table 6 as well as the FLAG
averages for each value of Ny are reported in Fig. 3 and
compared with x PT, sum rules and the updated PDG estimate
mg/myg = 27.5(3) [151].

Note that our averages (23), (24) and (25), obtained for
Ny =2,2+1and 2+ 1+ 1, respectively, agree very well
within the quoted errors. They also show that the LO predic-
tion of x PT in Eq. (22) receives only small corrections from
higher orders of the chiral expansion: according to Egs. (24)
and (25), these generate shifts of 5.9(1.1) and 5.4(1.2)% rel-
ative to Eq. (22), respectively.

The ratio mg/m,4 can also be extracted from the masses
of the neutral Nambu—Goldstone bosons: neglecting effects
of order (m, — mg)? also here, the leading-order formula

LO 3 A5, ~ . .
reads mg/myg = %M%/M}T — % Numerically, this gives

My /Myq o 24.2. The relation has the advantage that the

_FTAG2016 Ms/Myg

+ FLAG average for Ny=2+1+1

+ FNAL/MILC 14A

~ ETM 14

Il FLAG average for Ny=2+1

[

P4 RBC/UKQCD 14B
RBC/UKQCD 12

— PACS-CS 12

+ Laiho 11

~ BMW 10A, 10B

RBC/UKQCD 10A
Blum 1
PACS-CS 09

1

——
[
Al

e
z MILC 09A
MILC 09
PACS-CS 08
RBC/UKQCD 08
MILC 04, HPQCD/MILC/UKQCD 04
FLAG average for N¢=2
~ ETM 14D
! i e
-
z H ETM 07
— QCDSF/UKQCD 06
PDG 151
o —e— Oller 07 162
< ® Narison 06 157
Y —e— Kaiser 97 163
< e Leutwyler 96,98 164,165]
Q. [} Weinberg 77 ]

22 24 26 28 30 32 34
Fig. 3 Results for the ratio mg/m,q. The upper part indicates the lat-
tice results listed in Table 6 together with the FLAG averages for each

value of Ny. The lower part shows results obtained from x PT and sum
rules, together with the current PDG estimate

e.m. corrections are expected to be much smaller here, but
it is more difficult to calculate the n-mass on the lattice.
The comparison with Egs. (24) and (25) shows that, in this
case, the NLO contributions are somewhat larger: 11.9(9)
and 11.4(1.1)%.

3.1.5 Lattice determination of m, and mg

Since FLAG 13, two new results have been reported
for nondegenerate light-quark masses, ETM 14 [4], and
QCDSF/UKQCD 15[166], for Ny = 2+1+1, and 3 flavours
respectively. The former uses simulations in pure QCD, but
determines m, — my from the slope of the square of the
kaon mass and the neutral-charged mass-squares difference,
evaluated at the isospin-symmetric point. The latter uses
QCD+QED dynamical simulations performed at the SU (3)-
flavour-symmetric point, but at a single lattice spacing, so
they do not enter our average. While QCDSF/UKQCD 15 use
three volumes, the smallest has linear size roughly 1.7 fm,
and the smallest partially quenched pion mass is greater than
200 MeV, so our finite-volume and chiral-extrapolation cri-
teria require O ratings. In Ref. [166] results for € and m,, /my
are computed in the so-called Dashen scheme. A subsequent
paper [118] gives formulae to convert the € parameters to the
MS scheme.

As the above implies, the determination of m, and my
separately requires additional input. MILC 09A [6] uses the
mass difference between K° and K+, from which they sub-
tract electromagnetic effects using Dashen’s theorem with
corrections, as discussed in Sect. 3.1.1. The up and down sea
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quarks remain degenerate in their calculation, fixed to the
value of m,4 obtained from M 0.

To determine m,/my, BMW 10A, 10B [7,8] follow
a slightly different strategy. They obtain this ratio from
their result for my/m,y combined with a phenomenologi-
cal determination of the isospin-breaking quark-mass ratio
Q0 = 22.3(8), defined below in Eq. (32), from n — 3x
decays [101] (the decay n — 3m is very sensitive to QCD
isospin breaking but fairly insensitive to QED isospin break-
ing). As discussed in Sect. 3.1.6, the central value of the
e.m. parameter € in Eq. (13) is taken from the same source.

RMI123 11 [167] actually uses the e.m. parameter € =
0.7(5) from the first edition of the FLAG review [1]. How-
ever, they estimate the effects of strong isospin breaking
at first nontrivial order, by inserting the operator %(mu —
mq) f (itu — dd) into correlation functions, while perform-
ing the gauge averages in the isospin limit. Applying these
techniques, they obtain (A;lf(o — ]\;112(+)/(md - my) =
2.57(8) MeV. Combining this result with the phenomeno-
logical (M2, — M%) = 6.05(63) x 10° determined with
the above value of €, they get (mg—m,,) = 2.35(8)(24) MeV,
where the first error corresponds to the lattice statistical and
systematic uncertainties combined in quadrature, while the
second arises from the uncertainty on €. Note that below we
quote results from RM123 11 for m,, mg and m, /my. As
described in Table 7, we obtain them by combining RM123
11’°s result for (my; — m,) with ETM 10B’s result for m,,4.

Instead of subtracting electromagnetic effects using phe-
nomenology, RBC 07 [105] and Blum 10 [103] actually
include a quenched electromagnetic field in their calculation.
This means that their results include corrections to Dashen’s
theorem, albeit only in the presence of quenched electromag-
netism. Since the up and down quarks in the sea are treated
as degenerate, very small isospin corrections are neglected,
as in MILC’s calculation.

PACS-CS 12 [143] takes the inclusion of isospin-breaking
effects one step further. Using reweighting techniques, it also
includes electromagnetic and m, — my effects in the sea.

Lattice results for m,, my and m, /my4 are summarized in
Table 7. In order to discuss them, we consider the LO formula

72 72 72
my 10 My = Mio + M7

o2 o2 7
mq MKo —MK+—|—Mn+

(26)

Using Eqgs. (10)—(12) to express the meson masses in QCD in
terms of the physical ones and linearizing in the corrections,
this relation takes the form

T L9558 — 0.084 € — 0.02 €50 +0.11 €. 27)

mq
Inserting the estimates (13) and adding errors in quadrature,
the LO prediction becomes

M L9 () 50(3). (28)
mgq

@ Springer

Again, the quoted error exclusively accounts for the errors
attached to the estimates (13) for the epsilons — contribu-
tions of nonleading order are ignored. The uncertainty in the
leading-order prediction is dominated by the one in the coef-
ficient €, which specifies the difference between the meson
squared-mass splittings generated by the e.m. interaction in
the kaon and pion multiplets. The reduction in the error on this
coefficient since the previous review [1] results in a reduction
of a factor of a little less than 2 in the uncertainty on the LO
value of m, /my given in Eq. (28).

It is interesting to compare the assumptions made or
results obtained by the different collaborations for the vio-
lation of Dashen’s theorem. The input used in MILC 09A is
€ = 1.2(5) [6], while the Ny = 2 computation of RM123 13
finds € = 0.79(18)(18) [16]. As discussed in Sect. 3.1.6, the
value of Q used by BMW 10A, 10B [7,8] gives € = 0.70(28)
at NLO (see Eq. (40)). On the other hand, RBC 07 [105]
and Blum 10 [103] obtain the results ¢ = 0.13(4) and
€ = 0.5(1). The new results from QCDSF/UKQCD 15 give
€ = 0.50(6) [118]. Note that PACS-CS 12 [143] do not
provide results which allow us to determine € directly. How-
ever, using their result for m, /my, together with Eq. (27),
and neglecting NLO terms, one finds € = —1.6(6), which is
difficult to reconcile with what is known from phenomenol-
ogy (see Sects. 3.1.1 and 3.1.6). Since the values assumed or
obtained for € differ, it does not come as a surprise that the
determinations of m, /m, are different.

These values of € are also interesting because they allow
us to estimate the chiral corrections to the LO prediction (28)
for m, /mg. Indeed, evaluating the relation (27) for the val-
ues of € given above, and neglecting all other corrections in
this equation, yields the LO values (m,/ mg)C = 0.46(4),
0.547(3), 0.52(1), 0.50(2), 0.49(2) and 0.51(1) for MILC
09A, RBC 07, Blum 10, BMW 10A, 10B, RM123 13, and
QCDSF/UKQCD 15, respectively. However, in comparing
these numbers to the nonperturbative results of Table 7 one
must be careful not to double count the uncertainty arising
from €. One way to obtain a sharp comparison is to con-
sider the ratio of the results of Table 7 to the LO values
(my/ md)LO, in which the uncertainty from € cancels to good
accuracy. Here we will assume for simplicity that they cancel
completely and will drop all uncertainties related to €. For
Ny = 2 we consider RM123 13 [16], which updates RM123
11 and has no red dots. Since the uncertainties common to
€ and m, /mg4 are not explicitly given in Ref. [16], we have
to estimate them. For that we use the leading-order result for
m,, /mg, computed with RM 123 13’s value for €. Its error bar
is the contribution of the uncertainty on € to (m,,/ mgq)“C. To
good approximation this contribution will be the same for the
value of m, /mg4 computed in Ref. [16]. Thus, we subtract it
in quadrature from RM123 13’s result in Table 7 and com-
pute (m,/mg)/(my/ md)LO, dropping uncertainties related
to €. We find (my, /my)/(m,/mq)*© = 1.02(6). This result
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suggests that chiral corrections in the case of Ny = 2 are
negligible. For the two most accurate Ny = 2 + 1 calcula-
tions, those of MILC 09A and BMW 10A, 10B, this ratio of
ratios is 0.94(2) and 0.90(1), respectively. Though these two
numbers are not fully consistent within our rough estimate
of the errors, they indicate that higher-order corrections to
Eq. (28) are negative and about 8% when Ny = 2+ 1. In the
following, we will take them to be -8(4)%. The fact that these
corrections are seemingly larger and of opposite sign than in
the Ny = 2 case is not understood at this point. It could be
an effect associated with the quenching of the strange quark.
It could also be due to the fact that the RM 123 13 calculation
does not probe deeply enough into the chiral regime — it has
My <270 MeV - to pick up on important chiral corrections.
Of course, being less than a two-standard-deviation effect, it
may be that there is no problem at all and that differences
from the LO result are actually small.

Given the exploratory nature of the RBC 07 calculation,
its results do not allow us to draw solid conclusions about
the e.m. contributions to m, /mg for Ny = 2. As discussed
in Sect. 3.1.3 and here, the Ny = 2 + 1 results of Blum 10,
PACS-CS 12, and QCDSF/UKQCD 15 do not pass our selec-
tion criteria either. We therefore resort to the phenomenolog-
ical estimates of the electromagnetic self-energies discussed
in Sect. 3.1.1, which are validated by recent, preliminary lat-
tice results.

Since RM 123 13 [16] includes a lattice estimate of e.m.
corrections, for the Ny = 2 final results we simply quote
the values of m,,, my4, and m,, /my4 from RM123 13 given in
Table 7:

my = 2.40(23)MeV  Ref. [16],
Ny=2: mg = 4.80(23)MeV  Ref.[16], (29)
my/mg = 0.50(4) Ref. [16],

with errors of roughly 10, 5 and 8%, respectively. In these
results, the errors are obtained by combining the lattice sta-
tistical and systematic errors in quadrature.

For Ny = 2+ 1 there is to date no final, published compu-
tation of e.m. corrections. Thus, we take the LO estimate for
my, /mg of Eq. (28) and use the —8(4)% obtained above as an
estimate of the size of the corrections from higher orders in
the chiral expansion. This gives m, /mg = 0.46(3). The two
individual masses can then be worked out from the estimate
(18) for their mean. Therefore, for Ny = 2 + 1 we obtain

my, = 2.16(9)(7) MeV,
mg = 4.68(14)(7) MeV, 30)
my /mg = 0.46(2)(2).

Nf=2—|—12

In these results, the first error represents the lattice statis-
tical and systematic errors, combined in quadrature, while
the second arises from the uncertainties associated with e.m.

@ Springer

corrections of Eq. (13). The estimates in Eq. (30) have uncer-
tainties of order 5, 3 and 7%, respectively.

Finally, for four flavours we simply adopt the results of
ETM 14A which meet all of our criteria.

my = 2.36(24)MeV  Ref. [4],

Np=241+1: mg = 5.03(26) MeV  Ref. [4],
My /ma = 0.470(56) Ref. [4].
(3D

Naively propagating errors to the end, we obtain
(mu/md)Nf.=2/(mu/md)Nf=2+1 = 1.09(10). If instead of
Eq. (29) we use the results from RM123 11, modified by
the e.m. corrections in Eq. (13), as was done in our previ-
ous review, we obtain (mu/md)Nfzz/(mu/md)Nf=2+1 =
1.11(7)(1), confirming again the strong cancellation of e.m.
uncertainties in the ratio. The Ny = 2 and 2 + 1 results
are compatible at the 1 to 1.5 o level. Clearly the difference
between three and four flavours is even smaller, and com-
pletely covered by the quoted uncertainties.

It is interesting to note that in the results above, the errors
are no longer dominated by the uncertainties in the input used
for the electromagnetic corrections, though these are still sig-
nificant at the level of precision reached in the Ny =2 + 1
results. This is due to the reduction in the error on € discussed
in Sect. 3.1.1. Nevertheless, the comparison of Egs. (28) and
(30) indicates that more than half of the difference between
the prediction m, /my; = 0.558 obtained from Weinberg’s
mass formulae [161] and the result for m, /m4 obtained on
the lattice stems from electromagnetism, the higher orders in
the chiral perturbation generating a comparable correction.

In view of the fact that a massless up-quark would solve
the strong CP-problem, many authors have considered this an
attractive possibility, but the results presented above exclude
this possibility: the value of m,, in Eq. (30) differs from zero
by 20 standard deviations. We conclude that nature solves the
strong CP-problem differently. This conclusion relies on lat-
tice calculations of kaon masses and on the phenomenologi-
cal estimates of the e.m. self-energies discussed in Sect. 3.1.1.
The uncertainties therein currently represent the limiting fac-
tor in determinations of m, and m,. As demonstrated in
Refs. [16,103-105,110-116,123], lattice methods can be
used to calculate the e.m. self-energies. Further progress on
the determination of the light-quark masses hinges on an
improved understanding of the e.m. effects.

3.1.6 Estimates for R and Q
The quark-mass ratios

Mg — Myg
5w and Q2E >
mg — my md—mg

R

(32)
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compare SU (3) breaking with isospin breaking. The quan-
tity Q is of particular interest because of a low-energy theo-
rem [168], which relates it to a ratio of meson masses,

M2 ME: - M3 A A .
2 K K 2 _ 2 2
O =T i, i MM M.
T KO — Mg+
~ 1 - ~
M% = E(M,Z(+ + M7o). (33)

Chiral symmetry implies that the expansion of Q%,I in powers
of the quark masses (i) starts with 02 and (ii) does not receive
any contributions at NLO:

NLO
Om = 0. (34)
Inserting the estimates for the mass ratios my/m,q, and
my /mgy given for Ny = 2 in Egs. (17) and (29) respectively,
we obtain

R =40.7(3.7)(2.2), Q =24.3(1.4)(0.6), (35)

where the errors have been propagated naively and the e.m.
uncertainty has been separated out, as discussed in the third
paragraph after Eq. (28). Thus, the meaning of the errors is
the same as in Eq. (30). These numbers agree within errors
with those reported in Ref. [16] where values for mg and m 4
are taken from ETM 10B [11].

For Ny =2 + 1, we use Eqs. (24) and (30) and obtain

R =35.7(1.9)(1.8), Q =22.5(6)(6), (36)

where the meaning of the errors is the same as above. The
Ny = 2 and Ny = 2 + 1 results are compatible within
20, even taking the correlations between e.m. effects into
account.

Again, for Ny = 2 + 1 + 1, we simply take values from
ETM 14A,

R =35.6(5.1), Q=222(1.6), (37)

which are quite compatible with two and three flavour results.

It is interesting to use these results to study the size of
chiral corrections in the relations of R and Q to their expres-
sions in terms of meson masses. To investigate this issue, we
use x PT to express the quark-mass ratios in terms of the pion
and kaon masses in QCD and then again use Egs. (10)—(12)
to relate the QCD masses to the physical ones. Linearizing
in the corrections, this leads to

RZ Ry=439-108¢+02¢e0 —02¢ex0 — 10.7 e,
(38)

Om =243-3.0e+09€,0—0.1€g0 +2.66¢.
(39

NLO

Q:

While the first relation only holds to LO of the chiral pertur-
bation series, the second remains valid at NLO, on account
of the low-energy theorem mentioned above. The first terms

on the right hand side represent the values of R and Q
obtained with the Weinberg leading-order formulae for the
quark-mass ratios [161]. Inserting the estimates (13), we
find that the e.m. corrections lower the Weinberg values to
Ry =36.7(3.3) and Qp = 22.3(9), respectively.
Comparison of Ry and Qjps with the full results quoted
above gives a handle on higher-order terms in the chiral
expansion. Indeed, the ratios Rys/R and Qys/Q give NLO

and NNLO (and higher)-corrections to the relations R o Ry

and Q NLO O wm, respectively. The uncertainties due to the
use of the e.m. corrections of Eq. (13) are highly correlated
in the numerators and denominators of these ratios, and we
make the simplifying assumption that they cancel in the ratio.
Thus, for Ny = 2 we evaluate Egs. (38) and (39) using
€ = 0.79(18)(18) from RM123 13 [16] and the other cor-
rections from Eq. (13), dropping all uncertainties. We divide
them by the results for R and Q in Eq. (35), omitting the
uncertainties due to e.m. We obtain Ry;/R =~ 0.88(8) and
Om/Q =~ 0.91(5). We proceed analogously for Ny =2+ 1
and 2+1+1, using € = 0.70(3) from Eq. (13) and R and Q
from Egs. (36) and (37), and find Ry;/R =~ 1.02(5) and
1.03(17), and Qp/Q =~ 0.99(3) and 1.00(8). The chiral
corrections appear to be small for three and four flavours,
especially those in the relation of Q to Q. This is less true
for Ny = 2, where the NNLO and higher corrections to
O = Q) could be significant. However, as for other quan-
tities which depend on m,, /mg, this difference is not signif-
icant.

As mentioned in Sect. 3.1.1, there is a phenomenological
determination of Q based on the decay n — 37 [169,170].
The key point is that the transition  — 3 violates isospin
conservation. The dominating contribution to the transition
amplitude stems from the mass difference m,, —m4. At NLO
of xPT, the QCD part of the amplitude can be expressed in a
parameter-free manner in terms of Q. Itis well known that the
electromagnetic contributions to the transition amplitude are
suppressed (a thorough recent analysis is given in Ref. [171]).
This implies that the result for Q is less sensitive to the elec-
tromagnetic uncertainties than the value obtained from the
masses of the Nambu—Goldstone bosons. For a recent update
of this determination and for further references to the lit-
erature, we refer to Ref. [172]. Using dispersion theory to
pin down the momentum dependence of the amplitude, the
observed decay rate implies Q = 22.3(8) (since the uncer-
tainty quoted in Ref. [172] does not include an estimate for
all sources of error, we have retained the error estimate given
in Ref. [165], which is twice as large). The formulae for the
corrections of NNLO are available also in this case [173] —
the poor knowledge of the effective coupling constants, par-
ticularly of those that are relevant for the dependence on the
quark masses, is currently the limiting factor encountered in
the application of these formulae.

@ Springer



112 Page 30 of 228

Eur. Phys. J. C (2017) 77:112

Table 8 Our estimates for the strange-quark and the average up-down-
quark masses in the MS scheme at running scale & = 2 GeV. Numerical
values are given in MeV. In the results presented here, the error is the
one which we obtain by applying the averaging procedure of Sect. 2.3
to the relevant lattice results. We have added an uncertainty to the Ny =
2 + 1 results, associated with the neglect of the charm sea-quark and
isospin-breaking effects, as discussed around Eqs. (18) and (24). This
uncertainty is not included in the Ny = 2 results, as it should be smaller
than the uncontrolled systematic associated with the neglect of strange
sea-quark effects

Nf myq mg ms/mud
24+ 141 3.70(17) 93.9(1.1) 27.30(34)
241 3.373(80) 92.0(2.1) 27.43(31)
2 3.6(2) 101(3) 27.3(9)

As was to be expected, the central value of Q obtained
from n-decay agrees exactly with the central value obtained
from the low-energy theorem: we have used that theorem to
estimate the coefficient €, which dominates the e.m. correc-
tions. Using the numbers for €, €,0 and €xo in Eq. (13)
and adding the corresponding uncertainties in quadrature to
those in the phenomenological result for O, we obtain

e "9 0.70(28). (40)

The estimate (13) for the size of the coefficient € is taken
from this, as is confirmed by the most recent, preliminary
lattice determinations [16,110-112,115,116].

Our final results for the masses m,,, mg, myq, m; and the
mass ratios my /mgq, mg/myq, R, Q are collected in Tables 8
and 9. We separate m,, my, m,/mg, R and Q from m,g4,
mg and mg/m,q, because the latter are completely domi-
nated by lattice results while the former still include some
phenomenological input.

3.2 Charm-quark mass

In the present review we collect and discuss for the first
time the lattice determinations of the MS charm-quark mass
m.. Most of the results have been obtained by analyzing the

Table 9 Our estimates for the masses of the two lightest quarks and
related, strong isospin-breaking ratios. Again, the masses refer to the
MS scheme at running scale i = 2 GeV. Numerical values are given
in MeV. In the results presented here, the first error is the one that
comes from lattice computations, while the second for Ny = 2 + 1 is
associated with the phenomenological estimate of e.m. contributions,
as discussed after Eq. (30). The second error on the Ny = 2 results for

lattice-QCD simulations of 2-point heavy-light- or heavy—
heavy-meson correlation functions, using as input the exper-
imental values of the D, Dy and charmonium mesons. The
exceptions are represented by the HPQCD 14A [5] result at
Ny =2+ 1+ 1, the HPQCD 08B [152], HPQCD 10 [9]
and JLQCD 15B [174] results at Ny = 2 + 1, and the ETM
L1F [175] result at Ny = 2, where the moments method has
been employed. The latter is based on the lattice calculation
of the Euclidean time moments of pseudoscalar-pseudoscalar
correlators for heavy-quark currents followed by an OPE
expansion dominated by perturbative QCD effects, which
provides the determination of both the heavy-quark mass and
the strong coupling constant .

The heavy-quark actions adopted by the various lattice
collaborations have been reviewed already in the FLAG 13
review [2], and their descriptions can be found in Sect. A.1.3.
While the charm mass determined with the moments method
does not need any lattice evaluation of the mass renormaliza-
tion constant Z,,, the extraction of m. from 2-point heavy-
meson correlators does require the nonperturbative calcula-
tion of Z,,. The lattice scale at which Z,, is obtained, is usu-
ally at least of the order 2—3 GeV, and therefore it is natural
in this review to provide the values of m.(u) at the renor-
malization scale u = 3 GeV. Since the choice of a renormal-
ization scale equal to 7. is still commonly adopted (as by
PDG [151]), we have collected in Table 10 the lattice results
for both m.(m.) and m.(3 GeV), obtained at Ny = 2,2+ 1
and 2+ 1+ 1. When not directly available in the publications,
we apply a conversion factor equal either to 0.900 between
the scales © = 2 GeV and u = 3 GeV or to 0.766 between
the scales © = m, and u = 3 GeV, obtained using pertur-
bative QCD evolution at four loops assuming Apcp = 300
MeV for Ny = 4.

In the next subsections we review separately the results of
m(m.) for the various values of Ny.

3.2.1 Ny =2+ 1+ 1results

There are three recent results employing four dynamical
quarks in the sea. ETM 14 [4] uses 15 twisted-mass gauge

R and Q is also an estimate of the e.m. uncertainty, this time associated
with the lattice computation of Ref. [16], as explained after Eq. (35).
We present these results in a separate table, because they are less firmly
established than those in Table 8. For Ny = 2 + 1 and 2 + 1 + 1 they
still include information coming from phenomenology, in particular on
e.m. corrections, and for Ny = 2 the e.m. contributions are computed
neglecting the feedback of sea quarks on the photon field

Ny my mg my/mq R 0

241+1 2.36(24) 5.03(26) 0.470(56) 35.6(5.1) 22.2(1.6)
241 2.16(9)(7) 4.68(14)(7) 0.46(2)(2) 35.0(1.9)(1.8) 22.5(6)(6)

2 2.40(23) 4.80(23) 0.50(4) 40.7(3.7)(2.2) 24.3(1.4)(0.6)
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ensembles at three lattice spacings ranging from 0.062 to
0.089 fm (using fr as input), in boxes of size ranging from
2.0to 3.0 fm and pion masses from 210 to 440 MeV (explain-
ing the tag O in the chiral extrapolation and the tag % for the
continuum extrapolation). The value of M, L at their small-
est pion mass is 3.2 with more than two volumes (explaining
the tag O in the finite-volume effects). They fix the strange
mass with the kaon mass and the charm one with that of the
D; and D mesons.

ETM 14A [176] uses 10 out of the 15 gauge ensembles
adopted in ETM 14 spanning the same range of values for
the pion mass and the lattice spacing, but the latter is fixed
using the nucleon mass. Two lattice volumes with size larger
than 2.0 fm are employed. The physical strange and the
charm mass are obtained using the masses of the 2~ and
A baryons, respectively.

HPQCD 14A [5] works with the moments method adopt-
ing HISQ staggered fermions. Their results are based on 9
out of the 21 ensembles carried out by the MILC Collab-
oration [14] at 4 values of the coupling 8 corresponding
to lattice spacings in the range from 0.057 to 0.153 fm, in
boxes of sizes up to 5.8 fm and with taste-Goldstone-pion
X OO OO0 0% OO masses down to 130 MeV and RMS-pion masses down to
173 MeV. The strange- and charm-quark masses are fixed
using as input the lattice result M5, = 688.5(2.2) MeV,
calculated without including ss annihilation effects, and
M,. = 2.9863(27) GeV, obtained from the experimental
n. mass after correcting for cc annihilation and e.m. effects.
All of the selection criteria of Sect. 2.1.1 are satisfied with

0.979(09)/0.998(14)*

1.0557(22)(153)
1.03(4)

m.(3 GeV)
1.058(35)
0.9948(16)(69)
1.006(5)(22)
0.986(6)
0.986(10)
0.976(28)

0.9851(63)

1.3478(27)(195)
1.279(12)/1.296(18)*
1.28(4)

1.2715(95)
1.348(46)
1.2769(21)(89)
1.304(5)(20)
1.273(6)
1.268(9)
1.274(36)
1.275(25)

m. and u = 3 GeV) has been considered
me(m)

Renormalization

Finite volume

Continuum extrapolation

Table 10 Lattice results for the MS-charm-quark mass m.(m.) and m.(3 GeV) in GeV, together with the colour coding of the calculations used to obtain these. When not directly available in the
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3.2.2 Ny =2+ 1 results

The HPQCD 10 [9] result is based on the moments method
adopting a subset of Ny = 2 + 1 Asqtad-staggered-
fermion ensembles from MILC [89], on which HISQ valence
fermions are studied. The charm mass is fixed from that of the
ne meson, M, = 2.9852(34) GeV corrected for cc annihila-
tion and e.m. effects. HPQCD 10 replaces the result HPQCD
08B [152], in which Asqtad staggered fermions have been
used also for the valence quarks.

xQCD 14 [17] uses a mixed-action approach based on
overlap fermions for the valence quarks and on domain-
wall fermions for the sea quarks. They adopt six of the
gauge ensembles generated by the RBC/UKQCD Collab-
oration [144] at two values of the lattice spacing (0.087 and
0.11 fm) with unitary pion masses in the range from 290
to 420 MeV. For the valence quarks no light-quark masses
are simulated. At the lightest pion mass M, =~ 290 MeV,
the value of M L is 4.1, which satisfies the tag O for the
finite-volume effects. The strange- and charm-quark masses
are fixed together with the lattice scale by using the experi-
mental values of the Dy, D} and J /¢ meson masses.

JLQCD 15B [174] determines the charm mass through
the moments method using Mobius domain-wall fermions
at three values of the lattice spacing, ranging from 0.044
to 0.083 fm. The lightest pion mass is 230 MeV and the
corresponding value of M, L is ~4.4.

Thus, according to our rules on the publication status, the
FLAG average for the charm-quark mass at Ny = 2 + 1
is obtained by combining the two results HPQCD 10 and
xQCD 14, leading to

e (ic) = 1.275 (8) GeV  Refs. [9,17],
(43)
Np=2+1:
(3 GeV) = 0.987 (6) GeV  Refs. [9,17],

(44)

where the error on mi.(m.) includes a stretching factor
Vx2%/d.of. ~ 1.4 as discussed in Sect. 2.2.

3.2.3 Ny =2 results

We turn now to the three results at Ny = 2.

ETM 10B [11] is based on tmQCD simulations at four
values of the lattice spacing in the range from 0.05 fm to
0.1 fm, with pion masses as low as 270 MeV at two lattice
volumes. They fix the strange-quark mass with either Mg or
M5, and the charm mass using alternatively the D, Dy and
e Masses.

ETM 11F [175] is based on the same gauge ensemble as
ETM 10B, but the moments method is adopted.
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FIAG2016 mc (3 GeV)
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— FLAG average for Ny=2+1+1
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CI\I‘ HEH HPQCD 14A
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+
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L FLAG average for Ny =2
)
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L ETM 10B
0.95 1.00 1.05 1.10 GeV

Fig. 4 Lattice results and FLAG averages at Ny = 2, 2 + 1, and
2 4 1+ 1 for the charm-quark mass . (3 GeV)

ALPHA 13B uses a subset of the CLS gauge ensembles
with O(a)-improved Wilson fermions generated at two val-
ues of the lattice spacing (0.048 fm and 0.065 fm), using the
kaon decay constant to fix the scale. The pion masses are as
low as 190 MeV with the value of M, L equal to >~ 4 at the
lightest pion mass (explaining the tag % for finite-volume
effects).

According to our rules on the publication status ETM 10B
becomes the FLAG average at Ny = 2, namely

me(me) = 1.28 (4) GeV  Ref. [11], (45)
Ny = 2:
m.(3GeV) =1.03 (4) GeV Ref.[11]. (46)

In Fig. 4 the lattice results of Table 10 and the FLAG
averages obtained at Ny = 2,2+ 1and 2+ 1+ 1 are
presented.

3.2.4 Lattice determinations of the ratio m./mg

Because some of the results for the light-quark masses given
in this review are obtained via the quark-mass ratio m./mg,
we now review also these lattice calculations, which are listed
in Table 11.

We begin with the Ny = 2 results. Besides the result ETM
10B, already discussed in Sect. 3.2.3, there are two more
results, Diirr 11 [132] and ETM 14D [160]. Diirr 11 [132] is
based on QCDSF Ny = 2 O(a)-improved Wilson-fermion
simulations [139, 178] on which valence, Brillouin-improved
Wilson quarks [179] are considered. It features only 2 ensem-
bles with M; < 400 MeV. The bare axial-Ward-identity
(AWI) masses for mg and m, are tuned to simultaneously
reproduce the physical values of M%S /(M 2;5 — M%Y) and
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Table 11 Lattice results for the quark-mass ratio m./mg, together with the colour coding of the calculations used to obtain these

Collaboration Refs. Ny Publication Chiral Continuum Finite me/mg
status extrapolation extrapolation volume
HPQCD 14A [5] 2+1+1 A * * * 11.652(35)(55)
FNAL/MILC 14A [14] 24141 A * * * 11.747(19)(F39)
ETM 14 [4] 241+1 A o) * o 11.62(16)
¥QCD 14 [17] 2+1 A o o) o) 11.18)
HPQCD 09A [18] 241 A o) * * 11.85(16)
ETM 14D [160] 2 C * ] ] 12.29(10)
Diirr 11 [132] 2 A o * o 11.27(30)(26)
ETM 10B [11] 2 A (@) * O 12.03)
2 a2 2 a2 2 _ mc/m
(2MD;F Mis)/(MD;‘ MDS),where M, = 685.8(8) MeV FTAG2016 c/Ms
is the quark-connected-ss pseudoscalar mass.
The ETM 14D result [160] is based on recent ETM gauge x FLAG average for Ny=2+1+1
ensembles generated close to the physical point with the addi- & HPQCD 14A
tion of a clover term to the tmQCD action. The new simula- % HBH FNAL/MILC 14A
tions are performed at a single lattice spacing of ~0.09 fm I ETM 14
and at a single box size L ~ 4 fm and therefore their calcula-
. . . . . — i FLAG average for Ny=2+1
tions do not pass our criteria for the continuum extrapolation +
. ~N
and finite-volume effects. The FLAG average at Ny = 2 can L i — — 2QCD 14
be therefore obtained by averaging ETM 10B and Diirr 11, = - HPQCD 09A
obtaining
i FLAG average for Ny =2
Nf=2: m¢/my=11.74 (35) Refs.[11,132], (47) 9 O~ Em14p
= L Diirr 11

where the error includes the stretching factor v/ x2/d.o.f. >~ ‘ ‘ FTM 108

1.5. 11.0 11.5 12.0 12.5

The situation is similar also for the Ny = 2+ 1 results, as
besides x QCD 14 there is only the result HPQCD 09A [18].
The latter is based on a subset of Ny = 2 + 1 Asqtad-
staggered-fermion simulations from MILC, on which HISQ-
valence fermions are studied. The strange mass is fixed with
Ms, = 685.8(4.0), MeV and the charm’s from that of the 7,
M, = 2.9852(34) GeV corrected for ¢c annihilation and
e.m. effects. By combing the results x QCD 14 and HPQCD
09A we obtain
Nfp=2+1: m./mg=1182(16) Refs.[17,18], (48)
with a x2/d.o.f. ~ 0.85.

Turning now to the Ny = 2 + 1 + 1 results, in addi-
tion to the HPQCD 14A and ETM 14 calculations, already
described in Sect. 3.2.1, we consider the recent FNAL/MILC
14 result [14], where HISQ staggered fermions are employed.
Their result is based on the use of 21 gauge ensembles at 4
values of the coupling 8 corresponding to lattice spacings
in the range from 0.057 to 0.153 fm, in boxes of sizes up to
5.8 fm and with taste-Goldstone-pion masses down to 130
MeV and RMS-pion masses down to 143 MeV. They fix
the strange mass with M5, corrected for e.m. effects with

Fig. 5 Lattice results for the ratio m./mj listed in Table 11 and the
FLAG averages correspondingto Ny = 2,2+ 1land2+1+1

€ = 0.84(20) [113]. The charm mass is fixed with the mass
of the Dy meson. As for the HPQCD 14A result, all of our
selection criteria are satisfied with the tag . However, a
slight tension exists between the two results. Indeed by com-
bining HPQCD 14A and FNAL/MILC 14 results, assuming
a 100 % correlation between the statistical errors (since the
two results share the same gauge configurations), we obtain
me/mg = 11.71(6), where the error includes the stretching
factor /x2/d.o.f. ~ 1.35. A further average with the ETM
14A result leads to our final average

Nf=2+1+1: mc/mg=11.70(6) Refs.[4,5,14],

(49)

which has a remarkable overall precision of 0.5%.

All of the results for m./m; discussed above are shown
in Fig. 5 together with the FLAG averages corresponding to
Ny=2,2+1and2+ 1+ 1.
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3.3 Bottom-quark mass - _ g
= 2
We now give the lattice results for the MS-bottom-quark ?’; £ s % <
mass 71, for the first time as part of this review. Related é £ 34 bt
heavy-quark actions and observables have been discussed in ;
the FLAG 13 review [2], and descriptions can be found in 5 =
Sect. A.1.3. In Table 12 we have collected the lattice results £ _|lszz 2 R o
for my, (M) obtained at Ny = 2,2+ 1 and 2+ 1 + 1, which S S T IgISc g
in the following we review separately. Available results for NS SS9
the quark-mass ratio mj/m. are also reported. Afterwards Z
we evaluate the corresponding FLAG averages. g ﬁ
331 Ny=2+1+1 £ 25
SBIZTE]l ™SS S S S SS
Results have been published by HPQCD using NRQCD £
and HISQ-quark actions (HPQCD 14B [19] and HPQCD 8 £
14A [5], respectively). In both works the b-quark mass is _%; §
computed with the moments method, that is, from Euclidean- T§ TE“
time moments of 2-point, heavy—heavy meson correlation j %
functions (see Sect. 9.7 for a description of the method). g~ * X K KX
In HPQCD 14B the b-quark mass is computed from ratios 8
of the moments R, of heavy current—current correlation func- & %
tions, namely § E
= Q
Ruyrn—2 12 Mkin MT Ub % é X O X
|: i| = (50) o | E | ¥ O ¥ O
Rp—2rn 2mp  2mp(p) g
Q
where r,, are the perturbative moments calculated at N°LO, ? g §
My, is the spin-averaged kinetic mass of the heavy-heavy 2 é Lé
vector and pseudoscalar mesons and MT,,,,’ is the experi- £ % g
mental spin average of the YT and 1, masses. The kinetic i CE| X KO K HFK
mass My, is chosen since in the lattice calculation the split- f—;ﬁ
ting of the Y and 7, states is inverted. In Eq. (50) the bare =1 §
mass mp appearing on the left hand side is tuned so that g _ i .
the spin-averaged mass agrees with experiment, while the = g g )
mass mp at the fixed scale © = 4.18 GeV is extrapolated § O8] * O % ® %0 xO § g
to the continuum limit using three HISC (MILC) ensembles E ==
witha ~ 0.15, 0.12 and 0.09 fm and two pion masses, one of 2| o % -
which is the physical one. Therefore according to our rules on g ‘% § i
the chiral extrapolation a warning must be given. Their final § % Ed E VJ
result is mp(u = 4.18 GeV) = 4.207(26) GeV, where the FIES| <L < < < < < <« o =
error is from adding systematic uncertainties in quadrature § ﬁ s
only (statistical errors are smaller than 0.1% and ignored). 2 _T_ _T_ _T_ 23
The errors arise from renormalization, perturbation theory, (ﬁ — = = - g2
lattice spacing, and NRQCD systematics. The finite-volume £ = I I j\:_ 5 j\n_ SERS IR é §
uncertainty is not estimated, but at the lowest pion mass they & 2 é
have m, L ~ 4, which leads to the tag . é & =2 _ T _=s=8g3F -éa
In HPQCD 14A the quark mass is computed using a sim- S|~ e e
ilar strategy as above but with HISQ heavy quarks instead ié :>»§
of NRQCD. The gauge-field ensembles are the same as in k| é 2 a8 13 8 g
HPQCD 14B above plus the one with @ = 0.06 fm (four o | g N N P £
lattice spacings in all). Bare heavy-quark masses are tuned 2|8 8 S 8 8 8 S = S o) g_?:’
pacing yq il = = = = S E
to their physical values using the 1, mesons, and ratios of g13 TR EEEERRERITE
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ratios yield my, /m.. The MS-charm-quark mass determined
as described in Sect. 3.2 then gives mj;. The moment ratios
are expanded using the OPE, and the quark masses and ag
are determined from fits of the lattice ratios to this expan-
sion. The fits are complicated: HPQCD uses cubic splines
for valence- and sea-mass dependence, with several knots,
and many priors for 21 ratios to fit 29 data points. Taking
this fit at face value results in a J rating for the continuum
limit since they use four lattice spacings down to 0.06 fm.
See, however, the detailed discussion of the continuum limit
given in Sect. 9.7 on a.

The third four-flavour result is from the ETM Collabo-
ration and appears in a conference proceedings, so it is not
included in our final average. The calculation is performed
on a set of configurations generated with twisted Wilson
fermions with three lattice spacings in the range 0.06 to
0.09 fm and with pion masses in the range 210 to 440 MeV.
The b-quark mass is determined from a ratio of heavy—light
pseudoscalar meson masses designed to yield the quark pole
mass in the static limit. The pole mass is related to the MS
mass through perturbation theory at N3LO. The key idea is
that by taking ratios of ratios, the b-quark mass is acces-
sible through fits to heavy-light(strange)-meson correlation
functions computed on the lattice in the range ~1—2 X m,
and the static limit, the latter being exactly 1. By simulating
below my, taking the continuum limit is easier. They find
mp(mp) = 4.26(7)(14) GeV, where the first error is statis-
tical and the second systematic. The dominant errors come
from setting the lattice scale and fit systematics.

332 Np=2+1

HPQCD 13B [181] extracts mj, from a lattice determination
of the Y energy in NRQCD and the experimental value of the
meson mass. The latter quantities yield the pole mass which
is related to the MS mass in 3-loop perturbation theory. The
MILC coarse (0.12 fm) and fine (0.09 fm) Asqtad-2 + 1-
flavour ensembles are employed in the calculation. The bare
light-(sea)-quark masses correspond to a single, relatively
heavy, pion mass of about 300 MeV. No estimate of the finite-
volume error is given.

The value of mj(mp) reported in HPQCD 10 [9] is
computed in a very similar fashion to the one in HPQCD
14A described in the last section, except that MILC 2 +
1-flavour-Asqtad ensembles are used under HISQ-heavy-
valence quarks. The lattice spacings of the ensembles range
from 0.18 to 0.045 fm and pion masses down to about
165 MeV. In all, 22 ensembles were fit simultaneously. An
estimate of the finite-volume error based on leading-order
perturbation theory for the moment ratio is also provided.
Details of perturbation theory and renormalization system-
atics are given in Sect. 9.7.

333 Ny=2

The ETM Collaboration computes 1, (77;) using the ratio
method described above on two-flavour twisted-mass gauge
ensembles with four values of the lattice spacing in the range
0.10 to 0.05 fm and pion masses between 280 and 500 MeV
(ETM 13B updates ETM 11). The heavy-quark masses cover
a range from charm to a little more than three GeV, plus the
exact static-limit point. They find m, (imp) = 4.31(9)(8) GeV
for two-flavour running, while m;,(mp) = 4.27(9)(8) using
four-flavour running, from the 3 GeV scale used in the N3LO
perturbative matching calculation from the pole mass to the
MS mass. The latter are computed nonperturbatively in the
RI-MOM scheme at 3 GeV and matched to MS. The domi-
nant errors are combined statistical + fit(continuum + chi-
ral limits) and the uncertainty in setting the lattice scale.
ETM quotes the average of two- and five-flavour results,
mp(mp) = 4.29(9)(8)(2) where the last error is one-half
the difference between the two. In our average (see below),
we use the two-flavour result.

The Alpha Collaboration uses HQET for heavy-light
mesons to obtain my, [21] (ALPHA 13C). They employ CLS,
nonperturbatively improved, Wilson gauge field ensembles
with three lattice spacings (0.075-0.048 fm), pion masses
from 190 to 440 MeV, and three or four volumes at each lat-
tice spacing, withm L > 4.0. The bare-quark mass is related
to the RGI-scheme mass using the Schrodinger Functional
technique with conversion to MS through four-loop anoma-
lous dimensions for the mass. The final result, extrapolated to
the continuum and chiral limits, is mp (mp) = 4.21(11) with
two-flavour running, where the error combines statistical and
systematic uncertainties. The value includes all corrections
in HQET through A2/my, but repeating the calculation in the
static limit yields the identical result, indicating the HQET
expansion is under very good control.

3.3.4 Averages for myp(mp)

Taking the results that meet our rating criteria, O, or better,
we compute the averages from HPQCD 14A and 14B for
Ny =2+1+1,ETM 13B and ALPHA 13C for Ny = 2,
and we take HPQCD 10 as estimate for N y = 2+1, obtaining

Nf=241+1: mp@mp) =4.19021) Refs. [5,19],
(5D

Nfp=2+1: iy (p) = 4.164(23)  Ref. [9], (52)

Np=2: iy () = 4.256(81)  Refs. [20,21].

(53)

Since HPQCD quotes 1, () values using Ny = 5 running,
we used those values directly in these Ny =2+ 1+ 1 and
2 + 1 averages. The results ETM 13B and ALPHA 13C,
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Fig. 6 Lattice results and FLAG averages at Ny = 2, 2 + 1, and
2 + 1 + 1 for the b-quark mass i, (). The updated PDG value from
Ref. [151] is reported for comparison

entering the average at Ny = 2, correspond to the Ny = 2
running.

All the results for my,(m}) discussed above are shown in
Fig. 6 together with the FLAG averages corresponding to
Nf=2,2+1and2+ 1+ 1.

4 Leptonic and semileptonic kaon and pion decay
and |V,4| and [ V|

This section summarizes state-of-the-art lattice calculations
of the leptonic kaon and pion decay constants and the kaon
semileptonic-decay form factor and provides an analysis in
view of the Standard Model. With respect to the previous
edition of the FLAG review [2] the data in this section has
been updated. As in Ref. [2], when combining lattice data
with experimental results, we take into account the strong
SU (2) isospin correction, either obtained in lattice calcula-
tions or estimated by using chiral perturbation theory, both
for the kaon leptonic decay constant fx+ and for the ratio

Jr=/fr

4.1 Experimental information concerning | V4|, | Visl,

f+(0) and fg+/ fr=

The following review relies on the fact that precision exper-
imental data on kaon decays very accurately determine the
product |V,| f+(0) [183] and the ratio |V s/ Viyal fx=/frnt
[183,184]:

[Vis| f1(0) = 0.2165(4), ‘V‘” % =0.2760(4). (54)
ud | Jn*t

@ Springer

Here and in the following fx+ and f,,+ are the isospin-broken
decay constants, respectively, in QCD (the electromagnetic
effects have already been subtracted in the experimental anal-
ysis using chiral perturbation theory). We will refer to the
decay constants in the SU (2) isospin-symmetric limit as fx
and f; (the latter at leading order in the mass difference
(my, —mg) coincides with f;+).|V,4| and |V,| are elements
of the Cabibbo—Kobayashi—-Maskawa matrix and f (¢) rep-
resents one of the form factors relevant for the semileptonic
decay K — 7~ ¢ v, which depends on the momentum trans-
fer t between the two mesons. What matters here is the value
atr =0: f1(0) = ffonf(t) ’ o The pion and kaon decay

constants are defined by!?

O dyuysulr ™ (p)) =i pu fr+
(O Syuysul Kt (p)) =i pufr+.

In this normalization, f,+ >~ 130 MeV, fx+ >~ 155 MeV.

The measurement of | V,,4| based on superallowed nuclear
B transitions has now become remarkably precise. The result
of the update of Hardy and Towner [186], which is based on
20 different superallowed transitions, reads!®

[Vua| = 0.97417(21). (55)

The matrix element | V5| can be determined from semiin-
clusive T decays [193—-196]. Separating the inclusive decay
T — hadrons + v into nonstrange and strange final states,
e.g. HFAG 14 [197] obtain

|Vis| = 0.2176(21). (56)

Maltman et al. [195,198,199] and Gamiz et al. [200,201]
arrive at very similar values.

Inclusive hadronic t decay offers an interesting way to
measure | V|, but a number of open issues yet remain to be
clarified. In particular, the value of | V5| as determined from
T decays differs from the result one obtains from assum-
ing three-flavour SM-unitarity by more than three standard

15 The pion decay constant represents a QCD matrix element — in the
full Standard Model, the one-pion state is not a meaningful notion: the
correlation function of the charged axial current does not have a pole at
pr = M§+, but a branch cut extending from M§+ to oo. The analytic
properties of the correlation function and the problems encountered in
the determination of f;; are thoroughly discussed in Ref. [185]. The
“experimental” value of f;; depends on the convention used when split-
ting the sum Lqocp + LgEep into two parts (compare Sect. 3.1.1). The
lattice determinations of f; do not yet reach the accuracy where this is
of significance, but at the precision claimed by the Particle Data Group
[151,184], the numerical value does depend on the convention used
[98-100,185].

16 1t is not a trivial matter to perform the data analysis at this precision.
In particular, isospin-breaking effects need to be properly accounted
for [187-192]. For a review of recent work on this issue, we refer to
Ref. [186].
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Table 13 Colour code for the data on f (0)

Collaboration Refs. Ny Publication Chiral Continuum Finite-volume f+(0)

status extrapolation extrapolation erTors
ETM 15C [208] 2+1+1 C ¢) * @) 0.9709(45)(9)
FNAL/MILC 13E [22] 24+1+1 A * * * 0.9704(24)(22)
FNAL/MILC 13C [209] 24141 C * * * 0.9704(24)(32)
RBC/UKQCD 15A [24] 2+1 A * e} @) 0.9685(34)(14)
RBC/UKQCD 13 [210] 2+1 A * o} @) 0.9670(20)(:112)
FNAL/MILC 121 [23] 2+1 A ¢) o} * 0.9667(23)(33)
JLQCD 12 [211] 241 C ¢) | * 0.959(6)(5)
JLQCD 11 [212] 241 C ¢) | * 0.964(6)
RBC/UKQCD 10 [213] 241 A ©) | * 0.9599(34)(3;)(14)
RBC/UKQCD 07 [214] 241 A ©) | * 0.9644(33)(34)(14)
ETM 10D [215] 2 C @) * @) 0.9544(68)stat
ETM 09A [25] 2 A ¢) o} @) 0.9560(57)(62)
QCDSF 07 [216] 2 C | | * 0.9647(15)stat
RBC 06 [217] 2 A | | * 0.968(9)(6)
JLQCD 05 [218] 2 C | | * 0.967(6), 0.952(6)

deviations [197]. It is important to understand this appar-
ent tension better. A possibility is that at the current level
of precision the treatment of higher orders in the operator
product expansion and violations of quark-hadron duality
may play a role. Very recently [202] a new implementation
of the relevant sum rules has been elaborated suggesting a
much larger value of |V,| with respect to the result (56),
namely |V,s| = 0.2228(23), which is in much better agree-
ment with CKM unitarity. Another possibility is that T decay
involves new physics, but more work both on the theoretical
and experimental side is required.

The experimental results in Eq. (54) are for the semilep-
tonic decay of a neutral kaon into a negatively charged pion
and the charged pion and kaon leptonic decays, respectively,
in QCD. In the case of the semileptonic decays the cor-
rections for strong and electromagnetic isospin breaking in
chiral perturbation theory at NLO have allowed for aver-
aging the different experimentally measured isospin chan-
nels [203]. This is quite a convenient procedure as long as
lattice QCD does not include strong or QED isospin-breaking
effects. Lattice results for fx/fr are typically quoted for
QCD with (squared) pion and kaon masses of M% = Mio
and M12< = %(Mlz(i + M?(O — Mﬁi + Mﬁo) for which the
leading strong and electromagnetic isospin violations can-
cel. While progress is being made for including strong and
electromagnetic isospin breaking in the simulations (e.g.
Refs. [16,93,167,204-207]), for now contact to experimental
results is made by correcting leading SU (2) isospin break-
ing guided either by chiral perturbation theory or by lattice
calculations.

4.2 Lattice results for f1 (0) and fx=+/fr+

The traditional way of determining |V,,s| relies on using esti-
mates for the value of f (0), invoking the Ademollo—Gatto
theorem [219]. Since this theorem only holds to leading order
of the expansion in powers of m,, my and my, theoretical
models are used to estimate the corrections. Lattice meth-
ods have now reached the stage where quantities like f (0)
or fx/fr can be determined to good accuracy. As a conse-
quence, the uncertainties inherent in the theoretical estimates
for the higher-order effects in the value of f. (0) do not rep-
resent a limiting factor any more and we shall therefore not
invoke those estimates. Also, we will use the experimental
results based on nuclear § decay and t decay exclusively
for comparison — the main aim of the present review is to
assess the information gathered with lattice methods and to
use it for testing the consistency of the SM and its potential
to provide constraints for its extensions.

The database underlying the present review of the semilep-
tonic form factor and the ratio of decay constants is listed in
Tables 13 and 14. The properties of the lattice data play a cru-
cial role for the conclusions to be drawn from these results:
range of M, size of L M, continuum extrapolation, extrapo-
lation in the quark masses, finite-size effects, etc. The key fea-
tures of the various datasets are characterized by means of the
colour code specified in Sect. 2.1. More detailed information
on individual computations are compiled in Appendix B.2.

The quantity f4(0) represents a matrix element of a
strangeness-changing null-plane charge, f4(0) = (K|Q"|
). The vector charges obey the commutation relations
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Table 14 Colour code for the data on the ratio of decay constants: fx /f5 is the pure QCD SU (2)-symmetric ratio, while fg=+/f,+ is in pure QCD

including the SU (2) isospin-breaking correction

Collaboration Refs. Ny Publication  Chiral Continuum  Finite-volume fg/fx frt/fnt
status extrapolation extrapolation errors

ETM 14E [27] 24141 A o * o L188(11)(11)  1.184(12)(11)

FNAL/MILC 14A [14] 24141 A * * * 1.1956(10)("3%)

ETM 13F [230] 2+1+1C o * o) 1.193(13)(10)  1.183(14)(10)

HPQCD 13A [26] 24141 A * o) * 1.1948(15)(18) 1.1916(15)(16)

MILC 13A 2311 24141 A * * * 1.1947(26)(37)

MILC 11 [232] 2+1+1C o o o) 1.1872(42) a0,

ETM 10E [233] 2+1+1C o o o) 1.224(13)ga

RBC/UKQCD 14B  [10] 241 A * * * 1.1945(45)

RBC/UKQCD 12 [31] 241 A * o) * 1.199(12)(14)

Laiho 11 [44] 241 C o * o 1.202(11)(9)(2)(5)°

MILC 10 [29] 241 C o * * 1.197(2)(3)

JLQCD/TWQCD 10  [234] 241 C o [ ] * 1.230(19)

RBC/UKQCD 10A  [144] 241 A o o * 1.204(7)(25)

PACS-CS 09 [94] 241 A * [ [ | 1.333(72)

BMW 10 [30] 241 A * * e 1.192(7)(6)

JLQCD/TWQCD 09A [235] 241 C o [ | [ | 1.210(12)ga

MILC 09A (6] 2+1 C o * * 1.198(2)(9)

MILC 09 [89] 241 A o * * 1.197G3)( %)

Aubin 08 [236] 2+1 C o o o) 1.191(16)(17)

PACS-CS 08, 08A [93,237] 2+ 1 A * [ | [ | 1.189(20)

RBC/UKQCD 08 [145]  2+1 A o [ | * 1.205(18)(62)

HPQCD/UKQCD 07  [28] 241 A o o o) 1.189(2)(7)

NPLQCD 06 238] 2+1 A e} [ | [ | 1.2182)(1)))

MILC 04 [107]  2+1 A o o o) 1.210(4)(13)

ETM 14D [160] 2 C * [ | o) 1.203(5)stat

ALPHA 13A [239] 2 C * * * 1.1874(57)(30)

BGR 11 [240] 2 A o [ | [ | 1.215(41)

ETM 10D [215] 2 C o * o) 1.190(8)stac

ETM 09 [32] 2 A o * o) 1.210(6)(15)(9)

QCDSF/UKQCD 07 [241] 2 C o) o) * 1.21(3)

 Result with statistical error only from polynomial interpolation to the physical point

b This work is the continuation of Aubin 08

of the Lie algebra of SU(3), in particular [Q", Q"] =
Q""~*%. This relation implies the sumrule ), [(K|Q"*|n) 2
- [(K|Q**|n)|*> = 1. Since the contribution from the
one-pion intermediate state to the first sum is given by
£+ (0)?, the relation amounts to an exact representation for
this quantity [220]:

£ =1=Y " [KIQ“ImI*+ > [KIQ™m)*. (57)
n# n

While the first sum on the right extends over nonstrange
intermediate states, the second runs over exotic states with
strangeness £2 and is expected to be small compared to the
first.

@ Springer

The expansion of f1(0) in SU(3) chiral perturbation
theory in powers of m,, my and m; starts with f,(0) =
1+ o+ fa+--- [129]. Since all of the low-energy constants
occurring in f> can be expressed in terms of M, Mg, M,
and f; [221], the NLO correction is known. In the language
of the sum rule (57), f> stems from nonstrange intermedi-
ate states with three mesons. Like all other nonexotic inter-
mediate states, it lowers the value of f4(0): f, = —0.023
when using the experimental value of f;; as input. The cor-
responding expressions have also been derived in quenched
or partially quenched (staggered) chiral perturbation theory
[23,222]. At the same order in the SU (2) expansion [223],
f+(0) is parameterized in terms of M, and two a priori
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Fig. 7 Comparison of lattice results (squares) for f1(0) and fx+ /fr+
with various model estimates based on xPT (blue circles). The ratio
fx+/frx is obtained in pure QCD including the SU(2) isospin-

unknown parameters. The latter can be determined from the
dependence of the lattice results on the masses of the quarks.
Note that any calculation that relies on the x PT formula for
f> is subject to the uncertainties inherent in NLO results:
instead of using the physical value of the pion decay con-
stant fr, one may, for instance, work with the constant fy
that occurs in the effective Lagrangian and represents the
value of f; in the chiral limit. Although trading f,; for fo
in the expression for the NLO term affects the result only
at NNLO, it may make a significant numerical difference in
calculations where the latter are not explicitly accounted for
(the lattice results concerning the value of the ratio f5 /fy are
reviewed in Sect. 5.3).

The lattice results shown in the left panel of Fig. 7 indicate
that the higher-order contributions Af = f4(0) — 1 — f> are
negative and thus amplify the effect generated by f. This
confirms the expectation that the exotic contributions are
small. The entries in the lower part of the left panel represent
various model estimates for f4. In Ref. [228] the symmetry-
breaking effects are estimated in the framework of the quark
model. The more recent calculations are more sophisticated,
as they make use of the known explicit expression for the
K3 form factors to NNLO in xPT [227,229]. The corre-
sponding formula for f4 accounts for the chiral logarithms
occurring at NNLO and is not subject to the ambiguity men-
tioned above.!” The numerical result, however, depends on
the model used to estimate the low-energy constants occur-
ringin f4 [224-227]. The figure indicates that the most recent

17" Fortran programs for the numerical evaluation of the form factor
representation in Ref. [227] are available on request from Johan Bijnens.

FTAG2016 fic/fxe

FLAG average for Ne=2+1+1
ETM 14E

FNAL/MILC 14A

HPQCD 13A

ILC 13A
ILC 11 (stat. err. onl\'/)
ETM 10E (stat. err. only)

FLAG average for Ny=2+1

RBC/UKQCD 14B
RBC/UKQCD 12
Laiho 11

Ne=2+1+1

10
LQCD/TWQCD 10
RBC/UKQCD 10A

BMW 10
LQCD/TWQCD 09A (stat. err. only)
ILC 09A

ILC 09

Aubin 08

PACS-CS 08, 08A

RBC/UKQCD 08

HPQCD/UKQCD 07
PLQCD 06

Nf=2+1

FLAG average for Ny =2

ETM 14D (stat. err. only)

(ﬁ‘ A ALPHA 13A 4
— R 11

Z“' ETM 10D (stat. err. only)

— QCDSF/UKQCD 07

1.14 1.18 1.22 1.26

breaking correction (see Sect. 4.3). The black squares and grey bands
indicate our estimates. The significance of the colours is explained in
Sect. 2

numbers obtained in this way correspond to a positive or an
almost vanishing rather than a negative value for A f'. We note
that FNAL/MILC 12I [23] have made an attempt at deter-
mining a combination of some of the low-energy constants
appearing in f; from lattice data.

4.3 Direct determination of f (0) and fg=+/f+

All lattice results for the form factor f(0) and many avail-
able results for the ratio of decay constants, which we sum-
marize here in Tables 13 and 14, respectively, have been
computed in isospin-symmetric QCD. The reason for this
unphysical parameter choice is that there are only few sim-
ulations of SU (2) isospin-breaking effects in lattice QCD,
which is ultimately the cleanest way for predicting these
effects [16,103,104,110,115,167,206,207]. In the mean-
time one relies either on chiral perturbation theory [107,129]
to estimate the correction to the isospin limit or one calcu-
lates the breaking at leading order in (1, —m) in the valence
quark sector by extrapolating the lattice data for the charged
kaons to the physical value of the up(down)-quark mass (the
result for the pion decay constant is always extrapolated to
the value of the average light-quark mass 7). This defines
the prediction for fx=+/f,+.

Since the majority of the collaborations present their
newest results including the strong SU (2) isospin-breaking
correction (as we will see this comprises the majority of
results which qualify for inclusion into the FLAG average),
we prefer to provide in Fig. 7 the overview of the world data
of fx+/fr+,atvariance with the choice made in the previous
edition of the FLAG review [2]. For all the results of Table 14
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provided only in the isospin-symmetric limit we apply indi-
vidually an isospin correction which will be described later
on (see equations Egs. (62)—(63)).

The plots in Fig. 7 illustrate our compilation of data for
f+(0) and fg=+/f,=. The lattice data for the latter quantity
are largely consistent even when comparing simulations with
different N s, while in the case of f (0) a slight tendency to
get higher values for increasing Ny seems to be visible, even
if it does not exceed one standard deviation. We now proceed
to form the corresponding averages, separately for the data
with Np =2+ 1+ 1, Ny =2+ 1and Ny = 2 dynamical
flavours and in the following we will refer to these averages
as the “direct” determinations.

For f4(0) there are currently two computational strate-
gies: FNAL/MILC uses the Ward identity to relate the K —
7 form factor at zero momentum transfer to the matrix ele-
ment (7 |S|K) of the flavour-changing scalar current. Pecu-
liarities of the staggered fermion discretization used by
FNAL/MILC (see Ref. [23]) makes this the favoured choice.
The other collaborations are instead computing the vector-
current matrix element (17 |V, |K). Apart from FNAL/MILC
13C and the recent FNAL/MILC 13E all simulations in
Table 13 involve unphysically heavy quarks and therefore
the lattice data needs to be extrapolated to the physical-pion
and -kaon masses corresponding to the K — 7~ channel.
We note also that the recent computations of f4 (0) obtained
by the FNAL/MILC and RBC/UKQCD Collaborations make
use of the partially twisted boundary conditions to determine
the form-factor results directly at the relevant kinematical
point g = 0[242,243], avoiding in this way any uncertainty
due to the momentum dependence of the vector and/or scalar
form factors. The ETM Collaboration uses partially twisted
boundary conditions to compare the momentum dependence
of the scalar and vector form factors with the one of the
experimental data [215], while keeping at the same time the
advantage of the high-precision determination of the scalar
form factor at the kinematical end-point g2, = (M —My)?
[25,244] for the interpolation at g> = 0.

According to the colour codes reported in Table 13 and to
the FLAG rules of Sect. 2.2, only the result ETM 09A with
Ny = 2, the results FNAL/MILC 121 and RBC/UKQCD
15A with Ny = 2 + 1 and the result FNAL/MILC 13E with
Ny = 2+1+1 dynamical flavours of fermions, respectively,
can enter the FLAG averages.

At Ny =2+ 1+ 1 the new result from the FNAL/MILC
Collaboration, f4(0) = 0.9704(24)(22) (FNAL/MILC
13E), is based on the use of the Highly Improved Stag-
gered Quark (HISQ) action (for both valence and sea quarks),
which has been taylored to reduce staggered taste-breaking
effects, and includes simulations with three lattice spacings
and physical light-quark masses. These features allow one
to keep the uncertainties due to the chiral extrapolation and
to the discretization artefacts well below the statistical error.
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The remaining largest systematic uncertainty comes from
finite-size effects.

At Ny = 2 + 1 there is a new result from the
RBC/UKQCD Collaboration, f1(0) = 0.9685(34)(14)
[24] (RBC/UKQCD 15A), which satisfies all FLAG cri-
teria for entering the average. RBC/UKQCD 15A super-
seeds RBC/UKQCD 13 thanks to two new simulations at
the physical point. The other result eligible to enter the
FLAG average at Ny = 2 + 1 is the one from FNAL/MILC
121, f+(0) = 0.9667(23)(33). The two results, based on
different fermion discretizations (staggered fermions in the
case of FNAL/MILC and domain-wall fermions in the case
of RBC/UKQCD) are in nice agreement. Moreover, in the
case of FNAL/MILC the form factor has been determined
from the scalar current matrix element, while in the case
of RBC/UKQCD it has been determined including also the
matrix element of the vector current. To a certain extent both
simulations are expected to be affected by different system-
atic effects.

RBC/UKQCD 15A has analysed results on ensembles
with pion masses down to 140 MeV, mapping out the com-
plete range from the SU (3)-symmetric limit to the physi-
cal point. No significant cutoff effects (results for two lattice
spacings) were observed in the simulation results. Ensembles
with unphysical light-quark masses are weighted to work as a
guide for small corrections toward the physical point, reduc-
ing in this way the model dependence in the fitting ansatz. The
systematic uncertainty turns out to be dominated by finite-
volume effects, for which an estimate based on effective-
theory arguments is provided.

The result FNAL/MILC 121 is from simulations reach-
ing down to a lightest RMS pion mass of about 380 MeV
(the lightest valence pion mass for one of their ensembles
is about 260 MeV). Their combined chiral and continuum
extrapolation (results for two lattice spacings) is based on
NLO staggered chiral perturbation theory supplemented by
the continuum NNLO expression [227] and a phenomenolog-
ical parameterization of the breaking of the Ademollo—Gatto
theorem at finite-lattice spacing inherent in their approach.
The p* low-energy constants entering the NNLO expression
have been fixed in terms of external input [130].

The ETM Collaboration uses the twisted-mass discretiza-
tion and provides at Ny = 2 a comprehensive study of the
systematics [25,215], by presenting results for four lattice
spacings and by simulating at light pion masses (down to
M, = 260 MeV). This makes it possible to constrain the chi-
ral extrapolation, using both SU (3) [221] and SU (2) [223]
chiral perturbation theory. Moreover, a rough estimate for
the size of the effects due to quenching the strange quark
is given, based on the comparison of the result for Ny = 2
dynamical quark flavours [32] with the one in the quenched
approximation, obtained earlier by the SPQcdR Collabora-
tion [244].
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We now compute the Ny = 2 + 1 FLAG average for
f+(0) based on FNAL/MILC 12I and RBC/UKQCD 15A,
which we consider uncorrelated, while for Ny =2 +1+1
and Ny = 2 we consider directly the FNAL/MILC 13E and
ETM 09A results, respectively:

direct, Ny =241+ 1:  f1(0) = 0.9704(24)(22) Ref. [22],

(58)
direct, Ny =2+ 1: J+(0) =0.9677(27) Refs. [23,24],

(59)
direct, Ny =2 : f+(0) =0.9560(57)(62) Ref. [25],

(60)

where the brackets in the first and third lines indicate the
statistical and systematic errors, respectively. We stress that
the results (58) and (59), corresponding to Ny =2+ 1+ 1
and Ny = 2 + 1 respectively, include already simulations
with physical light-quark masses.

In the case of the ratio of decay constants the datasets that
meet the criteria formulated in the introduction are HPQCD
13A [26], FNAL/MILC 14A [14] (which updates MILC
13A [231]) and ETM 14E [27] with Ny = 2 + 1 + 1,
MILC 10 [29], BMW 10 [30], HPQCD/UKQCD 07 [28] and
RBC/UKQCD 12 [31] (which is an update of RBC/UKQCD
10A [144]) with Ny =2+ 1 and ETM 09 [32] with Ny =2
dynamical flavours.

ETM 14E uses the twisted-mass discretization and pro-
vides a comprehensive study of the systematics by presenting
results for three lattice spacings in the range 0.06-0.09 fm
and for pion masses in the range 210-450 MeV. This makes
it possible to constrain the chiral extrapolation, using both
SU (2) [223] chiral perturbation theory and polynomial fits.
The ETM Collaboration always includes the spread in the
central values obtained from different ansitze into the sys-
tematic errors. The final result of their analysisis fgx+/ f,+ =
1.184(12) star+fit (3 chiral (9 22(1) z, B)Fv (3) 18 Where  the
errors are (statistical + the error due to the fitting proce-
dure), due to the chiral extrapolation, the continuum extrapo-
lation, the mass-renormalization constant, the finite-volume
and (strong) isospin-breaking effects.

FNAL/MILC 14A has determined the ratio of the decay
constants from a comprehensive set of HISQ ensembles with
Ny =2+ 1+ 1 dynamical flavours. They have generated
ensembles for four values of the lattice spacing (0.06—0.15
fm, scale set with f,;+) and with both physical and unphys-
ical values of the light sea-quark masses, controlling in this
way the systematic uncertainties due to chiral and contin-
uum extrapolations. With respect to MILC 13A they have
increased the statistics and added an important ensemble at
the finest lattice spacing and for physical values of the light-
quark mass. The final result of their analysis is fx+/f;+ =
1.1956(10)Stat(fﬁ)az(IO)FV(S)EM where the errors are sta-
tistical, due to the continuum extrapolation, finite-volume

and electromagnetic effects. With respect to MILC 13A a
factor of ~2.6, 1.8 and >~ 1.7 has been gained for the statis-
tical, the discretization and the finite-volume errors.

HPQCD 13A analyses ensembles generated by MILC
and therefore its study of fx+/f,+ is based on the same
set of ensembles bar the one for the finest lattice spacing
(a = 0.09—0.15 fm, scale set with f,+ and relative scale set
with the Wilson flow [245,246]) supplemented by some sim-
ulation points with heavier quark masses. HPQCD employs
a global fit based on continuum NLO SU (3) chiral perturba-
tion theory for the decay constants supplemented by a model
for higher-order terms including discretization and finite-
volume effects (61 parameters for 39 data points supple-
mented by Bayesian priors). Their final result is fg=/f;+ =
1.1916(15)tat (12) .2 (1) pv (10), where the errors are statisti-
cal, due to the continuum extrapolation, due to finite-volume
effects and the last error contains the combined uncertainties
from the chiral extrapolation, the scale-setting uncertainty,
the experimental input in terms of f;+ and from the uncer-
tainty in m,, /mg.

In the previous edition of the FLAG review [2] the error
budget of HPQCD 13A was compared with the one of MILC
13A and discussed in detail. It was pointed out that, despite
the large overlap in primary lattice data, both collaborations
arrive at surprisingly different error budgets. The same still
holds when the comparison is made between HPQCD 13A
and FNAL/MILC 14A.

Concerning the cutoff dependence, the finest lattice
included into MILC’s analysis is a = 0.06 fm while the
finest lattice in HPQCD’s case is a = 0.09 fm and both
collaborations allow for taste-breaking terms in their anal-
yses. MILC estimates the residual systematic after extrapo-
lating to the continuum limit by taking the split between the
result of an extrapolation with up to quartic and only up to
quadratic terms in a as their systematic. HPQCD on the other
hand models cutoff effects within their global fit ansatz up to
including terms in a®, using priors for the unknown coeffi-
cients and without including the spread in the central values
obtained from different ansitze into the systematic errors.
In this way HPQCD arrives at a systematic error due to the
continuum limit which is smaller than MILC’s estimate by
about a factor ~1.8.

Turning to finite-volume effects, NLO staggered chiral
perturbation theory (MILC) or continuum chiral perturba-
tion theory (HPQCD) was used for correcting the lattice data
towards the infinite-volume limit. MILC then compared the
finite-volume correction to the one obtained by the NNLO
expression and took the difference as their estimate for the
residual finite-volume error. In addition they checked the
compatibility of the effective-theory predictions (NLO con-
tinuum, staggered and NNLO continuum chiral perturbation
theory) against lattice data of different spacial extent. The
final verdict is that the related residual systematic uncertainty
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on fx+/ f;+ made by MILC is larger by an order of magni-
tude than the one made by HPQCD.

Adding in quadrature all the uncertainties one gets
Srt/frt = 1.1916(22) (HPQCD 13A) and fx+/frx =
1.1960(24)'® (FNAL/MILC 14A). It can be seen that the
total errors turn out to be very similar, but the central values
seem to show a slight tension of about two standard devia-
tions. While FLAG is looking forward to independent con-
firmations of the result for fx=+/f,+ at the same level of
precision, we evaluate the FLAG average using a two-step
procedure. First, the HPQCD 13A and FNAL/MILC 14A
are averaged assuming a 100% statistical correlation, obtain-
ing fx+/fr+t = 1.1936(29), where, following the prescrip-
tion of Sect. 2.3, the error has been inflated by the factor
V(x2/d.o.f.) >~ +/2.5 as a result of the tension between the
two central values. Then, the above finding is averaged with
the (uncorrelated) ETM 14E result, obtaining

direct, Ny =2+ 1+1: fg+/fr+ =1.1933(29)
Refs. [14,26,27]. (61)

For both Ny = 2 + 1 and Ny = 2 no new result enters
the corresponding FLAG averages with respect to the previ-
ous edition of the FLAG review [2] and before the closing
date specified in Sect. 1. Here we limit ourselves to note
that for Ny = 2 + 1 MILC 10 and HPQCD/UKQCD 07 are
based on staggered fermions, BMW 10 has used improved
Wilson fermions and RBC/UKQCD 12’s result is based on
the domain-wall formulation. Concerning simulations with
Ny = 2 the FLAG average remains the ETM 09 result,
which has simulated twisted-mass fermions. In contrast to
FNAL/MILC 14A all these simulations are for unphysical
values of the light-quark masses (corresponding to small-
est pion masses in the range 240—260 MeV in the case of
MILC 10, HPQCD/UKQCD 07 and ETM 09 and around
170 MeV for RBC/UKQCD 12) and therefore slightly more
sophisticated extrapolations needed to be controlled. Vari-
ous ansétze for the mass and cutoff dependence comprising
SU(2) and SU (3) chiral perturbation theory or simply poly-
nomials were used and compared in order to estimate the
model dependence. While BMW 10 and RBC/UKQCD 12
are entirely independent computations, subsets of the MILC
gauge ensembles used by MILC 10 and HPQCD/UKQCD 07
are the same. MILC 10 is certainly based on a larger and more
advanced set of gauge configurations than HPQCD/UKQCD
07. This allows them for a more reliable estimation of system-
atic effects. In this situation we consider only their statistical
but not their systematic uncertainties to be correlated.

18 Here we have symmetrized the asymmetric systematic error and
shifted the central value by half the difference as will be done throughout
this section.
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Table 15 Values of the SU(2) isospin-breaking correction 85y (2)
applied to the lattice data for fx/fr, entering the FLAG average at
Ny =2+ 1, for obtaining the corrected charged ratio fx+/f+

Sk /fx dsu) Sx/fat
HPQCD/UKQCD 07 1.189(2)(7) —0.0040(7) 1.187(2)(2)(7)
BMW 10 1.192(7)(6) —0.0041(7) 1.190(7)(2)(6)
RBC/UKQCD 12 1.199(12)(14) —0.0043(9) 1.196(12)(2)(14)

Before determining the average for fg=+/f,+, which
should be used for applications to Standard-Model phe-
nomenology, we apply the isospin correction individually
to all those results which have been published in the isospin-
symmetric limit, i.e. BMW 10, HPQCD/UKQCD 07 and
RBC/UKQCD 12 at Ny =2+ 1 and ETM 09 at Ny = 2.
To this end, as in the previous edition of the FLAG review
[2], we make use of NLO SU (3) chiral perturbation the-
ory [129,247], which predicts

’;’i _ ;l VT 8500, ©2)

where [247]

4
§ ~/3e —= -4+ —
SU@) SUQ) [ 3 (fx/fa—1) a2

2
x <M2 —M? - M3?In ﬂ)} (63)
K kg ke M2 :

T

We use as input €5y 2) = V3/4/R with the FLAG result
for R of Eq. (36), Fo = fo/+/2 = 80(20) MeV, M,, = 135
MeV and Mg = 495 MeV (we decided to choose a conser-
vative uncertainty on fy in order to reflect the magnitude of
potential higher-order corrections). The results are reported
in Table 15, where in the last column the first error is sta-
tistical and the second error is due to the isospin correction
(the remaining errors are quoted in the same order as in the
original data).

For Ny = 2 a dedicated study of the strong-isospin cor-
rection in lattice QCD does exist. The (updated) result of the
RM123 Collaboration [16] amounts to §sy/2) = —0.0080(4)
and we use this result for the isospin correction of the ETM
09 resultat Ny = 2.

Note that the RM123 value for the strong-isospin cor-
rection is almost incompatible with the results based on
SU (3) chiral perturbation theory, 85y (2) = —0.004(1) (see
Table 15). Moreover, for Ny = 2 + 1 + 1 HPQCD 13A
[26] and ETM 14E [27] estimate a value for d5y(2) equal
to —0.0054(14) and —0.0080(38), respectively. One would
not expect the strange and heavier sea-quark contributions
to be responsible for such a large effect. Whether higher-
order effects in chiral perturbation theory or other sources are
responsible still needs to be understood. More lattice QCD
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simulations of SU (2) isospin-breaking effects are therefore
required. To remain on the conservative side we add a 100%
error to the correction based on SU (3) chiral perturbation
theory. For further analyses we add (in quadrature) such an
uncertainty to the systematic error.

Using the results of Table 15 for Ny = 2 + 1 we obtain

direct, Ny =2+ 1+ 1: frx+/fr+ = 1.193(3)

Refs. [14,26,27], (64)
direct, Ny =2+ 1: fxx/frx = 1.192(5)

Refs. [28-31], (65)
direct, Ny =2 fg=/fr= = 1.205(6)(17)

Ref. [32], (66)

for QCD with broken isospin.

It is instructive to convert the above results for f(0) and
fx=/ fr= intoacorresponding range for the CKM matrix ele-
ments |V,4| and | V|, using the relations (54). Consider first
the results for Ny = 2+41+1. The range for f (0) in Eq. (58)
is mapped into the interval | V5| = 0.2231(9), depicted as a
horizontal red band in Fig. 8, while the one for fx+/f,+ in
Eq. (64) is converted into |Vys|/|Vual = 0.2313(7), shown
as a tilted red band. The red ellipse is the intersection of
these two bands and represents the 68% likelihood contour, '
obtained by treating the above two results as independent
measurements. Repeating the exercise for Ny = 2 + 1 and
Ny = 2leads to the green and blue ellipses, respectively. The
plot indicates a slight tension between the Ny =2+ 1+ 1
and the nuclear § decay results.

4.4 Tests of the Standard Model

In the Standard Model, the CKM matrix is unitary. In partic-
ular, the elements of the first row obey

IVil? = [Vaal? + Vus* + V> = 1. (67)

The tiny contribution from |V,,;| is known much better than
needed in the present context: |V,;,| = 4.13(49) x 1073
[151]. In the following, we first discuss the evidence for the
validity of the relation (67) and only then use it to analyse
the lattice data within the Standard Model.

In Fig. 8, the correlation between | V,,4| and | V5| imposed
by the unitarity of the CKM matrix is indicated by a dot-
ted line (more precisely, in view of the uncertainty in | Vy;|,
the correlation corresponds to a band of finite width, but the
effect is too small to be seen here). The plot shows that there
is aslight tension with unitarity in the datafor Ny = 24+1+1:

19" Note that the ellipses shown in Fig. 5 of both Ref. [1] and Ref. [2]
correspond instead to the 39% likelihood contours. Note also that in
Ref. [2] the likelihood was erroneously stated to be 68% rather than
39%.
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lattice results for £.(0), N;=2+1+1
lattice results for fi:/fr=, Ne=2+1+1
lattice results for £.(0), Nr=2+1
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Fig. 8 The plot compares the information for |V,4|, |V,s| obtained
on the lattice with the experimental result extracted from nuclear g
transitions. The dotted line indicates the correlation between | V,,4| and
|Vius| that follows if the CKM-matrix is unitary

Numerically, the outcome for the sum of the squares of the
first row of the CKM matrix reads |V, |?> = 0.980(9), which
deviates from unity at the level of two standard deviations.
Still, it is fair to say that at this level the Standard Model
passes a nontrivial test that exclusively involves lattice data
and well-established kaon decay branching ratios. Combin-
ing the lattice results for f1(0) and fg+/f,= in Egs. (58)
and (64) with the 8 decay value of | V4| quoted in Eq. (55),
the test sharpens considerably: the lattice result for f(0)
leads to |V,,|2 = 0.9988(6), which highlights again a 20-
tension with unitarity, while the one for fx=/f,+ implies
[V |> = 0.9998(5), confirming the first-row CKM unitarity
below the permille level.

The situation is similar for Ny = 2+1:]V,, |2 =0.984(11)
with the lattice data alone. Combining the lattice results for
f+(0) and fg=/ fr+ in Egs. (5§9) and (65) with the 8 decay
value of | V,,4|, the test sharpens again considerably: the lattice
result for f1 (0) leads to |Vu|2 = 0.9991(6), while the one
for fx+/fr= implies |V,|> = 0.9999(6), thus confirming
again CKM unitarity below the permille level.

Repeating the analysis for Ny = 2, we find Vul? =
1.029(34) with the lattice data alone. This number is fully
compatible with unity and perfectly consistent with the value
of |V,q| found in nuclear B8 decay: combining this value
with the result (60) for f4(0) yields |V,|> = 1.0003(10),
combining it with the data (66) on fx+/ fr+ gives |V,|> =
0.9988(15).

Note that the above tests also offer a check of the basic
hypothesis that underlies our analysis: we are assuming that
the weak interaction between the quarks and the leptons is
governed by the same Fermi constant as the one that deter-
mines the strength of the weak interaction among the leptons
and determines the lifetime of the muon. In certain modifi-
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Fig. 9 Results for |V,| and |V,4| that follow from the lattice data for
f+(0) (triangles) and fx+/ fr+ (squares), on the basis of the assump-
tion that the CKM matrix is unitary. The black squares and the grey
bands represent our estimates, obtained by combining these two differ-
ent ways of measuring |V,s| and |V,4| on a lattice. For comparison, the
figure also indicates the results obtained if the data on nuclear § decay
and t decay are analysed within the Standard Model

cations of the Standard Model, this is not the case. In those
models it need not be true that the rates of the decays 7 — £v,
K — ¢v and K — m{v can be used to determine the matrix
elements |V,q fx |, | Vus fx | and |V,5 f4+(0)|, respectively and
that | V,,4| can be measured in nuclear § decay. The fact that
the lattice data are consistent with unitarity and with the value
of |V,4| found in nuclear 8 decay indirectly also checks the
equality of the Fermi constants.

4.5 Analysis within the Standard Model

The Standard Model implies that the CKM matrix is uni-
tary. The precise experimental constraints quoted in (54) and

the unitarity condition (67) then reduce the four quantities
[Vudls [Vusls f+(Q0), fx+/ fr= to a single unknown: any one
of these determines the other three within narrow uncertain-
ties.

Figure 9 shows that the results obtained for | V,,s| and | V4|
from the data on fyx=/f,+ (squares) are quite consistent
with the determinations via fy(0) (triangles). In order to
calculate the corresponding average values, we restrict our-
selves to those determinations that we have considered best
in Sect. 4.3. The corresponding results for | V,s| are listed in
Table 16 (the error in the experimental numbers used to con-
vert the values of f(0) and fg=/ f,+ into values for | V|
is included in the statistical error).

For Ny =2 + 1+ 1 we consider the data both for f4 (0)
and fg=+/ fr=+,treating FNAL/MILC 13E, FNAL/MILC 14A
and HPQCD 13A as statistically correlated (according to the
prescription of Sect. 2.3). We obtain |V,s| = 0.2250(11),
where the error includes the inflation factor due the value
of x?/d.o.f. ~ 2.3. This result is indicated on the left
hand side of Fig. 9 by the narrow vertical band. In the case
Ny = 2+ 1 we consider MILC 10, FNAL/MILC 12I and
HPQCD/UKQCD 07 on the one hand and RBC/UKQCD
12 and RBC/UKQCD 15A on the other hand, as mutually
statistically correlated, since the analysis in the two cases
starts from partly the same set of gauge ensembles. In this
way we arrive at | V| = 0.2243(10) with x2/d.o.f. ~ 1.0.
For Ny = 2 we consider ETM 09A and ETM 09 as sta-
tistically correlated, obtaining |V,s| = 0.2256(21) with
x2/d.o.f. ~ 0.7. The figure shows that the result obtained
for the data with Ny =2, Ny =2+ 1land Ny =2+ 1+1
are consistent with each other.

Alternatively, we can solve the relations for |V, 4| instead
of |V,s|. Again, the result |V, 4| = 0.97440(19), which fol-
lows from the lattice data with Ny = 2 + 1 + 1, is per-
fectly consistent with the values |V,4] = 0.97451(23) and
[Vual = 0.97423(47) obtained from the data with Ny = 2+1

Table 16 Values of |V,s| and

V.| obtained from the lattice Collaboration Refs. Ny From [Vis | [Vial

determinations of either £..(0) FNAL/MILC 13E [22] 24141 £1(0) 0.2231(7)(5) 0.97479(16)(12)

or fix+/ fr+ assuming CKM

unitarity, The first (second) ETM 14E [27] 24141 Frt) fat 0.2270(22)(20) 0.97388(51)(47)

number in brackets represents FNAL/MILC 14A [14] 24141 Frt] fat 0.2249(4)(4) 0.97438(8)(9)

the statistical (systematic) error HPQCD 13A [26] 24141 Fit ] fut 0.2256(4)(3) 0.97420(10)(7)
RBC/UKQCD 15A [24] 241 £4(0) 0.2235(9)(3) 0.97469(20)(7)
FNAL/MILC 121 [23] 241 £4(0) 0.2240(7)(8) 0.97459(16)(18)
MILC 10 [29] 241 Frt) fat 0.2250(5)(9) 0.97434(11)(21)
RBC/UKQCD 12 [144] 241 Fre) fat 0.2249(22)(25) 0.97438(50)(58)
BMW 10 [30] 241 Frt) fat 0.2259(13)(11)  0.97413(30)(25)
HPQCD/UKQCD 07 (28] 241 Frt) fat 0.2265(6)(13) 0.97401(14)(29)
ETM 09A [25] 2 £4(0) 0.2265(14)(15)  0.97401(33)(34)
ETM 09 [32] 2 Fret ) fat 0.2233(11)(30)  0.97475(25)(69)
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Table 17 The upper half of the table shows our final results for | V],
[Vial, f+(0) and fg=+/ f+, which are obtained by analysing the lattice
data within the Standard Model. For comparison, the lower half lists the

values that follow if the lattice results are replaced by the experimental
results on nuclear 8 decay and t decay, respectively

Refs. [Vus| [Vual f+(0) Sx=/ fax
Np=2+1+1 0.2250(11) 0.97440(19) 0.9622(50) 1.195(5)
Np=2+1 0.2243(10) 0.97451(23) 0.9652(47) 1.199(5)
Np=2 0.2256(21) 0.97423(47) 0.9597(91) 1.192(9)
B Decay [186] 0.2258(9) 0.97417(21) 0.9588(42) 1.191(4)
7 Decay [200] 0.2165(26) 0.9763(6) 1.0000(122) 1.245(12)
7 Decay [199] 0.2208(39) 0.9753(9) 0.9805(174) 1.219(18)

and Ny = 2, respectively. The reduction of the uncertain-
ties in the result for |V,4| due to CKM unitarity is to be
expected from Fig. §: the unitarity condition reduces the
region allowed by the lattice results to a nearly vertical inter-
val.

Next, we determine the values of f1 (0) and fg=+/ f,+ that
follow from our determinations of |V,| and |V,;| obtained
from the lattice data within the Standard Model. We find
f+(0) = 0.9622(50) for Ny = 2+ 1+ 1, f1(0) =
0.9652(47) for Ny = 2+ 1, f1(0) = 0.9597(91) for
Ny = 2 and fg+/fr+ = 1.195(5) for Ny = 2+ 1+ 1,
fr=/ frt = 1.199(5) for Ny = 241, fx+/ fr= = 1.192(9)
for Ny = 2, respectively. These results are collected in the
upper half of Table 17. In the lower half of the table, we
list the analogous results found by working out the conse-
quences of the CKM unitarity using the values of | V4| and
|Vis| obtained from nuclear 8 decay and t decay, respec-
tively. The comparison shows that the lattice result for |V, 4|
not only agrees very well with the totally independent deter-
mination based on nuclear § transitions, but it is also remark-
ably precise. On the other hand, the values of |V,4|, f+(0)
and fx=/ f+ which follow from the 7-decay data if the Stan-
dard Model is assumed to be valid, are not in good agreement
with the lattice results for these quantities. The disagreement
is reduced considerably if the analysis of the t data is supple-
mented with experimental results on electroproduction [199]:
the discrepancy then amounts to little more than one standard
deviation.

4.6 Direct determination of fx+ and f,+

It is useful for flavour physics studies to provide not only
the lattice average of fx+/f,=, but also the average of the
decay constant fx+. The case of the decay constant f,+ is
different, since the experimental value of this quantity is often
used for setting the scale in lattice QCD (see Appendix A.2).
However, the physical scale can be set in different ways,
namely by using as input the mass of the Q2-baryon (mg)
or the Y-meson spectrum (A M~), which are less sensitive
to the uncertainties of the chiral extrapolation in the light-

quark mass with respect to f,;+. In such cases the value of
the decay constant f,+ becomes a direct prediction of the
lattice-QCD simulations. It is therefore interesting to provide
also the average of the decay constant f+, obtained when
the physical scale is set through another hadron observable,
in order to check the consistency of different scale-setting
procedures.

Our compilation of the values of f,+ and fx+ with the
corresponding colour code is presented in Table 18. With
respect to the case of fg+/f;+ we have added two columns
indicating which quantity is used to set the physical scale and
the possible use of a renormalization constant for the axial
current. Indeed, for several lattice formulations the use of the
nonsinglet axial-vector Ward identity allows one to avoid the
use of any renormalization constant.

One can see that the determinations of f,;+ and fx=+ suffer
from larger uncertainties with respect to the ones of the ratio
Sfx=/fx+, whichisless sensitive to various systematic effects
(including the uncertainty of a possible renormalization con-
stant) and, moreover, is not exposed to the uncertainties of
the procedure used to set the physical scale.

According to the FLAG rules, for Ny = 2+ 1+ 1
three datasets can form the average of fx+ only: ETM 14E
[27], FNAL/MILC 14A [14] and HPQCD 13A [26]. Fol-
lowing the same procedure already adopted in Sect. 4.3
in the case of the ratio of the decay constant we treat
FNAL/MILC 14A and HPQCD 13A as statistically corre-
lated. For Ny = 2 + 1 three datasets can form the aver-
age of f,+ and fg+ : RBC/UKQCD 12 [31] (update of
RBC/UKQCD 10A), HPQCD/UKQCD 07 [28] and MILC
10 [29], which is the latest update of the MILC program. We
consider HPQCD/UKQCD 07 and MILC 10 as statistically
correlated and use the prescription of Sect. 2.3 to form an
average. For Ny = 2 the average cannot be formed for f,=+,
and only one data set (ETM 09) satisfies the FLAG rules in
the case of fg=.

Thus, our estimates read

Nf=2+41: frs =130.2 (1.4) MeV
Refs. [28,29,31], (68)
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Fig. 10 Values of f; and fx. The black squares and grey bands indi-
cate our estimates (68) and (69). The black triangles represent the exper-
imental values quoted by the PDG; see Eq. (70)

Nf=241+1: fx+ =155.6 (0.4) MeV
Refs. [14,26,27],
Nf=2+1: fg+ = 1559 (0.9) MeV

Refs. [28,29,31], (69)
Nf=2: fg+ = 157.5 (2.4) MeV
Ref. [32].

The lattice results of Table 18 and our estimates (68)—(69) are
reported in Fig. 10. The latter ones agree within the errors
with the latest experimental determinations of f; and fx
from the PDG [151]:

FIPO) = 130,41 (0.20) MeV,

FEPD — 1562 (0.7) MeV. (70)

Moreover, the values of f,+ and fgx+ quoted by the PDG
are obtained assuming Eq. (55) for the value of |V,4| and
adopting the average of FNAL/MILC 12[ and RBC-UKQCD
10 results for f (0).

5 Low-energy constants

In the study of the quark-mass dependence of QCD observ-
ables calculated on the lattice, it is common practice to invoke
chiral perturbation theory (xPT). For a given quantity this
framework predicts the nonanalytic quark-mass dependence
and it provides symmetry relations among different observ-
ables. These relations are best expressed with the help of
a set of linearly independent and universal (i.e. process-
independent) low-energy constants (LECs), which appear as
coefficients of the polynomial terms (in m, or MJ%) in dif-

ferent observables. When numerical simulations are done at
heavier than physical (light) quark masses, xPT is usually
invoked in the extrapolation to physical quark masses.

5.1 Chiral perturbation theory

xPT is an effective field theory approach to the low-energy
properties of QCD based on the spontaneous breaking of
chiral symmetry, SU(Ny) x SUNf)r — SU(Nf)r+r,
and its soft explicit breaking by quark-mass terms. In its
original implementation, in infinite volume, it is an expansion
in my and p? with power counting M,zr ~mg ~ 2.

If one expands around the SU (2) chiral limit, there appear
two LECs at order p? in the chiral effective Lagrangian,

)]
F =F, d B=—,
T my,mg—0 an F2
where ¥ = —(uu) , (71)
my,mg—0
and seven at order p4, indicated by Zi withi =1,...,7.In

the analysis of the SU (3) chiral limit there are also just two
LECs at order p?,

)
and By = —0,

Fy=F, ’
T my,mq,ms—>0 FO2

where Xo = —(uu) (72)

9
my,mq,msg—0

but ten at order p4, indicated by the capital letter L; (t) with
i =1,...,10. These constants are independent of the quark
masses,”’ but they become scale dependent after renormal-
ization (sometimes a superscript r is added). The SU (2) con-
stants ¢; are scale independent, since they are defined at scale
i = M (as indicated by the bar). For the precise definition
of these constants and their scale dependence we refer the
reader to Refs. [129,131].

If the box volume is finite but large compared to the Comp-
ton wavelength of the pion, L > 1/M;, the power counting
generalizes tom, ~ p* ~ 1/L?, as one would assume based
on the fact that ppi, = 27/L is the minimum momentum in a
finite box. This is the so-called p-regime of x PT. It coincides
with the setting that is used for standard phenomenologically
oriented lattice-QCD computations, and we shall consider the
p-regime the default in the following. However, if the pion
mass is so small that the box-length L is no longer large com-
pared to the Compton wavelength that the pion would have,
at the given m, in infinite volume, then the chiral series must

20 More precisely, they are independent of the 2 or 3 light-quark masses
which are explicitly considered in the respective framework. However,
all low-energy constants depend on the masses of the remaining quarks
s,c,b,t or ¢,b,t in the SU(2) and SU (3) framework, respectively,
although the dependence on the masses of the ¢, b, t quarks is expected
to be small.
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be reordered. Such finite-volume versions of y PT with cor-
respondingly adjusted power-counting schemes, referred to
as e- and §-regime, are described in Sects. 5.1.4 and 5.1.5,
respectively.

Lattice calculations can be used to test if chiral symmetry
is indeed spontaneously broken along the path SU(Ny)p x
SU(Nf)r — SU(Ng)pL+r by measuring nonzero chiral
condensates and by verifying the validity of the GMOR rela-
tion M2 o< my close to the chiral limit. If the chiral extrap-
olation of quantities calculated on the lattice is made with
the help of fits to their xPT forms, apart from determining
the observable at the physical value of the quark masses,
one also obtains the relevant LECs. This is a very important
by-product for two reasons:

1. AIILECs up to order p* (with the exception of B and By,
since only the product of these times the quark masses
can be estimated from phenomenology) have either been
determined by comparison to experiment or estimated
theoretically, e.g. in large-N, QCD. A lattice determina-
tion of the better known LECs thus provides a test of the
x PT approach.

2. The less well-known LECs are those which describe the
quark-mass dependence of observables — these cannot
be determined from experiment, and therefore the lat-
tice, where quark masses can be varied, provides unique
quantitative information. This information is essential for
improving phenomenological xPT predictions in which
these LECs play a role.

We stress that this program is based on the nonobvious
assumption that xPT is valid in the region of masses and
momenta used in the lattice simulations under consideration,
something that can and should be checked. In the end one
wants to compare lattice and phenomenological determina-
tions of LECs, much in the spirit of Ref. [251]. An overview
of many of the conceptual issues involved in matching lattice
data to an effective field theory framework like x PT is given
in Refs. [252-254].

The fact that, at large volume, the finite-size effects, which
occur if a system undergoes spontaneous symmetry break-
down, are controlled by the Nambu—Goldstone modes, was
first noted in solid state physics, in connection with mag-
netic systems [255,256]. As pointed out in Ref. [257] in the
context of QCD, the thermal properties of such systems can
be studied in a systematic and model-independent manner
by means of the corresponding effective field theory, pro-
vided the temperature is low enough. While finite volumes
are not of physical interest in particle physics, lattice simula-
tions are necessarily carried out in a finite box. As shown in
Refs. [258-260], the ensuing finite-size effects can be stud-
ied on the basis of the effective theory — xPT in the case of
QCD - provided the simulation is close enough to the con-

@ Springer

tinuum limit, the volume is sufficiently large and the explicit
breaking of chiral symmetry generated by the quark masses
is sufficiently small. Indeed, x PT represents a useful tool for
the analysis of the finite-size effects in lattice simulations.

In the remainder of this subsection we collect the rele-
vant x PT formulae that will be used in the two following
subsections to extract SU (2) and SU (3) LECs from lattice
data.

5.1.1 Quark-mass dependence of pseudoscalar masses and
decay constants
A. SU (2) formulae

The expansions”! of Mﬁ and F in powers of the quark mass
are known to next-to-next-to-leading order (NNLO) in the
SU(2) chiral effective theory. In the isospin limit, m, =
mg = m, the explicit expressions may be written in the form
[261]

+x%ky + O (73)

2
A 5 A>
4 2 F
Fr =F 1+xln—2—Zx <ln—2>

+ x%kp + O(x3)
Here the expansion parameter is given by

M2
* = G

2¥m

M? =2Bm = ——,
F2

(74)
but there is another option as discussed below. The scales
A3z, A4 are related to the effective coupling constants £3, £4
of the chiral Lagrangian at scale M, = M,I,’hys by

2

_ An
£, =In 7
Mz

n=1,...,7. (75)

Note that in Eq. (73) the logarithms are evaluated at M2,
not at M]%. The coupling constants ky, kg in Eq. (73) are
mass-independent. The scales of the squared logarithms can
be expressed in terms of the O(p*) coupling constants as

2l Here and in the following, we stick to the notation used in the
papers where the xPT formulae were established, i.e. we work with
Fr = fn/ﬁ = 92.2(1)MeV and Fx = fK/\/E. The occurrence of
different normalization conventions is not convenient, but avoiding it
by reformulating the formulae in terms of f;;, fx is not a good way out.
Since we are using different symbols, confusion cannot arise.
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AT Ny PP A%+321 A g A%+49
n—- = — n— n—= —9In — ,
M2 51 M2 M2 M2

AL 1 A? A3
A? A2
+61nM—32—61nM—‘;+23 . (76)

Hence by analysing the quark-mass dependence of M]% and
F with Eq. (73), possibly truncated at NLO, one can deter-
mine?? the O(p?) LECs B and F, as well as the O(p*) LECs
3 and £4. The quark condensate in the chiral limit is given by
¥ = F2B. With precise enough data at several small enough
pion masses, one could in principle also determine Ay, Ap
and kyy, kr. To date this is not yet possible. The results for
the LO and NLO constants will be presented in Sect. 5.2.

Alternatively, one can invert Eq. (73) and express M?> and
F' as an expansion in

M2
= 77
5 1672 F? 77
and the corresponding expressions then take the form
2
1 A3 5 Q2
M*=M231+-&ln—3 -2 (-4
B R L VR L Ve
2 3
+&7en +OE7) ¢ (78)
2
A] 1 Q2
F=F, {1—gln—2% — £ [m=L
M2 4 M2

+E2c, + 0D

The scales of the quadratic logarithms are determined by
A1, ..., A4 through

Q2 1 A? A? A?
In M4 —<281n—‘+321n—2—331n—3

M2 15 M2 M2 Mz
Aj
—121In—% +52], (79)
Mz
Q2 1 A? A2 A2 29
-t = ~TIn—L —8In—2+4+18m—2-=").
M2~ 3 M2 M2 M2 2

22 Notice that one could analyse the quark-mass dependence entirely
in terms of the parameter M? defined in Eq. (74) and determine equally
well all other LECs. Using the determination of the quark masses
described in Sect. 3 one can then extract B or X. No matter the strategy
of extraction, determination of B or ¥ requires knowledge of the scale
and scheme dependent quark mass renormalization factor Z,, ().

B. SU (3) formulae

While the formulae for the pseudoscalar masses and decay
constants are known to NNLO for SU (3) as well [262], they
are rather complicated and we restrict ourselves here to next-
to-leading order (NLO). In the isospin limit, the relevant
SU (3) formulae take the form [129]

NLO 1 By
M3 "= 2Bomua {1+Mn—§un+ﬁ [16m,4(2Ls—Ls)
0

+16(my + 2myuq)(2Le — L4)]} ,

NLO 2 By
MI% =" Bo(mg + myq) {1 + glin + ﬁ
0

x [8(ms +myq)(2Lg — Ls)

+ 16(ms + 2myq)(2L6 — L4)]} ,

NLO By
Fr = Fo{l—Z/Ln—uK+—2
F,
0
x [8myqLs + 8(mys + Zmud)L4]} , (80)
NLO 3 3 3 By
Fx = Foll—Zp,—~ugx—=> =
K 0 [ 4l/vn 2MK 4Mn + F02

x [4(ms+myq)Ls + 8(my +2mud)L4]} s

where m,,4 is the common up and down quark mass (which
may be different from the one in the real world), and By =
Y F02, Fy denote the condensate parameter and the pseu-
doscalar decay constant in the SU (3) chiral limit, respec-
tively. In addition, we use the notation

2 2
My 1n<M—§) ) (81)

= e '\
At the order of the chiral expansion used in these formulae,
the quantities (5, g, 4y can equally well be evaluated with
the leading-order expressions for the masses,
LO LO
M3 = 2Bomua, My = Bo(ms + mua),
LO
M} = 2BoQms + myq). (82)

Throughout, L; denotes the renormalized low-energy con-
stant/coupling (LEC) at scale i, and we adopt the convention
which is standard in phenomenology, © = M, = 770 MeV.
The normalization used for the decay constants is specified
in Footnote 21.

5.1.2 Pion form factors and charge radii

The scalar and vector form factors of the pion are defined by
the matrix elements
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<Mwﬁmqwﬁm»=yﬁﬁm

" 83)
(7 (p)lg STiytq 7k (p)) = iR (pl + pPYYFE (1),

where the operators contain only the lightest two quark
flavours, i.e. t!, 72, 73 are the Pauli matrices, and ¢t =
(p1 — p2)? denotes the momentum transfer.

The vector form factor has been measured by several
experiments for time-like as well as for space-like values
of ¢. The scalar form factor is not directly measurable, but
it can be evaluated theoretically from data on the 7z and
7 K phase shifts [263] by means of analyticity and unitarity,
i.e. in a model-independent way. Lattice calculations can be
compared with data or model-independent theoretical eval-
uations at any given value of ¢. At present, however, most
lattice studies concentrate on the region close to t = 0 and
on the evaluation of the slope and curvature which are defined
as

Fg(t):l+%(r2)7(,t+cvzz+...’ (84)
FZ (1) = FE(0) |:1+%(r2)7§t+cst2+...]_

The slopes are related to the mean-square vector and scalar
radii which are the quantities on which most experiments and
lattice calculations concentrate.

In x PT, the form factors are known at NNLO for SU(2)
[264]. The corresponding formulae are available in fully ana-
lytical form and are compact enough to be used for the
chiral extrapolation of the data (as done, for example in
Refs. [41,265]). The expressions for the scalar and vector
radii and for the c¢s v coefficients at two-loop level read

2
1 A} 1329 Q2
= ——— 16 ————g(m ’S)

(47 Fy )2 M2 2 3

+6E kg + OED) L,

1 A2 @2\’

Ve

)y =

+0EH T, (85)

1 19 YARAY
= ! = — (In =2 k. ,
S = GnE 2 1120 T° | 36 (n M2> e

2
! ! +£ ! 1 % +k
cy=——— 1 — — (In . ,
V' = @nFu M2 | 60 72\ M2 cv
where
n s _ 1 311 A2+341 A i A2+145
"2 T 29 nM,, nM2_ 24
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Q, 1{ A A2 A3 A 31
In =—|In— —1In +ln—+l ,

M2~ 2\ M2 M2 12

QL 43 A2 A2 A 6041
In—= == (11ln—- +14In—2 +18In—=% - —
e R v v R Vo )

Q2 1 A? A} AZ 26
=Y =_— (2In—t 22 -5 - = 86
e 72( "2 M2~ M2 T30 (86)

andk,, k., and k., k., areindependent of the quark masses.
Their expression in terms of the £; and of the O( p6) constants
cuM, cr is known but will not be reproduced here.

The SU (3) formula for the slope of the pion vector form
factor reads, to NLO [221],

1 M? M2 12Ly

—_—— 3+21n—+1 +—

3272F] n? F,

(87)

while the expression (rz)gCt for the octet part of the scalar
radius does not contain any NLO low-energy constant at one-
loop order [221] — contrary to the situation in SU (2); see
Eq. (85).

The difference between the quark-line connected and
the full (i.e. containing the connected and the disconnected
pieces) scalar pion form factor has been investigated by
means of y PT in Ref. [266]. It is expected that the technique
used can be applied to a large class of observables relevant
in QCD phenomenology.

As a point of practical interest let us remark that there are
no finite-volume correction formulae for the mean-square
radii (rZ)V’S and the curvatures cy s. The lattice data for
Fy s(t) need to be corrected, point by point in #, for finite-
volume effects. In fact, if a given ¢ is realized through several
inequivalent p; — p» combinations, the level of agreement
after the correction has been applied is indicative of how
well higher-order effects are under control.

5.1.3 Partially quenched and mixed action formulations

The term “partially quenched QCD” is used in two ways. For
heavy quarks (c, b and sometimes s) it usually means that
these flavours are included in the valence sector, but not into
the functional determinant, i.e. the sea sector. For the light
quarks (#, d and sometimes s) it means that they are present
in both the valence and the sea sector of the theory, but with
different masses (e.g. a series of valence quark masses is
evaluated on an ensemble with fixed sea-quark masses).
The program of extending the standard (unitary) SU (3)
theory to the (second version of) “partially quenched QCD”
has been completed at the two-loop (NNLO) level for masses
and decay constants [267]. These formulae tend to be com-
plicated, with the consequence that a state-of-the-art analysis
with O(2000) bootstrap samples on (O(20) ensembles with
O(5) masses each [and hence O (200 000) different fits] will
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require significant computational resources. For a summary
of recent developments in xPT relevant to lattice QCD we
refer to Ref. [268]. The SU (2) partially quenched formulae
can be obtained from the SU (3) ones by “integrating out the
strange quark.” At NLO, they can be found in Ref. [269]
by setting the lattice-artefact terms from the staggered y PT
form to zero.

The theoretical underpinning of how “partial quench-
ing” is to be understood in the (properly extended) chiral
framework is given in Ref. [270]. Specifically, for partially
quenched QCD with staggered quarks it is shown that a
transfer matrix can be constructed which is not Hermitian
but bounded, and can thus be used to construct correlation
functions in the usual way. The program of calculating all
observables in the p-regime in finite volume to two loops,
first completed in the unitary theory [271,272], has been car-
ried out for the partially quenched case, too [273].

A further extension of the x PT framework concerns the
lattice effects that arise in partially quenched simulations
where sea and valence quarks are implemented with different
lattice fermion actions [222,274-280].

5.1.4 Correlation functions in the €-regime

The finite-size effects encountered in lattice calculations can
be used to determine some of the LECs of QCD. In order to
illustrate this point, we focus on the two lightest quarks, take
the isospin limit m,, = my = m and consider a box of size
L in the three space directions and size L; in the time direc-
tion. If m is sent to zero at fixed box size, chiral symmetry
is restored, and the zero-momentum mode of the pion field
becomes nonperturbative. An intuitive way to understand the
regime with ML < 1 (L = Ly < L;) starts from consid-
ering the pion propagator G(p) = 1/(p> + M?) in finite
volume. For ML > 1and p ~ 1/L, G(p) ~ L? for small
momenta, including p = 0. But when M becomes of order
1/L?, G(0) < L* > G(p # 0) ~ L*. The p = 0 mode of
the pion field becomes nonperturbative, and the integration
over this mode restores chiral symmetry in the limit m — O.

The pion effective action for the zero-momentum field
depends only on the combination © = m 2V, the symmetry-
restoration parameter, where V = LELI. In the e-regime,
in which m ~ 1/V, all other terms in the effective action
are sub-dominant in powers of ¢ ~ 1/L, leading to a
reordering of the usual chiral expansion, which assumes
that m ~ € instead of m ~ €*. In the p-regime, with
m ~ €2 or equivalently ML > 1, finite-volume correc-
tions are of order fd4p ePX G(p)|x~r ~ e ML, while in
the e-regime, the chiral expansion is an expansion in powers
of 1/(AqcpL) ~ 1/(FL).

As an example, we consider the correlator of the axial

charge carried by the two lightest quarks, g (x) = {u(x), d(x)}.

The axial current and the pseudoscalar density are given by

. . . 1 .
AL =F05T yuys g, Pl =757 irsg).
(88)

where 1:1, 72, 73 are the Pauli matrices in flavour space. In

Euclidean space, the correlators of the axial charge and of
the space integral over the pseudoscalar density are given by

8§ Cant) = L?/d»‘i (AL(X, 1) A%(0)), (89)

s Cpp(t) = Lf/d%? (PL(%, 1) P*(0)).

xPT yields explicit finite-size scaling formulae for these
quantities [260,281,282]. In the e-regime, the expansion
starts with

2 L3

X L t
Canlt) = L > |:aA + F223 bahi (L_t) + (9(64):| )
N

L t
w276 t 4
Cpp(t) =X7°Lg [ap + P bp hy (_Lt) + O(e ):|,
(90)

where the coefficients a4, ba, ap, bp stand for quantities of
O(€%). They can be expressed in terms of the variables Ly,
L; and m and involve only the two leading low-energy con-
stants F and X. In fact, at leading order only the combination
nw=mx Lf,L, matters, the correlators are z-independent
and the dependence on p is fully determined by the structure
of the groups involved in the pattern of spontaneous sym-
metry breaking. In the case of SU((2) x SU(2) — SU(2),
relevant for QCD in the symmetry-restoration region with
two light quarks, the coefficients can be expressed in terms
of Bessel functions. The 7-dependence of the correlators
starts showing up at O(€?), in the form of a parabola, viz.
hi(t) = %[(‘L’ — %)2 — 1—12]. Explicit expressions for a4, ba,
ap, bp can be found in Refs. [260,281,282], where some
of the correlation functions are worked out to NNLO. By
matching the finite-size scaling of correlators computed on
the lattice with these predictions one can extract F' and X.
A way to deal with the numerical challenges germane to the
e-regime has been described [283].

The fact that the representation of the correlators to NLO is
not “contaminated” by higher-order unknown LECs, makes
the e-regime potentially convenient for a clean extraction of
the LO couplings. The determination of these LECs is then
affected by different systematic uncertainties with respect
to the standard case; simulations in this regime yield com-
plementary information which can serve as a valuable cross-
check to get a comprehensive picture of the low-energy prop-
erties of QCD.

The effective theory can also be used to study the distribu-
tion of the topological charge in QCD [284] and the various
quantities of interest may be defined for a fixed value of this
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charge. The expectation values and correlation functions then
not only depend on the symmetry-restoration parameter u,
but also on the topological charge v. The dependence on these
two variables can explicitly be calculated. It turns out that
the 2-point correlation functions considered above retain the
form (90), but the coefficients a4, b, ap, bp now depend on
the topological charge as well as on the symmetry-restoration
parameter (see Refs. [285-287] for explicit expressions).

A specific issue with e-regime calculations is the scale
setting. Ideally one would perform a p-regime study with
the same bare parameters to measure a hadronic scale (e.g.
the proton mass). In the literature, sometimes a gluonic scale
(e.g. rp) is used to avoid such expenses. Obviously the issues
inherent in scale setting are aggravated if the e-regime sim-
ulation is restricted to a fixed sector of topological charge.

It is important to stress that in the e-expansion higher-
order finite-volume corrections might be significant, and the
physical box size (in fm) should still be large in order to
keep these distortions under control. The criteria for the chi-
ral extrapolation and finite-volume effects are obviously dif-
ferent from the p-regime. For these reasons we have to adjust
the colour coding defined in Sect.2.1 (see Sect. 5.2 for more
details).

Recently, the effective theory has been extended to the
“mixed regime” where some quarks are in the p-regime and
some in the e-regime [288,289]. In Ref. [290] a technique
is proposed to smoothly connect the p- and e-regimes. In
Ref. [291] the issue is reconsidered with a counting rule
which is essentially the same as in the p-regime. In this new
scheme, one can treat the IR fluctuations of the zero-mode
nonperturbatively, while keeping the logarithmic quark mass
dependence of the p-regime.

Also first steps towards calculating higher n-point func-
tions in the e-regime have been taken. For instance the elec-
tromagnetic pion form factor in QCD has been calculated to
NLO in the e-expansion, and a way to get rid of the pion
zero-momentum part has been proposed [292].

5.1.5 Energy levels of the QCD Hamiltonian in a box and
8-regime

At low temperature, the properties of the partition function
are governed by the lowest eigenvalues of the Hamiltonian.
In the case of QCD, the lowest levels are due to the Nambu—
Goldstone bosons and can be worked out with x PT [293].
In the chiral limit the level pattern follows the one of a
quantum-mechanical rotator, i.e. E; = £(£ + 1)/(2 ®) with
£ =0,1,2,...For a cubic spatial box and to leading order
in the expansion in inverse powers of the box size Ly, the
moment of inertia is fixed by the value of the pion decay
constant in the chiral limit, i.e. ® = F ng.

In order to analyse the dependence of the levels on the
quark masses and on the parameters that specify the size
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of the box, a reordering of the chiral series is required, the
so-called §-expansion; the region where the properties of
the system are controlled by this expansion is referred to
as the §-regime. Evaluating the chiral series in this regime,
one finds that the expansion of the partition function goes
in even inverse powers of F Ly, that the rotator formula for
the energy levels holds up to NNLO and the expression for
the moment of inertia is now also known up to and including
terms of order (F LS)’4 [294-296]. Since the level spectrum
is governed by the value of the pion decay constant in the chi-
ral limit, an evaluation of this spectrum on the lattice can be
used to measure F'. More generally, the evaluation of various
observables in the §-regime offers an alternative method for
a determination of some of the low-energy constants occur-
ring in the effective Lagrangian. At present, however, the
numerical results obtained in this way [178,297] are not yet
competitive with those found in the p- or e-regime.

5.1.6 Other methods for the extraction of the low-energy
constants

An observable that can be used to extract LECs is the topo-
logical susceptibility

X = / d* (@@ (0), 1)
where w(x) is the topological charge density,
() = 5Ty [Fpuv (x) Fpo ()] - (92)

Atinfinite volume, the expansion of y; in powers of the quark
masses starts with [298]

—1
xr =mx{l+0O@m)}, mE<l—|—l+l+"'> .
(93)

The condensate X can thus be extracted from the properties
of the topological susceptibility close to the chiral limit. The
behaviour at finite volume, in particular in the region where
the symmetry is restored, is discussed in Ref. [282]. The
dependence on the vacuum angle 6 and the projection on
sectors of fixed v have been studied in Ref. [284]. For a
discussion of the finite-size effects at NLO, including the
dependence on 0, we refer to Refs. [287,299].

The role that the topological susceptibility plays in
attempts to determine whether there is a large paramag-
netic suppression when going from the Ny = 2 to the
Ny = 2 + 1 theory has been highlighted in Ref.[300]. And
the potential usefulness of higher moments of the topological
charge distribution to determine LECs has been investigated
in Ref. [301].

Another method for computing the quark condensate has
been proposed in Ref. [302], where it is shown that starting
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from the Banks—Casher relation [303] one may extract the
condensate from suitable (renormalizable) spectral observ-
ables, for instance the number of Dirac operator modes in
a given interval. For those spectral observables higher-order
corrections can be systematically computed in terms of the
chiral effective theory. For recent implementations of this
strategy, see Refs. [33,38,304]. As an aside let us remark that
corrections to the Banks—Casher relation that come from a
finite quark mass, a finite four-dimensional volume and (with
Wilson-type fermions) a finite-lattice spacing can be parame-
terized in a properly extended version of the chiral framework
[305,306].

An alternative strategy is based on the fact that at LO in
the e-expansion the partition function in a given topological
sector v is equivalent to the one of a chiral Random Matrix
Theory (RMT) [307-310]. In RMT it is possible to extract
the probability distributions of individual eigenvalues [311—
313] in terms of two dimensionless variables ¢ = AXV and
u = mXV,where A represents the eigenvalue of the massless
Dirac operator and m is the sea-quark mass. More recently
this approach has been extended to the Hermitian (Wilson)
Dirac operator [314] which is easier to study in numerical
simulations. Hence, if it is possible to match the QCD low-
lying spectrum of the Dirac operator to the RMT predic-
tions, then one may extract?® the chiral condensate ¥. One
issue with this method is that for the distributions of individ-
ual eigenvalues higher-order corrections are still not known
in the effective theory, and this may introduce systematic
effects which are hard?* to control. Another open question
is that, while it is clear how the spectral density is renormal-
ized [318], this is not the case for the individual eigenvalues,
and one relies on assumptions. There have been many lattice
studies [319-323] which investigate the matching of the low-
lying Dirac spectrum with RMT. In this review the results of
the LECs obtained in this way? are not included.

5.2 Extraction of SU (2) low-energy constants

In this and the following subsections we summarize the lat-
tice results for the SU(2) and SU (3) LECs, respectively. In
either case we first discuss the O(p?) constants and then
proceed to their O( ) counterparts. The O( p%) LECs are
determined from the chiral extrapolation of masses and decay
constants or, alternatively, from a finite-size study of corre-
lators in the e-regime. At order p* some LECs affect 2-point

23 By introducing an imaginary isospin chemical potential, the frame-
work can be extended such that the low-lying spectrum of the Dirac
operator is also sensitive to the pseudoscalar decay constant F at LO
[315].

24 Higher-order systematic effects in the matching with RMT have
been investigated in Refs. [316,317].

25 The results for ¥ and F lie in the same range as the determinations
reported in Tables 19 and 20.

functions while others appear only in three- or 4-point func-
tions; the latter need to be determined from form factors or
scattering amplitudes. The xPT analysis of the (nonlattice)
phenomenological quantities is nowadays>® based on O(p®)
formulae. At this level the number of LECs explodes and
we will not discuss any of these. We will, however, discuss
how comparing different orders and different expansions (in
particular the x versus &-expansion) can help to assess the
theoretical uncertainties of the LECs determined on the lat-
tice.

The lattice results for the SU (2) LECs are summarized in
Tables 19, 20, 21 and 22 and Figs. 11, 12 and 13. The tables
present our usual colour coding which summarizes the main
aspects related to the treatment of the systematic errors of
the various calculations.

A delicate issue in the lattice determination of chiral LECs
(in particular at NLO) which cannot be reflected by our colour
coding is a reliable assessment of the theoretical error that
comes from the chiral expansion. We add a few remarks on
this point:

1. Using both the x and the & expansion is a good way
to test how the ambiguity of the chiral expansion (at a
given order) affects the numerical values of the LECs
that are determined from a particular set of data [35,138].
For instance, to determine 4 (or A4) from lattice data
for F;; as a function of the quark mass, one may com-
pare the fits based on the parameterization F, = F{l +
X ln(Aﬁ/MZ)} [see Eq. (73)] with those obtained from
Fr = F/{1 — £In(A2/M2)} [see Eq. (78)]. The dif-
ference between the two results provides an estimate of
the uncertainty due to the truncation of the chiral series.
Which central value one chooses is in principle arbitrary,
but we find it advisable to use the one obtained with the &
expansion,?’ in particular because it makes the compar-
ison with phenomenological determinations (where it is
standard practice to use the £ expansion) more meaning-
ful.

2. Alternatively one could try to estimate the influence of
higher chiral orders by reshuffling irrelevant higher-order
terms. For instance, in the example mentioned above one
might use F, = F/{l1 — xln(Ai/Mz)} as a different

26 Some of the O(p®) formulae presented below have been derived in
an unpublished note by three of us (GC, SD and HL) and Jiirg Gasser.
We thank him for allowing us to publish them here.

27 There are theoretical arguments suggesting that the & expansion is
preferable to the x expansion, based on the observation that the coeffi-
cients in front of the squared logs in Eq. (73) are somewhat larger than
in Eq. (78). This can be traced to the fact that a part of every formula in
the x expansion is concerned with locating the position of the pion pole
(at the previous order) while in the & expansion the knowledge of this
position is built in exactly. Numerical evidence supporting this view is
presented in Ref. [138].
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Table 19 Cubic root of the SU(2) quark condensate ¥ =
—(uu)|m, ,my—0 in MeV units, in the MS-scheme, at the renormal-
ization scale © = 2 GeV. All ETM values which were available only in

ro units were converted on the basis of ro = 0.48(2) fm [333,350,351],
with this error being added in quadrature to any existing systematic
error

Collaboration Refs. Ny Publication Chiral Continuum Finite volume Renormalization ¥!/3

status extrapolation extrapolation
ETM 13 33 24+1+1 A o) * * * 280(8)(15)
RBC/UKQCD 15E [335] 2+1 P * * * * 274.2(2.8)(4.0)
RBC/UKQCD 14B [10] 2+1 A * * * * 275.9(1.9)(1.0)
BMW 13 35] 2+1 A * * * * 271(4)(1)
Borsanyi 12 34] 2+1 A * * * * 272.3(1.2)(1.4)
MILC 10A [13] 2+1 C o) * * * 281.5(3.4)(T20)(4.0)
JLQCD/TWQCD 10A [338] 2+ 1 A * m o * 234(4)(17)
RBC/UKQCD 10A [144] 2+1 A o) o) o * 256(5)(2)(2)
JLQCD 09 [337] 2+1 A * L] o * 2424 (1)
MILC 09A, SU@3)-fit  [6] 2+1 C o) * * * 279(1)(2)(4)
MILC 09A, SU(2)-fit  [6] 2+1 C o) * * * 2802)(T4) @)
MILC 09 [89] 2+1 A o) * * * 278()(F3)(5)
TWQCD 08 [340] 2+ 1 A ] m n * 259(6)(9)
JLQCD/TWQCD 08B [341] 2 + 1 C o) L] (] * 249(4)(2)
PACS-CS 08, SU(3)-fit [93] 2+ 1 A * m [ ] 312(10)
PACS-CS 08, SU(2)-fit [93] 2+ 1 A * m [ ] 309(7)
RBC/UKQCD 08 [145] 2+1 A o) m o * 255(8)(8)(13)
Engel 14 [38] 2 A * * * * 263(3)(4)
Brandt 13 [37] 2 A o * o) * 261(13)(1)
ETM 13 33] 2 A o) * o) * 283(7)(17)
ETM 12 [342] 2 A o) * o) * 299(26)(29)
Bernardoni 11 [343] 2 C 0] u | * 306(11)
TWQCD 11 [249] 2 A o) (] (] * 230(4)(6)
TWQCD 11A [344] 2 A o) L] L] * 259(6)(7)
JLQCD/TWQCD 10A  [338] 2 A * n n * 242(5)(20)
Bernardoni 10 [345] 2 A o u " * 262(F0) (1)
ETM 09C [36] 2 A o * o) * 270(5)(*3)
ETM 09B [346] 2 C * L] o) * 245(5)
ETM 08 [41] 2 A o) o o * 264(3)(5)
CERN 08 [302] 2 A o) L] o * 276(3)(4)(5)
Hasenfratz 08 [347] 2 A ) u * * 248(6)
JLQCD/TWQCD 08A [138] 2 A o) [ (] * 235.7(5.0)2.0) (")
JLQCD/TWQCD 07 [348] 2 A * L] [ * 239.8(4.0)
JLQCD/TWQCD 07A  [349] 2 A * L] [ * 252(5)(10)

functional form at NLO. Another way to establish such
an estimate is through introducing by hand “analytical”
higher-order terms (e.g. “analytical NNLO” as done, in
the past, by MILC [89]). In principle it would be prefer-
able to include all NNLO terms or none, such that the
structure of the chiral expansion is preserved at any order
(this is what ETM [36] and JLQCD/TWQCD [138] have
done for SU(2) xPT and MILC for both SU(2) and
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SU3) xPT [6,13,29]). There are different opinions in
the field as to whether it is advisable to include terms to
which the data are not sensitive. In the case one is willing
to include external (typically: nonlattice) information, the
use of priors is a theoretically well-founded option (e.g.
priors for NNLO LECs if one is interested exclusively in
LECs at LO/NLO).



Eur.

Phys. J. C (2017) 77:112

Page 55 of 228 112

Table 20 Results for the SU (2) low-energy constant F' (in MeV) and
for the ratio F/F. All ETM values which were available only in rg
units were converted on the basis of ro = 0.48(2) fm [333,350,351],
with this error being added in quadrature to any existing systematic

error. Numbers in slanted fonts have been calculated by us, based on

VZEP™ = 130.41(20) MeV [151], with this error being added in
quadrature to any existing systematic error

Collaboration Refs. Ny Publication Chiral Continuum Finite volume F Fr/F
status extrapolation  extrapolation
ETM 11 [352] 24+1+1 C o) * o 85.60(4) 1.077(1)
ETM 10 39] 24141 A o) o * 85.66(6)(13) 1.076(2)(2)
RBC/UKQCD  [335] 2+1 P * * * 85.8(1.1)(1.5) 1.0641(21)(49)
15E
RBC/UKQCD  [10] 2+1 A * * * 86.63(12)(13) 1.0645(15)(0)
14B
BMW 13 35] 2+1 A * * * 88.0(1.3)(0.3) 1.055(7)(2)
Borsanyi 12 34] 241 A * * * 86.78(05)(25) 1.0627(06)(27)
NPLQCD 11 [40] 2+1 A o) o) o) 86.8(2.1)(*37) 1.062(26)(*40)
MILC 10 [29] 2+1 C o) * * 87.0(4)(5) 1.060(5)(6)
MILC 10A [13] 241 C o) * * 87.5(1.0)(*97) 1.054(12)(*39)
MILC 09A, 6] 2+1 C o) * * 86.8(2)(4) 1.062(1)(3)
SU(3)-fit
MILC 09A, 6] 2+1 C o) * * 87.4(0.6)(*97) 1.054(D(*17)
SU (2)-fit
MILC 09 [89] 2+1 A o * * 87.66(17)(*33) 1.052(2)(*9)
PACS-CS 08, 93] 241 A * ] L] 90.3(3.6) 1.062(8)
SU(3)-fit
PACS-CS 08, 93] 241 A * ] L] 89.4(3.3) 1.060(7)
SU (2)-fit
RBC/UKQCD 08 [145] 2+ 1 A o L] o 81.2(2.9)(5.7) 1.080(8)
ETM 15A [333] 2 p * ] o 86.3(2.8) 1.069(35)
Engel 14 38] 2 A * * * 85.8(0.7)(2.0) 1.075(09)(25)
Brandt 13 371 2 A o * o) 34(8)(2) 1.080(16)(6)
QCDSF 13 [353] 2 A * o o) 86(1) 1.07(1)
TWQCD 11 [249] 2 A o ] ] 83.39(35)(38) 1.106(5)(5)
ETM 09C [36] 2 A o) * o) 85.91(07)(*7%) 1.0755(6)(*%)
ETM 09B [346] 2 C * ] o 92.1(4.9) 1.00(5)
ETM 08 411 2 A o o o 86.6(7)(7) 1.067(9)(9)
Hasenfratz 08 [347]1 2 A o) u * 90(4) 1.02(5)
JLQCD/TWQCD [138] 2 A o [ [ 79.02.5)0.7)(*58)  1.167G37)(10)(TY)
08A
JLQCD/TWQCD [348] 2 A * L] ] 87.3(5.6) 1.06(7)
07
Colangelo 03 [354] 86.2(5) 1.0719(52)

3. Another issue concerns the s-quark mass dependence

of the LECs ¢; or A; of the SU (2) framework. As
. phys
far as variations of mg around my °  are concerned
(say for 0 < my < l.SmSphys at best) the issue can
be studied in SU(3) xPT, and this has been done in
a series of papers [129,324,325]. However, the effect
of sending mj to infinity, as is the case in Ny = 2
lattice studies of SU(2) LECs, cannot be addressed

in this way. A way to analyse this difference is to

4,

compare the numerical values of LECs determined in
Ny = 2 lattice simulations to those determined in
Ny =2+ 1 lattice simulations (see e.g. Ref. [326] for a
discussion).

Last but not least let us recall that the determination of
the LECs is affected by discretization effects, and it is
important that these are removed by means of a con-
tinuum extrapolation. In this step invoking an extended
version of the chiral Lagrangian [275,327-331] may be
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Table 21 Results for the SU(2) NLO low-energy constants 23 and {4. For comparison, the last two lines show results from phenomenological

analyses
Collaboration Refs. Ny Publication Chiral Continuum Finite volume {3 Uy
status extrapolation  extrapolation
ETM 11 [352] 2+4+1+1 C o) * o) 3.53(5) 4.73(2)
ETM 10 [39] 2+1+1 A o) @) * 3.70(7)(26) 4.67(3)(10)
RBC/UKQCD [335] 2+1 P * * * 2.81(19)(45) 4.02(8)(24)
15E
RBC/UKQCD [10] 2+1 A * * * 2.73(13)(0) 4.113(59)(0)
14B
BMW 13 [35] 2+1 A * * * 2.5(5)4) 3.8(4)(2)
RBC/UKQCD 12 [31] 2+1 A * * * 2.91(23)(07) 3.99(16)(09)
Borsanyi 12 [34] 241 A * * * 3.16(10)(29) 4.03(03)(16)
NPLQCD 11 [40] 2+1 A o o o 4.04(40)(*2)) 430651 (%)
MILC 10 [29] 2+1 C ) * * 3.18(50)(89) 4.29(21)(82)
MILC 10A (131 2+1 C o * * 2.8581)(*3)) 3.98(32)(*34)
RBC/UKQCD [144] 241 A ) @) o) 2.57(18) 3.83(9)
10A
MILC 09A, [6] 2+1 C ) * * 3.32(64)(45) 4.03(16)(17)
SU (3)-fit
MILC 09A, [6] 2+1 C o) * * 3.0(6)(J_rg) 3.92)(3)
SU (2)-fit
PACS-CS 08, 931 2+1 A * u u 3.47(11) 4.21(11)
SU (3)-fit
PACS-CS 08, [93] 2+1 A * u L] 3.14(23) 4.04(19)
SU (2)-fit
RBC/UKQCD 08 [145] 2+1 A ) L] ) 3.13(33)(24) 4.43(14)(77)
ETM 15A [333] 2 P * ] o) 3.3(4)
Giilpers 15 [355] 2 P * * * 4.54(30)(0)
Giilpers 13 [356] 2 A @) u o) 4.76(13)
Brandt 13 [371 2 A o) * ) 3.0(7)(5) 4.7(4)(1)
QCDSF 13 [353] 2 A * @) o) 4.2(1)
Bernardoni 11 [343] 2 C @) u u 4.46(30)(14) 4.56(10)(4)
TWQCD 11 [249] 2 A ) L] u 4.149(35)(14) 4.582(17)(20)
ETM 09C 36] 2 A o * o 3.50(9)(*%) 4.66(4)(*%3)
JLQCD/TWQCD [357] 2 A ) u u 4.09(50)(52)
09
ETM 08 [411 2 A ) (@) o) 3.2(8)(2) 4.42)(1)
JLQCD/TWQCD [138] 2 A o) u u 3.38(40)(24) (fg(l)) 4.12(35)(30) (Jjg(l))
08A
CERN-TOV 06 [358] 2 A ) ] L] 3.0(5)(1)
Colangelo 01 [261] 4.4(2)
Gasser 84 [131] 2.9(2.4) 4.3(9)

useful®® in the case one aims for a global fit of lattice
data involving several M, and a values and several chi-
ral observables.

28 This means that for any given lattice formulation one needs to deter-
mine additional lattice-artefact low-energy constants. For certain for-
mulations, e.g. the twisted-mass approach, first steps in this direction
have already been taken [332], while with staggered fermions MILC
routinely does so; see e.g. Refs. [89,107].

@ Springer

In the tables and figures we summarize the results of
various lattice collaborations for the SU(2) LECs at LO
(F or F/Fy, B or £) and at NLO (¢; — £, {3, €4, Lg).
Throughout we group the results into those which stem from
Ny = 2+ 1+ 1 calculations, those which come from
Ny = 2+ 1 calculations and those which stem from Ny = 2
calculations (since, as mentioned above, the LECs are logi-
cally distinct even if the current precision of the data is not



Eur. Phys. J. C (2017) 77:112

Page 57 of 228 112

Table 22 Top (vector form factor of the pion): Lattice results for the
charge radius (r2)7, (in fm?), the curvature cy (in GeV~*) and the effec-
tive coupling constant £ are compared with the experimental value,

as obtained by NA7, and some phenomenological estimates. Bottom
(scalar form factor of the pion): Lattice results for the scalar radius
(r2>7§ (in fm?) and the combination £, — ¢, are compared with a dis-
persive calculation of these quantities

Collaboration Refs. Ny Publication Chiral Continuum Finite (r? b5 cy s
status extrapolation extrapolation volume
HPQCD 15B [336] 2+1+1 P * * * 0.403(18)(6)
JLQCD 15A, [359] 2+1 P @) u ) 0.395(26)(32) 13.49(89)(82)
SU (2)-fit
JLQCD 14 [360] 2+1 A * u u 0.49(4)(4) 7.5(1.3)(1.5)
PACS-CS 11A [361] 2+1 A (@) u ) 0.441(46)
RBC/UKQCD 08A  [339] 2+1 A @) u ) 0.418(31) 12.2(9)
LHP 04 [362] 2+1 A (@) u u 0.310(46)
Brandt 13 [371 2 A (@) * ) 0.481(33)(13) 15.5(1.7)(1.3)
JLQCD/TWQCD 09 [357] 2 A @) u u 0.409(23)(37) 3.22(17)(36) 11.9(0.7)(1.0)
ETM 08 [41]1 2 A (@) @) ) 0.456(30)(24) 3.37(31)(27) 14.9(1.2)(0.7)
QCDSF/UKQCD [363] 2 A @) * ) 0.441(19)(63)
06A
Bijnens 98 [264] 0.437(16) 3.85(60) 16.0(0.5)(0.7)
NA7 86 [364] 0.439(8)
Gasser 84 [131] 16.5(1.1)
Collaboration Refs. Ny Publication Chiral Continuum Finite volume (rz)’ST 0 —0
status extrapolation  extrapolation
HPQCD 15B [336] 2+1+1 P * * * 0.481(37)(50)
RBC/UKQCD 15E [335] 2+1 P * * * —9.2(4.9)(6.5)
Giilpers 15 [355] 2 P * * * 0.600(52)(0)
Giilpers 13 [356] 2 A e} L e} 0.637(23)
JLQCD/TWQCD 09  [357] 2 A e} L L 0.617(79)(66) —2.9(0.9)(1.3)
Colangelo 01 [261] 0.61(4) —4.7(6)

sufficient to resolve the differences). Furthermore, we make a
distinction whether the results are obtained from simulations
in the p-regime or whether alternative methods (e-regime,
spectral densities, topological susceptibility, etc.) have been
used (this should not affect the result). For comparison we
add, in each case, a few representative phenomenological
determinations.

A generic comment applies to the issue of the scale set-
ting. In the past none of the lattice studies with Ny >
2 involved simulations in the p-regime at the physical
value of m,q. Accordingly, the setting of the scale a~!
via an experimentally measurable quantity did necessar-
ily involve a chiral extrapolation, and as a result of this
dimensionful quantities used to be particularly sensitive
to this extrapolation uncertainty, while in dimensionless
ratios such as Fy/F, F/Fy, B/By, ¥/%o this particu-
lar problem is much reduced (and often finite lattice-to-
continuum renormalization factors drop out). Now, there
is a new generation of lattice studies with Ny = 2 [333],

Ny =2+1/[7,8,10,23,31,34,35,94,334,335], and Ny =
2 + 1 4 1 [26,336], which does involve simulations at
physical-pion masses. In such studies the uncertainty that
the scale setting has on dimensionful quantities is much
mitigated.

It is worth repeating here that the standard colour-coding
scheme of our tables is necessarily schematic and cannot
do justice to every calculation. In particular there is some
difficulty in coming up with a fair adjustment of the rating
criteria to finite-volume regimes of QCD. For instance, in the
e-regime® we re-express the “chiral-extrapolation” criterion
in terms of «/2mmin%/F, with the same threshold values
(in MeV) between the three categories as in the p-regime.
Also the “infinite-volume” assessment is adapted to the e-
regime, since the M, L criterion does not make sense here; we
assign a green star if at least 2 volumes with L > 2.5 fm are
included, an open symbol if at least 1 volume with L > 2 fm

29 Also in the case of Refs. [337,338] the colour-coding criteria for
the e-regime have been applied.
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5.2.1 Results for the LO SU(2) LECs

We begin with a discussion of the lattice results for the SU (2)
LEC X. We present the results in Table 19 and Fig. 11. We
add that results which include only a statistical error are listed
in the table but omitted from the plot. Regarding the Ny = 2
computations there are six entries without a red tag. We form
the average based on ETM 09C, ETM 13 (here we deviate
from our “superseded” rule, since the two works use different
methods), Brandt 13, and Engel 14. We add that the last one
(with numbers identical to those given in Ref. [304]) is new
compared to FLAG 13. Here and in the following we take into
account that ETM 09C, ETM 13 share configurations, and
the same statement holds true for Brandt 13 and Engel 14.
Regarding the Ny = 2 + 1 computations there are four pub-
lished or updated papers (MILC 10A, Borsanyi 12, BMW 13,
and RBC/UKQCD 14B) which qualify for the Ny =2+ 1
average. The last one is new compared to FLAG 13, and the
last but one was not included in the FLAG 13 average, since
at the time it was only a preprint.

In slight deviation from the general recipe outlined in
Sect.2.2 we use these values as a basis for our estimates (as
opposed to averages) of the Ny = 2 and Ny = 2 + 1 con-
densates. In each case the central value is obtained from our
standard averaging procedure, but the (symmetrical) error is
just the median of the overall uncertainties of all contributing
results (see the comment below for details). This leads to the
values

»1/3 = 266(10) MeV  Refs. [33,36-38],

»1/3 =274(3)MeV  Refs. [10,13,34,35],
(94)

Np=2:
Ny=2+1:

in the MS scheme at the renormalization scale 2 GeV, where
the errors include both statistical and systematic uncertain-
ties. In accordance with our guidelines we ask the reader to
cite the appropriate set of references as indicated in Eq. (94)
when using these numbers. Finally, for Ny = 2+1+1 thereis
only one calculation available, the result of Ref. [33] as given
in Table 19. According to the conventions of Sect. 2.2 this
will be denoted as the “FLAG average” for Ny =2+ 1+1
in Fig. 11.

As a rationale for using estimates (as opposed to aver-
ages) for Ny = 2and Ny = 2+ 1, we add that for 21/3|Nf:2
and 13|y s=2+1 the standard averaging method would yield
central values as quoted in Eq. (94), but with (overall) uncer-
tainties of 4 MeV and 1 MeV, respectively. It is not entirely
clear to us that the scale is sufficiently well known in all
contributing works to warrant a precision of up to 0.36%
on our ©1/3, and a similar statement can be made about the
level of control over the convergence of the chiral expan-
sion. The aforementioned uncertainties would suggest an
Ny-dependence of the SU (2) chiral condensate which (espe-

cially in view of similar issues with other LECs; see below)
seems premature to us. Therefore we choose to form the
central value of our estimate with the standard averaging
procedure, but its uncertainty is taken as the median of the
uncertainties of the participating results. We hope that future
high-quality determinations withboth Ny =2, Ny =241,
and in particular with Ny = 2 + 1 + 1, will help determine
whether there is a noticeable N y-dependence of the SU(2)
chiral condensate or not.

The next quantity considered is F, i.e. the pion decay con-
stantin the SU (2) chiral limit (m,; — 0, at fixed physical m
for Ny > 2 simulations). As argued on previous occasions
we tend to give preference to F/F (here the numerator is
meant to refer to the physical-pion-mass point) wherever it
is available, since often some of the systematic uncertainties
are mitigated. We collect the results in Table 20 and Fig. 12.
In those cases where the collaboration provides only F, the
ratio is computed on the basis of the phenomenological value
of Fy, and the respective entries in Table 20 are in slanted
fonts. We encourage authors to provide both F and F/F
from their analysis, since the ratio is less dependent on the
scale setting, and errors tend to partially cancel. Among the
Ny = 2 determinations five (ETM 08, ETM 09C, QCDSF
13, Brandt 13 and Engel 14) are without red tags. Since the
third one is without systematic error, only four of them enter
the average. Compared to FLAG 13 the last work is the only
one whichis new. Among the Ny = 2+1 determinations five
values (MILC 10 as an update of MILC 09, NPLQCD 11,
Borsanyi 12, BMW 13, and RBC/UKQCD 14B) contribute
to the average. Compared to FLAG 13 the last work is a new
addition, and the last but one is included in the average for
the first time. Here and in the following we take into account
that MILC 10 and NPLQCD 11 share configurations. Finally,
there is a single Ny = 2 + 1 + 1 determination (ETM 10)
which forms the current best estimate in this category.

In analogy to the condensates discussed above, we use
these values as a basis for our estimates (as opposed to aver-
ages) of the decay constant ratios

Ny=2:
Ny=2+1:

Fr/F =1.073(15)
Fr/F =1.064(7)

Refs. [36-38,41],

Refs. [10,29,34,35,40],
95)

where the errors include both statistical and systematic
uncertainties. These numbers are obtained through the well-
defined procedure described subsequent to Eq. (94). We ask
the reader to cite the appropriate set of references as indi-
cated in Eq. (95) when using these numbers. Finally, for
Ny = 2+ 1 + 1 the result of Ref. [39] is the only one
available; see Table 20 for the numerical value.

For this observable the standard averaging method would
yield the central values as quoted in Eq. (95), but with (over-
all) uncertainties of 6 and 1, respectively, on the last digit
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quoted. In this particular case the single Ny = 24141 deter-
mination lies significantly higher than the Ny = 2 + 1 aver-
age (with the small error-bar), basically on par with the Ny =
2 average (with the small error-bar), and this makes such
a standard average look even more suspicious to us. At the
least, one should wait for one more qualifying Ny = 2+1+41
determination before attempting any conclusions about the
Ny dependence of Fy /F. While we are not aware of any the-
orem which excludes a nonmonotonic behaviour in Ny of a
LEC, standard physics reasoning would suggest that quark-
loop effects become smaller with increasing quark mass,
hence a dynamical charm quark will influence LECs less sig-
nificantly than a dynamical strange quark, and even the latter
one seems to bring about rather small shifts. As a result, we
feel that a nonmonotonic behaviour of Fy /F with Ny, once
established, would represent a noteworthy finding. We hope
this reasoning explains why we prefer to stay in Eq. (95) with
estimates which obviously are on the conservative side.

5.2.2 Results for the NLO SU (2) LECs

We move on to a discussion of the lattice results for the NLO
LECs 53 and £4. We remind the reader that on the lattice the
former LEC is obtained as a result of the tiny deviation from
linearity seen in M72T versus Bm,,;, whereas the latter LEC is
extracted from the curvature in F; versus Bm,;. The avail-
able determinations are presented in Table 21 and Fig. 13.
Among the Ny = 2 determinations ETM 08, ETM 09C and
Brandt 13 are published prior to the deadline, with a system-
atic uncertainty, and without red tags. Given that the former
two use different approaches, all three determinations enter
our average. The colour coding of the Ny = 2 + 1 results
looks very promising; there is a significant number of lattice
determinations without any red tag. Applying our supersed-
ing rule, MILC 10, NPLQCD 11, Borsanyi 12, BMW 13,
and RBC/UKQCD 14B contribute to the average. Compared
to the previous edition of our review, the last one is a new
addition, and the last but one is included for the first time in
the average. For Ny = 2+ 1+ 1 there is only the single work
ETM 10.

In analogy to our processing of the LECs at LO, we use
these determinations as the basis of our estimate (as opposed
to average) of the NLO quantities

Nyp=2: I3 =3.41(82) Refs. [36,37,41],
Nf=241: 03=281(64) Refs.[10,29,34,35,40],
(96)
Nyp=2: Iy =4.51(26) Refs. [36,37,41],
Nf=2+41: 04=4.1045 Refs.[10,29,34,35,40],

C0)

where the errors include both statistical and systematic
uncertainties. These numbers are obtained through the well-

@ Springer

defined procedure described next to Eq. (94). Again we ask
the reader to cite the appropriate set of references as indi-
cated in Eq. (96) or Eq. (97) when using these numbers. For
Ny =2+ 1+ 1 once again Ref. [39] is the single reference
available; see Table 21 for the numerical values.

We remark that our preprocessing procedure’’ sym-
metrizes the asymmetric error of ETM 09C with a slight
adjustment of the central value. Regarding the difference
between the estimates as given in Egs. (96) and (97) and
the result of the standard averaging procedure we add that
the latter would yield the overall uncertainties 25 and 12 for
173, and the overall uncertainties 17 and 5 for £4. In all cases
the central value would be unchanged. Especially for £4 such
numbers would suggest a clear difference between the value
with Ny = 2 dynamical flavours and the one at Ny =2+ 1.
Similarly to what happened with F; /F, the single determi-
nation with Ny = 2 + 1 + 1 is more on the Ny = 2 side
which, if confirmed, would suggest a nonmonotonicity of
a yPT LEC with Ny. Again we think that currently such
a conclusion would be premature, and this is why we give
preference to the estimates quoted in Eqgs. (96) and (97).

From a more phenomenological point of view there is a
notable difference between 573 and 4 in Fig. 13. For 24 the
precision of the phenomenological determination achieved
in Colangelo 01 [261] represents a significant improvement
compared to Gasser 84 [131]. Picking any Ny, the lattice
estimate of £4 is consistent with both of the phenomenolog-
ical values and comes with an error-bar which is roughly
comparable to or somewhat larger than the one in Colangelo
01 [261]. By contrast, for 573 the error of an individual lat-
tice computation is usually much smaller than the error of
the estimate given in Gasser 84 [131], and even our conser-
vative estimates (96) have uncertainties which represent a
significant improvement on the error-bar of Gasser 84 [131].
Evidently, our hope is that future determinations of 673, 574,
with Ny =2, Ny =2+1and Ny =241+ 1, will allow us
to further shrink our error-bars in a future edition of FLAG.

We finish with a discussion of the lattice results for Z¢
and £;—¢>. The LEC 476 determines the leading contribution
in the chiral expansion of the pion vector charge radius; see
Eq. (85). Hence from a lattice study of the vector form factor
of the pion with several M, one may extract the radius (rz)’(, ,
the curvature cy (both at the physical-pion-mass point) and
the LEC £¢ in one go. Similarly, the leading contribution in
the chiral expansion of the scalar radius of the pion deter-

30 There are two naive procedures to symmetrize an asymmetric sys-
tematic error: (i) keep the central value untouched and enlarge the
smaller error, (ii) shift the central value by half of the difference between
the two original errors and enlarge/shrink both errors by the same
amount. Our procedure (iii) is to average the results of (i) and (ii). In
other words a result c(s)(f’Z) with £ > u is changed into ¢ + (u — £)/4
with statistical error s and a symmetric systematic error (1 + 3¢)/4.
The case £ < u is handled accordingly.
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mines £4; see Eq. (85). This LEC is also present in the pion-
mass dependence of F, as we have seen. The difference
01—0s, finally, may be obtained from the momentum depen-
dence of the vector and scalar pion form factors, based on
the two-loop formulae of Ref. [264]. The top part of Table 22
collects the results obtained from the vector form factor of
the pion (charge radius, curvature and £¢). Regarding this
low-energy constant two Ny = 2 calculations are published
works without a red tag; we thus arrive at the average (actu-
ally the first one in the LEC section)

Ny=2: l6=15.1(1.2) Refs. [37,41], (98)
which is represented as a grey band in the last panel of Fig. 13.
Here we ask the reader to cite Refs. [37,41] when using this
number.

The experimental information concerning the charge
radius is excellent and the curvature is also known very accu-
rately, based on eTe™ data and dispersion theory. The vec-
tor form factor calculations thus present an excellent testing
ground for the lattice methodology. The first data column of
Table 22 shows that most of the available lattice results pass
the test. There is, however, one worrisome point. For 576 the
agreement seems less convincing than for the charge radius,
even though the two quantities are closely related. In partic-
ular the Z¢ value of J LQCD 14 [360] seems inconsistent with
the phenomenological determinations of Refs. [131,264],
even though its value for (rz)"; is consistent. So far we have
no explanation (other than observing that lattice computa-
tions which disagree with the phenomenological determina-
tion of £ tend to have red tags), but we urge the groups
to pay special attention to this point. Similarly, the bottom
part of Table 22 collects the results obtained for the scalar
form factor of the pion and the combination £1—15 that is
extracted from it. A new feature is that the (yet unpublished)
paper of Ref. [336] gives both the (flavour) octet and the sin-
glet parts in SU (3), finding (r2)7ST’0Ctet = 0.431(38)(46) and
<r2>7ST,singlet = 0.506(38)(53). For reasons of backward com-
patibility they also give (r2)7§ q defined with a uu + dd den-
sity, and this number is shown in Table 22. Last but not least

they find the ordering (r*)T . = < (r*)T or < %0 <
<r2>7§,singlet [336]'

5.2.3 Epilogue

In this subsection there are several quantities for which only
one qualifying (“all-green”) determination is available for a
given SU (2) LEC. Obviously the phenomenologically ori-
ented reader is encouraged to use such a value (as provided
in our tables) and to cite the original work. We hope that the
lattice community will come up with further computations,
in particular for Ny = 2+ 1 + 1, such that a fair comparison
of different works is possible at any Ny, and eventually a

statement can be made about the presence or absence of an
Ny-dependence of SU (2) LECs.

What can be learned about the convergence pattern of
SU (2) xPT from varying the fit ranges (in m,4) of the pion
mass and decay constant (i.e. the quantities from which £3, £4
are derived) is discussed in Ref.[365], where also the use-
fulness of comparing results from the x and the £ expansion
(with material taken from Ref. [35]) is emphasized.

Perhaps the most important physics result of this subsec-
tion is that the lattice simulations confirm the approximate
validity of the Gell-Mann—Oakes—Renner formula and show
that the square of the pion mass indeed grows in propor-
tion to m, 4. The formula represents the leading term of the
chiral series and necessarily receives corrections from higher
orders. At first nonleading order, the correction is determined
by the effective coupling constant £3. The results collected in
Table 21 and in the top panel of Fig. 13 show that £3 is now
known quite well. They corroborate the conclusion drawn
already in Ref.[366]: the lattice confirms the estimate of 03
derived in Ref. [131]. In the graph of M,2, versus my, the
values found on the lattice for £3 correspond to remarkably
little curvature: the Gell-Mann—Oakes—Renner formula rep-
resents a reasonable first approximation out to values of m,,4
that exceed the physical value by an order of magnitude.

As emphasized by Stern et al. [367-369], the analysis in
the framework of x PT is coherent only if (i) the leading term
in the chiral expansion of M2 dominates over the remainder
and (ii) the ratio mg/myq is close to the value 25.6, which
follows from Weinberg’s leading-order formulae. In order to
investigate the possibility that one or both of these conditions
might fail, the authors proposed a more general framework,
referred to as “generalized x PT”, which includes xPT as a
special case. The results found on the lattice demonstrate that
QCD does satisfy both of the above conditions —in the context
of QCD, the proposed generalization of the effective theory
does not appear to be needed. There is a modified version,
however, referred to as “re-summed xPT” [370], which is
motivated by the possibility that the Zweig-rule violating
couplings L4 and L¢ might be larger than expected. The
available lattice data do not support this possibility, but they
do not rule it out either (see Sect. 5.3 for details).

5.3 Extraction of SU (3) low-energy constants

To date, there are three comprehensive SU (3) papers with
results based on lattice QCD with Ny =2 + 1 dynamical
flavours [89,93,145], and one more with results based on
Ny =2+ 1+ 1 dynamical flavours [26]. It is an open issue
whether the data collected at m ~ msphys allow for an unam-
biguous determination of SU (3) low-energy constants (cf.
the discussion in Ref. [145]). To make definite statements
one needs data at considerably smaller m;, and so far only
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Table 23 Lattice results for the low-energy constants Fy, By (in MeV)
and ¥y = FOZBO, which specify the effective SU(3) Lagrangian at
leading order. The ratios F/Fy, B/By, ¥ /X0, which compare these
with their SU (2) counterparts, indicate the strength of the Zweig-rule

violations in these quantities (in the large- N, limit, they tend to unity).
Numbers in slanted fonts are calculated by us, from the information
given in the references

Collaboration Refs. Ny Publication Chiral Continuum Finite Fy F/Fy B/By
status extrapolation  extrapolation  volume

JLQCD/TWQCD 10A [338] 3 A u u u 71(3)(8)
MILC 10 [29] 241 C @) * * 80.3(2.5)(5.4)
MILC 09A 6] 2+1 C o) * * 78.3(1.4)(2.9) 1.104(3)(41) 1.21(4)(jg)
MILC 09 [89] 2+1 A o) * * LI5G)(T)) 115016)(H9)
PACS-CS 08 93] 2+1 A * u u 83.8(6.4) 1.078(44) 1.089(15)
RBC/UKQCD 08 [145] 2+1 A ¢) u ©) 66.1(5.2) 1.229(59) 1.03(05)
Collaboration Refs. Ny  Publication  Chiral Continuum  Finite Renormalization Z(l)/ } %/%o

status extrapolation extrapolation volume
JLQCD/TWQCD 10A [338] 3 A u ] ] * 214(6)(24) 1.31(13)(52)
MILC 09A 61 2+4+1C O * * * 245(5)(4)(4)  1.48(9)(8)(10)
MILC 09 (891 241 A o * * * 2420)(FH)@ 1.5207(F%)
PACS-CS 08 [93] 2+1 A * u ] u 290(15) 1.245(10)
RBC/UKQCD 08 [145] 2+1 A o) u @) * 1.55(21)

MILC has some [89]. We are aware of a few papers with a
result on one SU (3) low-energy constant each which we list
for completeness. Some particulars of the computations are
listed in Table 23.

Results for the SU(3) low-energy constants of leading
order are found in Table 23 and analogous results for some
of the effective coupling constants that enter the chiral SU (3)
Lagrangian at NLO are collected in Table 24. From PACS-CS
[93] only those results are quoted which have been corrected
for finite-size effects (misleadingly labelled “w/FSE” in their
tables). For staggered data our colour-coding rule states that
M, is to be understood as MRMS, The rating of Refs. [29,89]
is based on the information regarding the RMS masses given
in Ref. [6]. Finally, Refs. [371,372] are “hybrids” in the sense
that they combine lattice data and experimental information.

A graphical summary of the lattice results for the cou-
pling constants L4, Ls, Lg and Lg, which determine the
masses and the decay constants of the pions and kaons at
NLO of the chiral SU (3) expansion, is displayed in Fig. 14,
along with the two phenomenological determinations quoted
in the above tables. The overall consistency seems fairly con-
vincing. In spite of this apparent consistency, there is a point
which needs to be clarified as soon as possible. Some col-
laborations (RBC/UKQCD and PACS-CS) find that they are
having difficulties in fitting their partially quenched data to
the respective formulae for pion masses above ~400 MeV.
Evidently, this indicates that the data are stretching the regime
of validity of these formulae. To date it is, however, not clear
which subset of the data causes the troubles, whether it is
the unitary part extending to too large values of the quark

@ Springer

masses or whether it is due to m"¥¥ /m*? differing too much
from one. In fact, little is known, in the framework of partially
quenched x PT, about the shape of the region of applicability
in the m"¥ versus m*® plane for fixed N r. This point has
also been emphasized in Ref. [326].

To date only the computations MILC 10 [29] (as an obvi-
ous update of MILC 09 and MILC 09A) and HPQCD 13A
[26] are free of red tags. Since they use different Ny (in the
former case Ny = 2+1, in the latter case Ny = 2+1+1) we
stay away from averaging them. Hence the situation remains
unsatisfactory in the sense that for each Ny only a single
determination of high standing is available. Accordingly, for
the phenomenologically oriented reader there is no alterna-
tive to using the results of MILC 10 [29] for Ny = 2+ 1 and
HPQCD 13A [26] for Ny =2+ 1+ 1, as given in Table 24.

5.3.1 Epilogue

In this subsection we find ourselves again in the unpleasant
situation that only one qualifying (“all-green”) determination
is available (at a given Ny) for several LECs in the SU(3)
framework, both at LO and at NLO. Obviously the phe-
nomenologically oriented reader is encouraged to use such a
value (as provided in our tables) and to cite the original work.
Again our hope is that further computations would become
available in forthcoming years, such that a fair comparison
of different works will become possible both at Ny =2 + 1
and Ny =2+ 1+ 1.

In the large- N, limit, the Zweig rule becomes exact, but
the quarks have N, = 3. The work done on the lattice is ide-
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ally suited to confirm or disprove the approximate validity
of this rule for QCD. Two of the coupling constants entering
the effective SU (3) Lagrangian at NLO disappear when N,
is sent to infinity: L4 and Le. The upper part of Table 24 and
the left panels of Fig. 14 show that the lattice results for these
quantities are in good agreement. At the scale u = My, L4
and L¢ are consistent with zero, indicating that these con-
stants do approximately obey the Zweig rule. As mentioned
above, the ratios F/ Fy, B/ By and X/ X also test the validity
of this rule. Their expansion in powers of m starts with unity
and the contributions of first order in m are determined by the
constants L4 and Le, but they also contain terms of higher
order. Apart from measuring the Zweig-rule violations, an
accurate determination of these ratios will thus also allow
us to determine the range of m, where the first few terms of
the expansion represent an adequate approximation. Unfortu-
nately, at present, the uncertainties in the lattice data on these
ratios are too large to draw conclusions, both concerning the
relative size of the subsequent terms in the chiral series and
concerning the magnitude of the Zweig-rule violations. The
data seem to confirm the paramagnetic inequalities [369],
which require F/Fy > 1, ¥/%p > 1, and it appears that
the ratio B/ By is also larger than unity, but the numerical
results need to be improved before further conclusions can
be drawn.

The matching formulae in Ref. [129] can be used to cal-
culate the SU (2) couplings /; from the SU (3) couplings L j
Results obtained in this way are included in Table 21, namely
the entries explicitly labelled “SU (3)-fit” as well as MILC
10. Within the still rather large errors, the converted LECs
from the SU(3) fits agree with those directly determined
within SU (2) xPT. We plead with every collaboration per-
forming Ny = 241 simulations to also directly analyse their
data in the SU (2) framework. In practice, lattice simulations
are performed at values of m close to the physical value and
the results are then corrected for the difference of m from
its physical value. If simulations with more than one value of
myg have been performed, this can be done by interpolation.
Alternatively one can use the technique of reweighting (for
areview see e.g. Ref. [377]) to shift m to its physical value.

6 Kaon mixing

The mixing of neutral pseudoscalar mesons plays an impor-
tant role in the understanding of the physics of CP violation.
In this section we discuss K °— K oscillations, which probe
the physics of indirect CP violation. Extensive reviews on
the subject can be found in Refs. [378-380]. For the most
part we shall focus on kaon mixing in the SM. The case
of Beyond-the-Standard-Model (BSM) contributions is dis-
cussed in Sect. 6.3.

@ Springer

6.1 Indirect CP violation and €g in the SM

Indirect CP violation arises in K; — m transitions through
the decay of the CP = 41 component of K into two pions
(which are also in a CP = +1 state). Its measure is defined
as

_ A[K — (7m)1=0]
AlKs — (7)1=0]"

€K 99)

with the final state having total isospin zero. The parameter
€ may also be expressed in terms of K°— K oscillations. In
particular, to lowest order in the electroweak theory, the con-
tribution to these oscillations arises from so-called box dia-
grams, in which two W bosons and two “up-type” quarks (i.e.
up, charm, top) are exchanged between the constituent down
and strange quarks of the K mesons. The loop integration of
the box diagrams can be performed exactly. In the limit of
vanishing external momenta and external quark masses, the

result can be identified with an effective four-fermion inter-
action, expressed in terms of the “effective Hamiltonian”

2 ag2
AS=2 _ GFMW

AS=2
HER 62 FOOA%=2 thec.

(100)

In this expression, G r is the Fermi coupling, Mw the W-
boson mass, and

0572 = [Syu(1 — y5)d| [y, (1 — y5)d|

= Ovviaa — Ovatav, (101)
is a dimension-six, four-fermion operator. The function Fo
is given by

FO = 22S0(xe) + A7 So(xe) + 2hchs So(xe, X1), (102)

where A, = V)V, and a = c,t denotes a flavour
index. The quantities So(x.), So(x;) and So(x., x;) with
Xe = m% M3, x, = mt2 /M\z,v are the Inami—Lim functions
[381], which express the basic electroweak loop contribu-
tions without QCD corrections. The contribution of the up
quark, which is taken to be massless in this approach, has
been taken into account by imposing the unitarity constraint
Au+Are+ 2 =0.

When strong interactions are included, AS = 2 transitions
can no longer be discussed at the quark level. Instead, the
effective Hamiltonian must be considered between mesonic
initial and final states. Since the strong coupling is large at
typical hadronic scales, the resulting weak matrix element
cannot be calculated in perturbation theory. The operator
product expansion (OPE) does, however, factorize long- and
short-distance effects. For energy scales below the charm
threshold, the K®—K?© transition amplitude of the effective
Hamiltonian can be expressed as
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Fig. 14 Low-energy constants that enter the effective SU (3) Lagrangian at NLO, with scale u = 770 MeV. The grey bands labelled as “FLAG

average” coincide with the results of MILC 10 [29] for Ny = 2 + 1 and with HPQCD 13A [26] for Ny = 2 + 1 + 1, respectively
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G5 M3,
Ten? Y [AZSo(ee)nt + A7 So(x)ma

- —v0/(2Bo)
)2 Yo
+ 20 S0 (ks x)m3] X (gi‘;

g v(g) )
d
XeXp:/o § (ﬁ(g) " Bos

<(K°1QR5 =2 (w)K®) + hec.,

(KO MG =2 IKO) =

(103)

where g(u) and Qﬁszz(,u) are the renormalized gauge cou-
pling and four-fermion operator in some renormalization
scheme. The factors 11, 72 and 13 depend on the renormal-
ized coupling g, evaluated at the various flavour thresholds
my, myp, m. and My, as required by the OPE and RG-running
procedure that separate high- and low-energy contributions.
Explicit expressions can be found in Ref. [379] and ref-
erences therein, except that n; and 73 have been recently
calculated to NNLO in Refs. [382] and [383], respectively.
We follow the same conventions for the RG equations as
in Ref. [379]. Thus the Callan—Symanzik function and the
anomalous dimension y (g) of Q5= are defined by

s QAS 2 Nseo
dln =B, “dnp =—v(@ R, (104)
with perturbative expansions
3 5
B(g) = ﬂo(4 2 — B (4 T (105)
r(g) = VO(f:)z + i (5)4 +

We stress that B, f1 and yp are universal, i.e. scheme inde-
pendent. K%—K© mixing is usually considered in the naive
dimensional regularization (NDR) scheme of MS, and below
we specify the perturbative coefficient y; in that scheme:

11 2
,30—{ N_—Nf}

3
ﬂ1={334N2 Nf(13—3N—%>}, (106)
_6(N—1)
VO—T,

N -1 57 19 4
V]ZW{_ZI-FW_?N—Fg f}.

Note that for QCD the above expressions must be evaluated
for N = 3 colours, while Ny denotes the number of active
quark flavours. As already stated, Eq. (103) is valid at scales
below the charm threshold, after all heavier flavours have
been integrated out, i.e. Ny = 3.

In Eq. (103), the terms proportional to 11, 12 and 13, mul-
tiplied by the contributions containing g(u)?, correspond to
the Wilson coefficient of the OPE, computed in perturba-
tion theory. Its dependence on the renormalization scheme

@ Springer

and scale u is canceled by that of the weak matrix element
(K°1QR5=2(11)|K"). The latter corresponds to the long-
distance effects of the effective Hamiltonian and must be
computed nonperturbatively. For historical, as well as tech-
nical reasons, it is convenient to express it in terms of the B
parameter By, defined as

(IE'O |Q1%S:2(/‘L)| KO)
8 2,2 )
3 fkmi

The four-quark operator Q5=2(1) is renormalized at scale

1 in some regularization scheme, for instance, NDR-MS.

Assuming that Bk (u) and the anomalous dimension y(g)

are both known in that scheme, the renormalization group

independent (RGI) B parameter EK is related to Bg () by
the exact formula

_ — 2
R (g(u)2> v0/(2po)

Bx(n) = (107)

Bx =
K 4

8g(n) v(g) )
dg By 108
Xexp{/o <ﬂ(g)+ﬁg (). (108)

At NLO in perturbation theory the above reduces to

= N2\ Y/ (2Po)
BK _ (g(M) )
47

g | Bivo — Boni
X {1 + ()2 |: 2B ]} B (). (109)

To this order, this is the scale-independent product of all u-
dependent quantities in Eq. (103).

Lattice QCD calculations provide results for Bg (u).
These results are, however, usually obtained in intermediate
schemes other than the continuum MS scheme used to cal-
culate the Wilson coefficients appearing in Eq. (103). Exam-
ples of intermediate schemes are the RI/MOM scheme [384]
(also dubbed the “Rome—Southampton method”) and the
Schrodinger functional (SF) scheme [153]. These schemes
are used as they allow a nonperturbative renormalization of
the four-fermion operator, using an auxiliary lattice simula-
tion. This allows Bk (1) to be calculated with percent-level
accuracy, as described below.

In order to make contact with phenomenology, how-
ever, and in particular to use the results presented above,
one must convert from the intermediate scheme to the MS
scheme or to the RGI quantity EK. This conversion relies
on one or two-loop perturbative matching calculations, the
truncation errors in which are, for many recent calcula-
tions, the dominant source of error in éK (see, for instance,
Refs. [10,31,44,45,385]). While this scheme-conversion
error is not, strictly speaking, an error of the lattice calcu-
lation itself, it must be included in results for the quantities
of phenomenological interest, namely Bg (M_S, 2GeV) and
Bx. We note that this error can be minimized by matching
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between the intermediate scheme and MS at as large a scale 1
as possible (so that the coupling which determines the rate of
convergence is minimized). Recent calculations have pushed
the matching p up to the range 3—3.5 GeV. This is possible
because of the use of nonperturbative RG running determined
on the lattice [10,31,43]. The Schrodinger functional offers
the possibility to run nonperturbatively to scales u© ~ My
where the truncation error can be safely neglected. However,
so far this has been applied only for two flavours of Wilson
quarks [386].

Perturbative truncation errors in Eq. (103) also affect the
Wilson coefficients 11, 72 and n3. It turns out that the largest
uncertainty comes from that in 17 [382]. Although it is now
calculated at NNLO, the series shows poor convergence. The
net effect is that the uncertainty in 7 is larger than that in
present lattice calculations of By .

In the Standard Model, € receives contributions from:
(1) short-distance physics given by AS = 2 “box diagrams”
involving W¥ bosons and u, ¢ and ¢ quarks; (2) long dis-
tance physics from light hadrons contributing to the imag-
inary part of the dispersive amplitude M, used in the two
component description of K°— K mixing; (3) the imaginary
part of the absorptive amplitude "1, from K°—K° mixing;
and (4) Im(Ap)/Re(Ap). The terms in this decomposition
can vary with phase conventions. It is common to represent
contribution 1 by

1 _ _
Im(M;P) = Mlm[(l(omg‘fﬁ—zmo)]* (110)

and contribution 2 by M {“2D . Contribution 3 can be related to
Im(Ap)/Re(Ap), yielding [380,387-390]

ex = exp(ige) sin(pe)
Im(M?P)
x AMg

Im(MLP)
AMg

Im(Ao):| ain

Re(Ao)
for ), real and positive; the phase of €g is given by

Mg
ATg/2

¢ = arctan (112)

The quantities AMg and AT’k are the mass and decay width
differences between long- and short-lived neutral kaons,
while Ay is the amplitude of the kaon decay into an isospin-
0 two pion state. Experimentally known values of the above
quantities are[151]:

lex| = 2.228(11) x 1073,

P = 43.52(5)°,

AMg = 3.4839(59) x 10712 MeV,
ATk =7.3382(33) x 10715 GeV.

(113)

A recent analytical estimate of the contributions of M1L2D
(Refs. [389,390]) leads to

Im(M?PP)
AMg

o [ Im(Ao)i|
ex = explige) sin(de) +p . (114

Re(Ao)

A phenomenological estimate for £ = Im (Ag)/Re (Ag) can
be determined using the experimental value of €’/e [390]

£ =—6.0(1.5) x 107*V2]ex| = —1.9(5) x 107*.  (115)

A more precise result has been obtained from the ratio of
amplitudes Im (A>)/Re (A2) computed in lattice QCD [391]
(where A; denotes the Al = 3/2 decay amplitude for K —
TIT):

£=—-1.6(2) x 107 (116)

The value of & can then be combined with a y PT-based esti-
mate for the long-range contribution, i.e. p = 0.6(3) [390].
Overall, the combination p& leads to a suppression of |ex |
by 6(2)% relative to the naive estimate (i.e. the first term in
square brackets in Eq. (111)), regardless of whether the phe-
nomenological or lattice estimate for & is used. The uncer-
tainty in the suppression factor is dominated by the error on
p. Although this is a small correction, we note that its contri-
bution to the error of €k is larger than that arising from the
value of Bk reported below.

Efforts are under way to compute both the real and the
imaginary long-distance contributions to the K; —Kg mass
difference in lattice QCD [392-394]. However, the results
are not yet precise enough to improve the accuracy in the
determination of the parameter p.

6.2 Lattice computation of B

Lattice calculations of Bk are affected by the same sys-
tematic effects discussed in previous sections. However, the
issue of renormalization merits special attention. The rea-
son is that the multiplicative renormalizability of the rele-
vant operator Q25=2 is lost once the regularized QCD action
ceases to be invariant under chiral transformations. For Wil-
son fermions, Q25=2 mixes with four additional dimension-
six operators, which belong to different representations of the
chiral group, with mixing coefficients that are finite functions
of the gauge coupling. This complicated renormalization pat-
tern was identified as the main source of systematic error
in earlier, mostly quenched calculations of Bx with Wilson
quarks. It can be bypassed via the implementation of specif-
ically designed methods, which are either based on Ward
identities [395] or on a modification of the Wilson quark
action, known as twisted-mass QCD [396,397].

An advantage of staggered fermions is the presence of a
remnant U (1) chiral symmetry. However, at nonvanishing
lattice spacing, the symmetry among the extra unphysical
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degrees of freedom (tastes) is broken. As a result, mixing
with other dimension-six operators cannot be avoided in the
staggered formulation, which complicates the determination
of the B parameter. The effects of the broken taste symme-
try are usually treated via an effective field theory, such as
staggered Chiral Perturbation Theory (S x PT).

Fermionic lattice actions based on the Ginsparg—Wilson
relation [398] are invariant under the chiral group, and hence
four-quark operators such as Q5=2 renormalize multiplica-
tively. However, depending on the particular formulation
of Ginsparg—Wilson fermions, residual chiral symmetry-
breaking effects may be present in actual calculations. For
instance, in the case of domain-wall fermions, the finiteness
of the extra 5th dimension implies that the decoupling of
modes with different chirality is not exact, which produces
a residual nonzero quark mass in the chiral limit. Whether
or not a significant mixing with dimension-six operators is
induced as well must be investigated on a case-by-case basis.

Recent lattice QCD calculations of Bg have been per-
formed with Ny = 2 + 1 + 1 dynamical quarks[42], and
we want to mention a few conceptual issues that arise in this
context. As described in Sect. 6.1, kaon mixing is expressed
in terms of an effective four-quark interaction QAS:Z, con-
sidered below the charm threshold. When the matrix element
of 025=2 is evaluated in a theory that contains a dynami-
cal charm quark, the resulting estimate for Bx must then
be matched to the three-flavour theory which underlies the
effective four-quark interaction.3! In general, the matching
of 2 4 1-flavour QCD with the theory containing 2 4+ 1 + 1
flavours of sea quarks below the charm threshold can be
accomplished by adjusting the coupling and quark masses of
the Ny = 2+ 1 theory so that the two theories match at ener-
gies E < m. The corrections associated with this matching
are of order (E/m.)?, since the subleading operators have
dimension eight [399]. When the kaon mixing amplitude is
considered, the matching also involves the relation between
the relevant box graphs and the effective four-quark opera-
tor. In this case, corrections of order (E/m.)? arise not only
from the charm quarks in the sea, but also from the valence
sector, since the charm quark propagates in the box diagrams.
One expects that the sea-quark effects are subdominant, as
they are suppressed by powers of ;. We note that the origi-
nal derivation of the effective four-quark interaction is valid
up to corrections of order (E/m.)?. While the kaon mixing
amplitudes evaluated inthe Ny = 2+1and 2+ 141 theories
are thus subject to corrections of the same order in E/m as
the derivation of the conventional four-quark interaction, the
general conceptual issue regarding the calculation of Bk in
QCD with Ny = 2 + 1 + 1 flavours should be addressed in
detail in future calculations.

31 We thank Martin Liischer for an interesting discussion of this issue.
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Another issue in this context is how the lattice scale and
the physical values of the quark masses are determined in
the 2 4 1 and 2 + 1 4 1 flavour theories. Here it is impor-
tant to consider in which way the quantities used to fix the
bare parameters are affected by a dynamical charm quark.
Apart from a brief discussion in Ref. [42], these issues have
not been fully worked out in the literature, but these kinds of
mismatches were seen in simple lattice-QCD observables as
quenched calculations gave way to Ny = 2 and then 2 + 1
flavour results. Given the scale of the charm-quark mass rel-
ative to the scale of Bk, we expect these errors to be modest,
but a more quantitative understanding is needed as statistical
errors on Bg are reduced. Within this review we will not
discuss this issue further.

Below we focus on recent results for Bk, obtained for
Ny =2,2+1and 2+ 1+ 1 flavours of dynamical quarks.
A compilation of results is shown in Tables 25 and 26, as
well as Fig. 15. An overview of the quality of systematic
error studies is represented by the colour coded entries in
Tables 25 and 26. In Appendix B.4 we gather the simulation
details and results from different collaborations, the values of
the most relevant lattice parameters, and comparative tables
on the various estimates of systematic errors.

Some of the groups whose results are listed in Tables 25
and 26 do not quote results for both Bx(MS,2GeV) —
which we denote by the shorthand Bx from now on — and
Bk. This concerns Refs. [46,400,401] for Ny = 2, Refs.
[10,31,44,45] for 2+ 1 and Ref. [42] for 2 4+ 1 + 1 flavours.
In these cases we perform the conversion ourselves by eval-
uating the proportionality factor in Eq. (109) at © = 2 GeV,
using the following procedure: For Ny = 2 + 1 we use
the value ay(Myz) = 0.1185 from the 2014 edition of
the PDG[151] and run it across the quark thresholds at
mp = 4.18GeV and m. = 1.275GeV, and then run up in
the three-flavour theory to 4 = 2 GeV. All running is done
using the four-loop RG S-function. The resulting value of
ays (2GeV) = 0.29672 is then used to evaluate EK /By in
perturbation theory at NLO, which gives Bk /Bx = 1.369in
the three-flavour theory. This value of the conversion factor
has also been applied to the result computed in QCD with
Ny =2+ 1+ 1 flavours of dynamical quarks [42].

In two-flavour QCD one can insert the updated nonpertur-
bative estimate for the A parameter by the ALPHA Collab-
oration[12], i.e. A®®Y) = 310(20) MeV, into the NLO expres-
sions for «;. The resulting value of the perturbative conver-
sion factor EK/BK for Ny = 2 is then equal to 1.386. How-
ever, since the running coupling in the MS scheme enters at
several stages in the entire matching and running procedure,
it is difficult to use this estimate of «; consistently without a
partial reanalysis of the data in Refs. [46,400,401]. We have
therefore chosen to apply the conversion factor of 1.369 not
only to results obtained for Ny = 2+1 flavours but also to the
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factors have been evaluated using the RI/MOM technique for
Ny = 4 degenerate Wilson twisted-mass dynamical quark
gauge configurations generated for this purpose. In order to
gain control over discretization effects the evaluation of the
renormalization factors has been carried out following two
different methods. The uncertainty from the RI computation
is estimated at 2%. The conversion to MS produces an addi-
tional 0.6% of systematic error. The overall uncertainty for
the bag parameter is computed from a distribution of several
results, each one of them corresponding to a variant of the
analysis procedure.

The collection of results from the SWME Collaboration
[45,278,385,402—-404] have all been obtained using a mixed
action, i.e. HYP-smeared valence staggered quarks on the
Asqtad improved, rooted staggered MILC ensembles. For
the latest set of results, labelled SWME 14, 15A [45,385] an
extended set of ensembles, comprising finer lattice spacings
and a smallest pion mass of 174 MeV has been added to the
calculation. The final estimate for Bg is obtained from a
combined chiral and continuum extrapolation using the data
computed for the three finest lattice spacings. The dominant
systematic error of 4.4% is associated with the matching fac-
tor between the lattice and MS schemes. It has been computed
in perturbation theory at one loop, and its error was esti-
mated assuming a missing two-loop matching term of size
1 x a(1/a)?, i.e. with no factors of 1/(4) included. Differ-
ent functional forms for the chiral fits contribute another 2%
to the error budget. It should also be noted that Bayesian pri-
ors are used to constrain some of the coefficients in the chiral
ansatz. The total systematic error amounts to about 5%. Com-
pared to the earlier calculations of SWME one finds that “the
overall error is only slightly reduced, but, more importantly,
the methods of estimating errors have been improved” [385].

The RBC and UKQCD Collaborations have updated their
value for Bk using Ny = 2 + 1 flavours of domain-wall
fermions [10]. Previous results came from ensembles at three
different lattice spacings with unitary pion masses in the
range of 170 to 430MeV. The new work adds an ensem-
ble with essentially physical light and strange quark masses
at two of the lattice spacings, along with a third finer lattice
with 370 MeV pion masses. This finer ensemble provides an
additional constraint on continuum extrapolations. Lattice
spacings and quark masses are determined via a combined
continuum and chiral extrapolation to all ensembles. With
lattice spacings at hand, nonperturbative renormalization and
nonperturbative step scaling are used to find the renormal-
ized value of Bk at 3 GeV in the RI-SMOM(y#, y#*) and
RI-SMOM(¢, ¢) schemes for all of the ensembles. These
Bx values for each pion mass are determined for the physi-
cal strange quark mass through valence strange quark inter-
polations/extrapolations and dynamical strange quark mass
reweighting. The light-quark mass dependence is then fit to
SU (2) chiral perturbation theory. Because the new ensem-

bles have quark masses within a few percent of their physi-
cal values, the systematic error related to the extrapolation to
physical values is neglected. The new physical point ensem-
bles have (5.5fm)? volumes, and chiral perturbation theory
fits with and without finite-volume corrections differ by 10—
20% of the statistical errors, so no finite-volume error is
quoted. The fits are dominated by the physical point ensem-
bles, which have small errors. Fits with Bx normalized in
both RI-SMOM schemes are done, and the difference is used
to estimate the systematic error due to nonperturbative renor-
malization.

The Ny = 2 calculation described in ETM 12D [46] uses
a mixed action setup employing twisted-mass dynamical
quarks and Osterwalder—Seiler quarks in the valence, both
tuned to maximal twist. The work of ETM 12D is an update
of the calculation of ETM 10A [401]. The main addition is
the inclusion of a fourth (superfine) lattice spacing (a =~ 0.05
fm). Thus, the computation is performed at four values of the
lattice spacing (a ~ 0.05—0.1 fm), and the lightest simu-
lated value of the light pseudoscalar mass is about 280 MeV.
Final results are obtained with combined chiral and contin-
uum fits. Finite-volume effects are studied at one value of
the lattice spacing (¢ >~ 0.08 fm), and it is found that results
obtained on two lattice volumes, namely for L = 2.2 and
29fm at M, ~ 300MeV are in good agreement within
errors. The four- and two-fermion renormalization factors
needed in the bag parameter evaluation are computed non-
perturbatively using the Rome—Southampton method. The
systematic error due to the matching of RI and MS schemes
is estimated to be 2.5%.

‘We now describe our procedure for obtaining global aver-
ages. The rules of Sect. 2.1 stipulate that results free of red
tags and published in a refereed journal may enter an aver-
age. Papers that at the time of writing are still unpublished
but are obvious updates of earlier published results can also
be taken into account.

There is only one result for Ny = 2 4+ 1 + 1, computed
by the ETM Collaboration [42]. Since it is free of red tags,
it qualifies as the currently best global estimate, i.e.

Ny=2+1+1: Bgx=0.717(18)(16),

BMS(2GeV) = 0.524(13)(12) Ref. [42]. (117)

The bulk of results for the kaon B parameter has been
obtained for Ny = 2 + 1. As in the previous edition of
the FLAG review [2] we include the results from SWME
[45,385,402], despite the fact that nonperturbative informa-
tion on the renormalization factors is not available. Instead,
the matching factor has been determined in perturbation the-
ory at one loop, but with a sufficiently conservative error of
4.4%.

Thus, for Ny = 2 + 1 our global average is based on the
results of BMW 11 [43], Laiho 11 [44], RBC/UKQCD 14B
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[10]and SWME 15A [45]. The last three are the latest updates
from a series of calculations by the same collaborations. Our
procedure is as follows: in a first step statistical and system-
atic errors of each individual result for the RGI B parame-
ter, EK are combined in quadrature. Next, a weighted aver-
age is computed from the set of results. For the final error
estimate we take correlations between different collabora-
tions into account. To this end we note that we consider
the statistical and finite-volume errors of SWME 15A and
Laiho 11 to be correlated, since both groups use the Asqtad
ensembles generated by the MILC Collaboration. Laiho 11
and RBC/UKQCD 14B both use domain-wall quarks in the
valence sector and also employ similar procedures for the
nonperturbative determination of matching factors. Hence,
we treat the quoted renormalization and matching uncertain-
ties by the two groups as correlated. After constructing the
global covariance matrix according to Schmelling [91], we
arrive at

Bx = 0.7625(97) Refs. [10,43-45],
(118)

Nf=2+1:

with x2/d.o. f. = 0.675. After applying the NLO conversion
factor éK / Bgls (2GeV) = 1.369, this translates into

Np=2+1: BYS2GeV) =0.5570(71)Refs. [10,43-45].
(119)

These values and their uncertainties are very close to the
global estimates quoted in the previous edition of the FLAG
review [2]. Note, however, that the statistical errors of
each calculation entering the global average have now been
reduced to a level that makes them statistically incompatible.
It is only because of the relatively large systematic errors
that the weighted average produces a value of O(1) for the
reduced x2.

Passing over to describing the results computed for Ny =
2 flavours, we note that there is only the set of results pub-
lished in ETM 12D [46] and ETM 10A [401] that allow for an
extensive investigation of systematic uncertainties. We iden-
tify the result from ETM 12D [46], which is an update of
ETM 10A, with the currently best global estimate for two-
flavour QCD, i.e.

Ny=2: Bgx=0727(22)(12),
BF(Z GeV) = 0.531(16)(9) Ref. [46].
(120)
The result in the MS scheme has been obtained by applying

the same conversion factor of 1.369 as in the three-flavour
theory.

@ Springer

6.3 Kaon BSM B parameters

We now report on lattice results concerning the matrix
elements of operators that encode the effects of physics
beyond the Standard Model (BSM) to the mixing of neu-
tral kaons. In this theoretical framework both the SM and
the BSM contributions add up to reproduce the experimen-
tally observed value of €x . Since BSM contributions involve
heavy but unobserved particles, it is natural to assume that
they are short-distance dominated. The effective Hamiltonian
for generic AS = 2 processes including BSM contributions
reads

5
Hétsem = »_ Ci(0) Qi (),
i=1

(121)

where Q is the four-quark operator of Eq. (101) that gives
rise to the SM contribution to €g. In the so-called SUSY
basis introduced by Gabbiani et al. [411] the (parity-even)
operators Q», ..., Qs read??

02 = (5(1 — y5)d*) (5 (1 — y5)d").
03 = (5(1 — y5)d®) (5" (1 — y5)d*),
Q4 = (51 = y5)d*) (5 (1 + y5)d"),
0s = (5°(1 — y5)d®) (s°(1 + y5)d“),

where a and b denote colour indices. In analogy to the case

(122)

of Bk one then defines the B parameters of Qj,..., Os
according to
K910; ()| K°
By = — AKIQOIKT)
N; (KO |5ysd| 0)(0 [5ysd| K°)
(123)

The factors {N>, ..., N5} are given by {—5/3,1/3,2,2/3},
and it is understood that B; (1) is specified in some renormal-
ization scheme, such as MS or a variant of the regularization-
independent momentum subtraction (RI-MOM) scheme.

The SUSY basis has been adopted in Refs.[42,46,412].
Alternatively, one can employ the chiral basis of Buras,
Misiak and Urban [413]. The SWME Collaboration prefers
the latter, since the anomalous dimension which enters the
RG running has been calculated to two loops in perturbation
theory [413]. Results obtained in the chiral basis can easily
be converted to the SUSY basis via

B:?USY — % (Sthiral _ 3B§hiral> . (124)
The remaining B parameters are the same in both bases. In the
following we adopt the SUSY basis and drop the superscript.

32 Thanks to QCD parity invariance we can ignore three more

dimension-six operators whose parity conserving parts coincide with the
corresponding parity conserving contributions of the operators Q1, 02

and Q3.
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Older quenched results for the BSM B parameters can be
found in Refs. [414-416]. Recent estimates for B>, ..., Bs
have been reported for QCD with Ny = 2 (ETM 12D [46]),
Ny = 2+ 1 (RBC/UKQCD 12E [412], SWME 13A[402],
SWME 14C[417], SWME15A[45]) and Ny = 2+ 1+ 1
(ETM 15[42]) flavours of dynamical quarks. The main fea-
tures of these calculations are identical to the case of Bk
discussed above. We note, in particular, that SWME per-
form the matching between rooted staggered quarks and
the MS scheme using perturbation theory at one loop,
while RBC/UKQCD and ETMC employ nonperturbative
renormalization for domain-wall and twisted-mass Wilson
quarks, respectively. Control over systematic uncertainties
(chiral and continuum extrapolations, finite-volume effects)
in By, ..., Bsisexpected to be at the same level as for B, as
far as the results by ETM 12D, ETM 15 and SWME 15A are
concerned. The calculation by RBC/UKQCD 12E has been
performed at a single value of the lattice spacing and a mini-
mum pion mass of 290 MeV. Thus, the results do not benefit
from the same improvements regarding control over the chi-
ral and continuum extrapolations as in the case of Bk [10].
Preliminary results from RBC/UKQCD using two values of
the lattice spacing have been reported in Refs. [418] and
[419].

Results for the B parameters Bs, ..., Bs computed with
Ny =2,2+1and 2+ 1+ 1 dynamical quarks are listed and
compared in Table 27 and Fig. 16. In general one finds that the
BSM B parameters computed by different collaborations do
not show the same level of consistency as the SM kaon mixing
parameter By discussed previously. In particular, the results
for B>, B4 and Bs from SWME [45,402,417], obtained using
staggered quarks and employing perturbative matching dif-
fer significantly from those quoted by the ETM[42,46]
and RBC/UKQCD [412] Collaborations, which both deter-
mine the matching factors nonperturbatively. The prelimi-
nary results from the recent update of the RBC/UKQCD cal-
culation described in Ref. [419] provides a hint that the non-
perturbative determination of the matching factors depends
strongly on the details in the implementation of the Rome—
Southampton method. The use of nonexceptional momen-
tum configurations in the calculation of the vertex functions
produces a significant modification of the renormalization
factors, which in turn brings the results from RBC/UKQCD
—in particular the estimates for B4 and Bs — much closer to
the estimates from SWME.

Therefore, insufficient control over the renormalization
and matching procedure appears to be the most likely expla-
nation for the observed deviations. In the absence of fur-
ther investigations that corroborate this conjecture, it is dif-
ficult to quote global estimates for the BSM B parameters
Bs, ..., Bs. However, we observe that for each choice of N
there is only one set of results that meets the required quality
criteria, i.e. ETM 15 [42] for Ny = 2 + 1 + 1, SWME 15A

., Bs in the MS scheme at a reference scale of 3 GeV. Any available information on nonperturbative running is indicated in the column “running”,

Table 27 Results for the BSM B parameters By, . .
with details given at the bottom of the table

By Bs

Bj3

Finite volume Renormalization Running B;

Chiral

Publication Continuum

status

Ny

Refs.

Collaboration

extrapolation

extrapolation

046(D3)  0792)5)  0.78(2)4)  0.49(3)(3)

a

A

2+1+1
241

241

[42]
[402] 241

ETM 15

0.525(1)(23) 0.773(6)(35) 0.981(3)(62) 0.751(7)(68)

0.525(1)(23) 0.774(6)(64) 0.981(3)(61) 0.748(9)(79)

0.549(3)(28) 0.790(30)

0.43(1)(5)

ot

[45]

SWME 15A

ot

C
A
A

[417]

SWME 14C

1.033(6)(46) 0.855(6)(43)

0.69(1)(7)
0.76(2)(2)

ot

SWME 13A*

0.47(1)(6)

0.75(2)(9)
0.78(4)(2)

b
c

2+1
2

RBC/UKQCD 12E [412]

ETM 12D

0.58(2)(2)

0.472)(1)

[46]

a B; are renormalized nonperturbatively at scales 1/a ~ 2.2—3.3 GeV in the Ny = 4 RI/MOM scheme using two different lattice momentum scale intervals, with values around 1/a for the first

and around 3.5 GeV for the second one. The impact of these two ways to the final result is taken into account in the error budget. Conversion to MS is at one loop at 3 GeV

b The B parameters are renormalized nonperturbatively at a scale of 3 GeV

¢ B; are renormalized nonperturbatively at scales 1/a ~ 2—3.7 GeV in the Ny = 2 RI/MOM scheme using two different lattice momentum scale intervals, with values around 1/a for the first and

around 3 GeV for the second one

T The renormalization is performed using perturbation theory at one loop, with a conservative estimate of the uncertainty

 The computation of B4 and Bs has been revised in Refs. [45] and [417]
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Fig. 16 Lattice results for the BSM B parameters defined in the MS
scheme at a reference scale of 3 GeV; see Table 27

[45] for Ny = 2 + 1, and ETM 12D [46] for two-flavour
QCD.

7 D-meson-decay constants and form factors

Leptonic and semileptonic decays of charmed D and Dj
mesons occur via charged W-boson exchange, and they are
sensitive probes of c — d and ¢ — s quark flavour-changing
transitions. Given experimental measurements of the branch-
ing fractions combined with sufficiently precise theoretical
calculations of the hadronic matrix elements, they enable the
determination of the CKM matrix elements |V, 4| and |V, |
(within the Standard Model) and a precise test of the unitarity
of the second row of the CKM matrix. Here we summarize
the status of lattice-QCD calculations of the charmed lep-
tonic decay constants. Significant progress has been made
in charm physics on the lattice in recent years, largely due
to the availability of gauge configurations produced using
highly improved lattice-fermion actions that enable treating
the c-quark with the same action as for the u, d, and s-quarks.

This section updates the corresponding one in the last
FLAG review [2] for results that appeared after Novem-
ber 30, 2013. As already done in Ref. [2], we limit our
review to results based on modern simulations with rea-
sonably light pion masses (below approximately 500 MeV).
This excludes results obtained from the earliest unquenched
simulations, which typically had two flavours in the sea,
and which were limited to heavier pion masses because of
the constraints imposed by the computational resources and
methods available at that time. Recent lattice-QCD averages
for D()-meson-decay constants were also presented by the
Particle Data Group in the review on “Leptonic Decays of

@ Springer

Charged Pseudoscalar Mesons” [184]. The PDG three- and
four-flavour averages for fp, fp,, and their ratio are iden-
tical to those obtained here. This is because both reviews
include the same sets of calculations in the averages, and
make the same assumptions about the correlations between
the calculations.

Following our review of lattice-QCD calculations of Dy)-
meson leptonic decay constants and semileptonic form fac-
tors, we then interpret our results within the context of the
Standard Model. We combine our best-determined values of
the hadronic matrix elements with the most recent experi-
mentally measured branching fractions to obtain | V¢4(s)| and
test the unitarity of the second row of the CKM matrix.

7.1 Leptonic decay constants fp and fp,

In the Standard Model the decay constant fp, of a charged
pseudoscalar D or Dy meson is related to the branching ratio
for leptonic decays mediated by a W boson through the for-
mula

2 2
GF | ch | TD()
8w

2
mg
x|1— 3 ,
"D

where V.4 (V,s) is the appropriate CKM matrix element for
a D (D) meson. The branching fractions have been exper-
imentally measured by CLEO, Belle, Babar and BES with
a precision around 4-5% for both the D and the Ds-meson
decay modes [184]. When combined with lattice results for
the decay constants, they allow for determinations of |V |
and |Vq|.

In lattice-QCD calculations the decay constants fp,,, are
extracted from Euclidean matrix elements of the axial current

(01AL |Dy(p)) = ifp, Pp,-

2

B(Dsy — Lvg) = fgmmlmD(s)

(125)

(126)

withg = d, s and Affq = cyuysq-Resultsfor Ny =2, 241
and 2+ 1 + 1 dynamical flavours are summarized in Table 28
and Fig. 17. Since the publication of the last FLAG review,
a handful of results for fp and fp, have appeared, which
we are going to briefly describe here. We consider isospin-
averaged quantities, although in a few cases results for fp+
are quoted (FNAL/MILC 11 and FNAL/MILC 14A, where
the difference between fp and fp+ has been estimated to be
at the 0.5 MeV level).

Two new results have appeared for Ny = 2. The averages,
however, remain unchanged, as we will see in the following.
In Ref. [177], the ALPHA Collaboration directly computed
the matrix element in Eq. (126) (for u = 0and g = d, s) on
two Ny = 2 ensembles of nonperturbatively O(a) improved
Wilson fermions at lattice spacings of 0.065 and 0.048 fm.
Pion masses range between 440 and 190 MeV and the con-
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Fig. 17 Decay constants of the D and D; mesons [values in Table 28] and Eqs. 127-129]. The significance of the colours is explained in Sect. 2.

The black squares and grey bands indicate our averages

dition Lm, > 4 is always met. Chiral/continuum extrapo-
lations are performed adopting either a fit ansatz linear in
m% and a? or, for fp, by using a fit form inspired by par-
tially quenched Heavy Meson Chiral Perturbation Theory
(HMx PT). Together with the scale setting, these extrapola-
tions dominate the final systematic errors. As the scale is set
through another decay constant ( fx ), what is actually com-
puted is fp,, /fk and most of the uncertainty on the renor-
malization constant of the axial current drops out. Since the
results only appeared as a proceeding contribution to the Lat-
tice 2013 conference, they do not enter the final averages.

The TWQCD Collaboration reported in Ref. [424] about
the first computation of the masses and decay constants of
pseudoscalar D(s) mesons in two-flavour lattice QCD with
domain-wall fermions. This is a calculation performed at one
lattice spacing only (a &~ 0.061fm) and in a rather small vol-
ume (243 x 48, with My minL = 1.9). For these reasons the
quoted values of the decay constants do not qualify for the
averages and should be regarded as the result of a pilot study
in view of a longer and on-going effort, in which the remain-
ing systematics will be addressed through computations at
different volumes as well as several lattice spacings.

The Ny = 2 averages therefore coincide with those in
the previous FLAG review and are given by the values in
ETM 13B, namely

fp =208(7) MeV  Ref. [20],
Nyp=2: fp, =250(7) MeV  Ref.[20], (127)
fp,/ fp =1.20(2) Ref. [20].

The situation is quite similar for the Ny = 2 + 1 case,
where only one new result, and for fp, only, appeared in
the last 2 years. The x QCD Collaboration used (valence)

@ Springer

overlap fermions on a sea of 2 + 1 flavours of domain-wall
fermions (corresponding to the gauge configurations gener-
ated by RBC/UKQCD and described in Ref. [144]) to com-
pute the charm- and the strange-quark masses as well as fp..
The decay constant is obtained by combining the determina-
tions from either an exactly conserved PCAC Ward identity
or from the matrix element of the local axial current. The
latter needs to be renormalized and the corresponding renor-
malization constant has been determined nonperturbatively
in Ref. [425]. The computation of fp, has been performed
at two lattice spacings (¢ = 0.113 and a = 0.085 fm) with
the value of the bare charm-quark mass, in lattice units, rang-
ing between 0.3 and 0.75. Pion masses reach down to about
300 MeV and My minL is always larger than 4. The chi-
ral extrapolation and lattice artefacts are responsible for the
largest systematic uncertainties, both being estimated to be
around 1%, on top of a statistical error of about the same
size. The lattice spacing dependence is estimated by chang-
ing the functional form in the chiral/continuum extrapolation
by terms of O(a*). As the authors point out, it will be possi-
ble to make a more accurate assessment of the discretization
errors only once the planned ensembles at a finer lattice spac-
ing are available.

The RBC/UKQCD Collaboration presented intermediate
results for the D and Dy decay constants with 2 + 1 flavours
of Mobius domain-wall fermions in Ref. [426]. Since the
analysis has not been completed yet, no values for fp, are
quoted.

Summarizing the Ny = 2+ 1 case, the average for fp did
not change with respect to the last review and it is obtained
from the HPQCD 12A and the FNAL/MILC 11 determina-
tions, whereas for fp, the value changes in order to include
the result from the x QCD Collaboration (together with the
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values in HPQCD 10A and in FNAL/MILC 11). The updated
estimates then read

fp =209.2(3.3) MeV Refs. [47,48],
fp, = 249.8(2.3) MeV Refs. [17,48,49],

fo./fp = 1.187(12) Refs. [47,48],
(128)

Np=2+41:

where the error on the Ny = 2 + 1 average of fp, has been
rescaled by the factor / x2/d.o.f. = 1.1 (see Sect. 2). In addi-
tion, the statistical errors between the results of FNAL/MILC
and HPQCD have been everywhere treated as 100% corre-
lated since the two collaborations use overlapping sets of
configurations. The same procedure had been used in the
2013 review.

Two new determinations appeared from simulations with
2 4+ 1 + I dynamical flavours. These are FNAL/MILC 14A
and ETM 14E. The FNAL/MILC 14A results in Ref. [14] are
obtained using the HISQ ensembles with up, down, strange
and charm dynamical quarks, generated by the MILC Col-
laboration [334] (see also Ref. [209] for the RMS pion
masses) employing HISQ sea quarks and a one-loop tad-
pole improved Symanzik gauge action. The RHMC as well
as the RHMD algorithms have been used in this case. The
latter is an inexact algorithm, where the accept/reject step at
the end of the molecular-dynamics trajectory is skipped. In
Ref. [334] results for the plaquette, the bare fermion con-
densates and a few meson masses, using both algorithms,
are compared and found to agree within statistical uncer-
tainties. The relative scale is set through Fy,, the decay
constant of a fictitious meson with valence masses of 0.4m;
and physical sea-quark masses. For the absolute scale fr
is used. In FNAL/MILC 14A four different lattice spac-
ings, ranging from 0.15 to 0.06 fm, have been considered
with all quark masses close to their physical values. The
analysis includes additional ensembles with light sea-quark
masses that are heavier than in nature, and where in some
cases the strange sea-quark masses are lighter than in nature.
This allowed one to actually perform two different analy-
ses; the “physical mass analysis” and the “chiral analysis”.
The second analysis uses staggered chiral perturbation theory
for all-staggered heavy-light mesons in order to include the
unphysical-mass ensembles. This results in smaller statistical
errors compared to the “physical mass analysis”. The latter
is used for the central values and the former as a cross-check
and as an ingredient in the systematic error analysis. Chiral
and continuum extrapolation uncertainties are estimated by
considering a total of 114 different fits. The quark-mass and
lattice-spacing dependence of the decay constants are mod-
elled in heavy-meson, rooted, all-staggered chiral perturba-
tion theory (HMrAS xPT) including all NNLO and N3LO
mass-dependent, analytic, terms. Fits differ in the way some

of the LEC’s are fixed, in the number of NNLO parameters
related to discretization effects included, in the use of pri-
ors, in whether the ¢ = 0.15 fm ensembles are included
or not and in the inputs used for the quark masses and the
lattice spacings. The number of parameters ranges between
23 and 28 and the number of data points varies between
314 and 366. The maximum difference between these results
and the central values is taken as an estimate of the chi-
ral/continuum extrapolation errors. The central fit is cho-
sen to give results that are close to the centres of the dis-
tributions, in order to symmetrize the errors. FNAL/MILC
also provides in Ref. [14] an estimate of strong isospin-
breaking effects by computing the D-meson-decay constant
with the mass of the light quark in the valence set to the
physical value of the down-quark mass. The result reads
fo+ — fp = 0.47(1)(t%)) MeV. This effect is of the size
of the quoted errors, and the number in Table 28 indeed cor-
responds to fp+. The final accuracy on the decay constants
is at the level of half-a-percent. It is therefore necessary to
consider the electroweak corrections to the decay rates when
extracting | V4| and |V,s| from leptonic transitions of D)
mesons. The most difficult to quantify is due to electromag-
netic effects that depend on the meson hadronic structure. In
Ref. [14] this contribution to the decay rates is estimated to be
between 1.1% and 2.8%, by considering the corresponding
contribution for w and K decays, as computed in y PT, and
allowing for a factor 2 to 5. After correcting the PDG data
for the decay rates in Ref. [151], by including the effects
mentioned above with their corresponding uncertainty, the
FNAL/MILC Collaboration uses the results for fp and fp,
to produce estimates for |V.4| and | V|, as well as a unitar-
ity test of the second row of the CKM matrix, which yields
1 = |Veal? = |Ves|? — | Vep|? = —0.07(4), indicating a slight
tension with CKM unitarity.>?

The ETM Collaboration has also published results with
2+ 1+ 1 dynamical flavours in Ref. [27] (ETM 14E), updat-
ing the values that appeared in the Lattice 2013 Confer-
ence proceedings [230] (ETM 13F). The configurations have
been generated using the Iwasaki action in the gauge and the
Wilson twisted-mass action for sea quarks. The charm and
strange valence quarks are discretized as Osterwalder—Seiler
fermions [427]. Three different lattice spacings in the range
0.09-0.06 fm have been considered with pion masses as low
as 210 MeV in lattices of linear spatial extent of about 2 to 3
fm (see Ref. [4] for details of the simulations). In ETM 14E
fp, is obtained by extrapolating the ratio fp /mp,, differ-
ently from ETM 13B, where fp ro was extrapolated. The
new choice is found to be affected by smaller discretiza-
tion effects. For the chiral/continuum extrapolation terms

33 Notice that the contribution of | V| to the unitarity relation is more

than one order of magnitude below the quoted error, and it can therefore
be neglected.
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linear and quadratic in m; and one term linear in a® are

included in the parameterization. Systematic uncertainties
are assessed by comparing to a linear fit in m; and by tak-
ing the difference with the result at the finest lattice reso-
lution. The decay constant fp is determined by fitting the
double ratio (fp,/fp)/(fx/fx) using continuum HMx PT,
as discretization effects are not visible, within errors, for
that quantity. An alternative fit without chiral logs is used
to estimate the systematic uncertainty associated to the chi-
ral extrapolation. The main systematic uncertainties are due
to the continuum and chiral extrapolations and to the error
on fx/fr, which is also determined in ETM 14E. Using
the experimental averages of fp|V.q4| and fp,|V.s| available
in 2014 from PDG [151], the ETM Collaboration also pro-
vides a unitarity test of the second row of the CKM matrix,
obtaining 1 — |Veq|? — |Ves|> — |Vep|> = —0.08(5), which
is consistent with the estimate from FNAL/MILC 14A and
with the value in the latest PDG report [184], which quotes
—0.063(34) for the same combination of matrix elements.
That indicates a slight tension with three-generation unitar-
ity.

Finally, by combining in a weighted average the FNAL/
MILC 14A and the ETM 14E results, we get the estimates

fp = 212.15(1.45) MeV Refs. [14,27],
Np=2+1+1: fp =248.83(1.27) MeV Refs. [14,27],
fo,/fp = 1.1716(32) Refs. [14,27],

(129)

where the error on the average of fp has been rescaled by the
factor 4/ x2/d.o.f. = 1.3. The PDG [151] produces experi-
mental averages of the decay constants, by combining the
measurements of fp|V.q| and fp, |V.s| with values of | V4|
and | V| obtained by relating them to other CKM elements
(i.e., by assuming unitarity). Given the choices detailed in
Ref. [151], the values read

fpd =203.7(4.8) MeV, f;’f = 257.8(4.1) MeV, (130)

which disagree with the Ny = 2 + 1 + 1 lattice averages in
Eq. (129) at the two-sigma level.

7.2 Semileptonic form factors for D — m{v and
D — Ktv

The form factors for semileptonic D — wfv and D — K{v
decays, when combined with experimental measurements of
the decay widths, enable determinations of the CKM matrix
elements | V4| and |V | via:

@ Springer

dr(D — Ptv) G|V @ —m%)zm

dq2 N 247t3 q4m2D
m2
x 1+2q—g mp(Ep —mp)| f+ (g
3m?
+ gﬁm% —m%)%fa(q%ﬁ} , (131)

where x = d, s is the daughter light quark, P = 7, K is the
daughter light pseudoscalar meson, andg = (pp —pp) is the
momentum of the outgoing lepton pair. The vector and scalar
form factors f (q2) and fp (qz) parameterize the hadronic
matrix element of the heavy-to-light quark flavour-changing
vector current V,, = Xyc:

2 2
my, —m
(P|VuID) = fi(q? (PDM + PPy — qu . ql‘)

2 2
my, —m
+fo(q2)% - (132)
and satisfy the kinematic constraint f4 (0) = fy(0). Because
the contribution to the decay width from the scalar form factor
is proportional to m%, it can be neglected for £ = e, u, and
Eq. (131) simplifies to

dr(b — Ptv) _ Gj
dg? T 247

In practice, most lattice-QCD calculations of D — m{v
and D — K/{v focus on providing the value of the vec-
tor form factor at a single value of the momentum trans-
fer, fi (g®> = 0), which is sufficient to obtain |V,4| and
|Ves|. Because the decay rate cannot be measured directly at
g* = 0, comparison of these lattice-QCD results with experi-
ment requires a slight extrapolation of the experimental mea-
surement. Some lattice-QCD calculations also provide deter-
minations of the D — mfv and D — K/{v form factors over
the full kinematic range 0 < ¢ < q%ax = (mp —mp)>,
thereby allowing a comparison of the shapes of the lattice
simulation and experimental data. This nontrivial test in the
D system provides a strong check of lattice-QCD methods
that are also used in the B-meson system.

Lattice-QCD calculations of the D — nfv and D —
K v form factors typically use the same light-quark and
charm-quark actions as those of the leptonic decay constants
fp and fp, . Therefore many of the same issues arise, e.g.,
chiral extrapolation of the light-quark mass(es) to the phys-
ical point, discretization errors from the charm quark, and
matching the lattice weak operator to the continuum, as dis-
cussed in the previous section. Two strategies have been
adopted to eliminate the need to renormalize the heavy—
light vector current in recent calculations of D — mfv and
D — K{v, both of which can be applied to simulations
in which the same relativistic action is used for the light

5P Ve PP @17 (133)
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(u, d, s) and charm quarks. The first method was proposed
by Bedirevi¢ and Haas in Ref. [428], and introduces double-
ratios of lattice 3-point correlation functions in which the
vector-current renormalization cancels. Discretization errors
in the double ratio are of O ((amp)?) provided that the vector-
current matrix elements are O (a) improved. The vector and
scalar form factors f (¢%) and fo(g?) are obtained by taking
suitable linear combinations of these double ratios. The sec-
ond method was introduced by the HPQCD Collaboration in
Ref. [51]. In this case, the quantity (m.—m,)(P|S|D), where
my and m, are the bare lattice quark masses and § = Xc
is the lattice scalar current, does not get renormalized. The
desired form factor at g> = 0 can be obtained by (i) using
a Ward identity to relate the matrix element of the vector
current to that of the scalar current, and (ii) taking advan-
tage of the kinematic identity f4(0) = fo(0), such that
f+(@* = 0) = (mc —m)(P|S|D)/(m}, — m3p).
Additional complications enter for semileptonic decay
matrix elements due to the nonzero momentum of the out-
going pion or kaon. Both statistical errors and discretiza-
tion errors increase at larger meson momenta, so results for
the lattice form factors are most precise at ¢2,,. However,
because lattice calculations are performed in a finite spatial
volume, the pion or kaon three-momentum can only take
discrete values in units of 2w /L when periodic boundary
conditions are used. For typical box sizes in recent lattice
D- and B-meson form-factor calculations, L ~ 2.5—3 fm;
thus the smallest nonzero momentum in most of these anal-
yses lies in the range pp = |pp| ~ 400—500 MeV. The
largest momentum in lattice heavy-light form-factor calcu-
lations is typically restricted to pp < 4w /L. For D — mlv
and D — K (v, g*> = 0 corresponds to p, ~ 940 MeV and
px ~ 1 GeV, respectively, and the full recoil-momentum
region is within the range of accessible lattice momenta.>*
Therefore the interpolation to g2 = 0 is relatively insensitive
to the fit function used to parameterize the momentum depen-
dence, and the associated systematic uncertainty in f (0) is
small. In contrast, determinations of the form-factor shape
can depend strongly on the parameterization of the momen-
tum dependence, and the systematic uncertainty due to the
choice of model function is often difficult to quantify. This
is becoming relevant for D — 7 ¢v and D — K{v decays
as more collaborations are beginning to present results for
f1 (g% and fo(g?) over the full kinematic range. The param-
eterization of the form-factor shape is even more important
for semileptonic B decays, for which the momentum range
needed to connect to experiment is often far from g2, .

34 This situation differs from that of calculations of the K — mv
form factor, where the physical-pion recoil momenta are smaller than
2r /L. For K — m{v it is now standard to use nonperiodic (“twisted”)
boundary conditions [429,430] to simulate directly at g> = 0; see
Sect. 4.3. Some collaborations have also begun to use twisted boundary
conditions for D decays [431-434].

A class of functions based on general field-theory prop-
erties, known as z-expansions, has been introduced to allow
model-independent parameterizations of the ¢> dependence
of semileptonic form factors over the entire kinematic range
(see, e.g., Refs. [435,436]). The use of such functions is
now standard for the analysis of B — m{v transitions and
the determination of |V,;| [437-440]; we therefore discuss
approaches for parameterizing the ¢> dependence of semilep-
tonic form factors, including z-expansions, in Sect. 8.3. Here
we briefly summarize the aspects most relevant to calcula-
tions of D — mfv and D — K{v. In general, all semilep-
tonic form factors can be expressed as a series expansion
in powers of z times an overall multiplicative function that
accounts for any sub-threshold poles and branch cuts, where
the new variable z is a nonlinear function of ¢2. The series
coefficients a, depend upon the physical process (as well as
the choice of the prefactors), and can only be determined
empirically by fits to lattice or experimental data. Unitar-
ity establishes strict upper bounds on the size of the a,’s,
while guidance from heavy-quark power counting provides
even tighter constraints. Some work now is using a varia-
tion of this approach, commonly referred to as “modified
z-expansion,” which is used to simultaneously extrapolate
their lattice simulation data to the physical light-quark masses
and the continuum limit, and to interpolate/extrapolate their
lattice data in ¢2. More comments on this method are also
provided in Sect. 8.3.

7.2.1 Results for f1+(0)

We now review the status of lattice calculations of the
D — mlv and D — K¢ form factors at g2 = 0. As in the
previous version of this review, although we also describe
on-going calculations of the form-factor shapes, we do not
rate these calculations, since all of them are still unpublished,
except for conference proceedings that provide only partial
results.®

The mostadvanced Ny = 2 lattice-QCD calculation of the
D — wfv and D — K{v form factors is by the ETM Col-
laboration [431]. This still preliminary work uses the twisted-
mass Wilson action for both the light and charm quarks, with
three lattice spacings down to @ =~ 0.068 fm and (charged)
pion masses down to m,; = 270 MeV. The calculation
employs the ratio method of Ref. [428] to avoid the need to
renormalize the vector current, and extrapolates to the physi-
cal light-quark masses using SU (2) heavy-light meson x PT.

35 In Ref. [441], to be discussed below, form factors are indeed com-
puted for several values of g2, and fitted to a Becirevié—Kaidalov param-
eterization (cf. Sect. 8.3.1) to extract their values at q2 = 0. However,
while results for fit parameters are provided, the values of the form
factors at g2 # 0 are not provided, which prevents us from perform-
ing an independent analysis of their shape using model-independent
parameterizations.
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ETM simulate with nonperiodic boundary conditions for the
valence quarks to access arbitrary momentum values over
the full physical ¢ range, and interpolate to ¢g> = 0 using
the Becirevi¢-Kaidalov ansatz [442]. The statistical errors in
f f 7(0) and f. +D K (0) are 9 and 7%, respectively, and lead to
rather large systematic uncertainties in the fits to the light-
quark mass and energy dependence (7 and 5%, respectively).
Another significant source of uncertainty is from discretiza-
tion errors (5 and 3%, respectively). On the finest lattice spac-
ing used in this analysis am, ~ 0.17, so O(am,)?) cutoff
errors are expected to be about 5%. This can be reduced by
including the existing Ny = 2 twisted-mass ensembles with
a ~ 0.051 fm discussed in Ref. [36]. Work is in progress
by the ETM Collaboration also to compute the form fac-
tors f +D T, fOD T and f +D K, fOD K for the whole kinemati-
cally available range on the Ny = 2 + 1 + 1 twisted-mass
Wilson lattices [39]. This calculation will include dynami-
cal charm-quark effects and use three lattice spacings down
to a &~ 0.06 fm. A BCL z-parameterization is being used to
describe the g2 dependence. The latest progress report on this
work, which provides values of the form factors at g> = 0
with statistical errors only, can be found in Ref. [443].

The first published Ny = 2+1 lattice-QCD calculation of
the D — w¢vand D — K/{v form factors is by the Fermilab
Lattice, MILC, and HPQCD Collaborations [441]. (Because
only two of the authors of this work are in HPQCD, and to dis-
tinguish it from other more recent work on the same topic by
HPQCD, we hereafter refer to this work as “FNAL/MILC.”)
This work uses asqtad-improved staggered sea quarks and
light (u, d, s) valence quarks and the Fermilab action for the
charm quarks, with a single lattice spacing of a &~ 0.12 fm. At
this lattice spacing, the staggered taste splittings are still fairly
large, and the minimum RMS pion mass is 510 MeV. This
calculation renormalizes the vector current using a mostly
nonperturbative approach, such that the perturbative trun-
cation error is expected to be negligible compared to other
systematics. The Fermilab Lattice and MILC Collaborations
present results for the D — nfv and D — K{v semilep-
tonic form factors over the full kinematic range, rather than
just at g> = 0. In fact, the publication of this result pre-
dated the precise measurements of the D — K{v decay
width by the FOCUS [444] and Belle experiments [445],
and predicted the shape of fPX (¢?) quite accurately. This
bolsters confidence in calculations of the B-meson semilep-
tonic decay form factors using the same methodology. Work
is in progress [446] to reduce both the statistical and system-
atic errors in f f” (¢%) and f f K(4?) through increasing the
number of configurations analysed, simulating with lighter
pions, and adding lattice spacings as fine as a ~ 0.045 fm. In
parallel, a much more ambitious computation of D — w{v
and D — K/{¢v by FNAL/MILC is now on-going, using
Ny =2+ 1+ 1 MILC HISQ ensembles at four values of the
lattice spacing down to @ = 0.042 fm and pion masses down
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to the physical point. The latest report on this computation,
focusing on the form factors at g> = 0, but without explicit
values of the latter yet, can be found in Ref. [447].

The most precise published calculations of the D —
v [50]and D — K{v [51]form factors are by the HPQCD
Collaboration. These analyses also use the Ny = 2 + 1
asqtad-improved staggered MILC configurations at two lat-
tice spacings a ~ 0.09 and 0.12 fm, but use the HISQ action
for the valence u, d, s, and ¢ quarks. In these mixed-action
calculations, the HISQ valence light-quark masses are tuned
so that the ratio m;/m; is approximately the same as for the
sea quarks; the minimum RMS sea-pion mass is & 390 MeV.
They calculate the form factors at g> = 0 by relating them to
the matrix element of the scalar current, which is not renor-
malized. They use the “modified z-expansion” to simulta-
neously extrapolate to the physical light-quark masses and
continuum and interpolate to q2 = 0, and allow the coef-
ficients of the series expansion to vary with the light- and
charm-quark masses. The form of the light-quark depen-
dence is inspired by x PT, and includes logarithms of the form
m%log(m,zr) as well as polynomials in the valence-, sea-, and
charm-quark masses. Polynomials in £ (k) are also included
to parameterize momentum-dependent discretization errors.
(See Ref. [50] for further technical details.) The number
of terms is increased until the result for fy(0) stabilizes,
such that the quoted fit error for f4(0) includes both statis-
tical uncertainties and those due to most systematics. The
largest uncertainties in these calculations are from statistics
and charm-quark discretization errors.

The HPQCD Collaboration is now extending their work
on D-meson semileptonic form factors to determining their
shape over the full kinematic range [432], and recently
obtained results for the D — K ¢v form factors f (¢2) and
fo (qz) [433]. This analysis uses a subset of the ensembles
included in their earlier work, with two sea-quark masses at
a ~ 0.12 fm and one sea-quark mass at a ~ 0.09 fm, but
with approximately three times more statistics on the coarser
ensembles and ten times more statistics on the finer ensemble.
As above, the scalar current is not renormalized. The spatial
vector-current renormalization factor is obtained by requiring
that f, (0)~H = 1for H = D, Dy, 1y, and 1. The renor-
malization factors for the flavour-diagonal currents agree for
different momenta as well as for charm—charm and strange—
strange external mesons within a few percent, and they are
then used to renormalize the flavour-changing charm—strange
and charm-light currents. The charm—strange temporal vec-
tor current is normalized by matching to the scalar current
fo (Q%ax) Also as above, they simultaneously extrapolate to
the physical light-quark masses and continuum and inter-
polate/extrapolate in g2 using the modified z-expansion. In
this case, however, they only allow for light-quark mass and
lattice-spacing dependence in the series coefficients, but not
for charm-quark mass or kaon energy dependence, and con-
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strain the parameters with Bayesian priors. It is not clear,
however, whether only three sea-quark ensembles at two lat-
tice spacings are sufficient to resolve the quark-mass and
lattice-spacing dependence, even within the context of con-
strained fitting. The quoted error in the zero-recoil form fac-
tor f4(0) = 0.745(11) is significantly smaller than in their
2010 work, but we are unable to understand the sources of
this improvement with the limited information provided in
Ref. [433]. The preprint does not provide an error budget,
nor any information on how the systematic uncertainties are
estimated. Thus we cannot rate this calculation, and do not
include it in the summary table and plot.

Table 29 summarizes the existing Ny = 2 and Ny =
2 + 1 calculations of the D — nfv and D — K{v
semileptonic form factors. The quality of the systematic
error studies is indicated by the symbols. Additional tables
in Appendix B.5.2 provide further details of the simulation
parameters and comparisons of the error estimates. Recall
that only calculations without red tags that are published in
a refereed journal are included in the FLAG average. Of the
calculations described above, only those of HPQCD 10B,11
satisfy all of the quality criteria. Therefore our average of the
D — wfv and D — K{v semileptonic form factors from
Ny =2+ 1 lattice QCD is

FP7(0) = 0.666(29)  Ref. [50],
Ny=2+1:
fPK(©0)=0.747(19)  Ref.[51].
(134)

Figure 18 displays the existing Ny = 2 and Ny = 2 + 1
results for f27(0) and fPX(0); the grey bands show our
average of these quantities. Section 7.3 discusses the impli-
cations of these results for determinations of the CKM matrix
elements |V,4| and | V.| and tests of unitarity of the second
row of the CKM matrix.

7.3 Determinations of | V4| and | V| and test of
second-row CKM unitarity

We now interpret the lattice-QCD results for the D ;) meson
decays as determinations of the CKM matrix elements | V4|
and | V4| in the Standard Model.

For the leptonic decays, we use the latest experimental
averages from Rosner, Stone and Van de Water for the Particle
Data Group [184]

fplVeal = 45.91(1.05) MeV,
I, 1Ves| = 250.9(4.0) MeV. (135)
By combining these with the average values of fp and fp,

from the individual Ny =2, Ny =2+1land Ny =2+ 1+
1 lattice-QCD calculations that satisfy the FLAG criteria,

Table 29 D — mwfv and D — K{v semileptonic form factors at g2 = 0

Faad () FPE )

Heavy-quark
treatment

Finite Renormalization

Chiral

Continuum

Publication

status

Ny

Refs.

Collaboration

volume

extrapolation

extrapolation

0.666(29)

241
241
241
2

[50]

[51]

HPQCD 11

0.747(19)

HPQCD 10B

0.73(3)(7)
0.76(5)(5)

0.64(3)(6)
0.65(6)(6)

[441]
[431]

FNAL/MILC 04
ETM 11B
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Fig. 18 D — 7fv and D — K{v semileptonic form factors at g% =
0. The HPQCD result for f f” (0) is from HPQCD 11, the one for
f f K (0) represents HPQCD 10B (see Table 29)

we obtain the results for the CKM matrix elements |V 4|
and | V| in Table 30. For our preferred values we use the
averaged Ny = 2and Ny = 2 + 1 results for fp and fp, in
Egs. (127), (128) and (129). We obtain

leptonic decays, Ny =2+ 1+ 1 : [Viq| = 0.2164(14)(49),

[Ves| = 1.008(5)(16), (136)
leptonic decays, Ny =2+ 1 : |V,4] = 0.2195(35)(50),

[Ves| = 1.004(9)(16), (137)
leptonic decays, Ny = 2 : |Veq| = 0.2207(74)(50),

[Ves| = 1.004(28)(16), (138)

where the errors shown are from the lattice calculation and
experiment (plus nonlattice theory), respectively. For the

Ny =2+ 1and the Ny = 2+ 1 + 1 determinations, the
uncertainties from the lattice-QCD calculations of the decay
constants are smaller than the experimental uncertainties in
the branching fractions. Although the results for |V | are
slightly larger than one, they are consistent with unity within
errors.

The leptonic determinations of these CKM matrix ele-
ments have uncertainties that are reaching the few-percent
level. However, higher-order electroweak and hadronic cor-
rections to the rate have not been computed for the case of
D) mesons, whereas they have been estimated to be around
1-2% for pion and kaon decays [448]. It is therefore impor-
tant that such theoretical calculations are tackled soon, per-
haps directly on the lattice, as proposed in Ref. [449].

For the semileptonic decays, there is no update on the lat-
tice side from the previous version of our review. As experi-
mental input for the determination of |V,;| we use the latest
experimental averages from the Heavy Flavour Averaging
Group [197]:

P70Vl = 0.1425(19), 2K (0)|V,s| = 0.728(5).
(139)

For each of £27(0) and fPX(0), there is only asingle N =
2+ 1 lattice-QCD calculation that satisfies the FLAG criteria.
Using these results, which are given in Eq. (134), we obtain
our preferred values for | V4| and |V s|:

[Veal = 0.2140(93)(29), | Ves| = 0.975(25)(7),

(semileptonic decays, Ny =2+ 1) (140)

where the errors shown are from the lattice calculation and
experiment (plus nonlattice theory), respectively. These val-
ues are compared with individual leptonic determinations in
Table 30.

Table 31 summarizes the results for | V4| and |V s| from
leptonic and semileptonic decays, and compares them to

Table 30 Determinations of

|Voa| (upper panel) and | Ve | Collaboration Refs. Ny From [Veal or |Veg|

(lower panel) obtained from FNAL/MILC 14A [14] 24141 fp 0.2159(12)(49)

lattice calculations of D-meson

leptonic decay constants and ETM 14E [27] 2+1+1 fp 0.2214(41)(51)

semileptonic form factors. The HPQCD 12A [47] 241 fp 0.2204(36)(50)

errors shown we from the 1a(ttilce HPQCD 11 [50] 241 D — 7ty 0.2140(93)(29)

calculation and experiment (plus

nonlatice theory), respectively FNAL/MILC 11 [48] 2+1 fp 0.2097(108)(48)
ETM 13B [20] 2 fo 0.2207(74)(50)
FNAL/MILC 14A [14] 24+1+1 b, 1.008(5)(16)
ETM 14E [27] 24+1+1 b, 1.015(17)(16)
HPQCD 10A [49] 241 o, 1.012(10)(16)
FNAL/MILC 11 [48] 2+1 b, 0.965(40)(16)
HPQCD 10B [51] 241 D — Kty 0.975(25)(7)
xQCD 14 (17 241 o, 0.988(17)(16)
ETM 13B [20] 2 /b, 1.004(28)(16)
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Table 31 Comparison of

determinations of | V4| and From Refs. Ve Ve
| V5| obtained from lattice _
, : Nyp=2+1+1 fp and fp, 0.2164(51) 1.008(17)
methods with nonlattice
determinations and the Standard Ny=2+1 fp and fp, 0.2195(61) 1.004(18)
Model prediction assuming Np=2 fp and fp, 0.2207(89) 1.004(32)
CKM unitarity Np=2+1 D — mévand D — K{v 0.2140(97) 0.975(26)
PDG Neutrino scattering [151] 0.230(11)
Rosner 15 (for the PDG) CKM unitarity [184] 0.2254(7) 0.9733(2)

Fc2o16 | Vedl Vel
"'_' FLAG average for Ne=2+1+1
+
Cﬂl ETM 14E
o FNAL/MILC 14A
4
- FLAG average for N¢=2+1
& —— HPQCD 11/10B
Il -l HPQCD 12A/10A -
z —— FNAL/MILC 11
xQCD 14
T |—m— FLAG average for N¢=2 -
2| - m— ETM13B -
Q
.Q
] ——e— neutrino scattering
é ) CKM unitarity [ ]
1]
c

0.20 0.22 024 095 1.05

Fig. 19 Comparison of determinations of |V.4| and |V,| obtained
from lattice methods with nonlattice determinations and the Standard
Model prediction based on CKM unitarity. When two references are
listed on a single row, the first corresponds to the lattice input for | V4|
and the second to that for |V, |. The results denoted by squares are from
leptonic decays, while those denoted by triangles are from semileptonic
decays

determinations from neutrino scattering (for | V,4| only) and
CKM unitarity. These results are also plotted in Fig. 19. For
both |V,4| and | V|, the errors in the direct determinations
from leptonic and semileptonic decays are approximately
one order of magnitude larger than the indirect determina-
tion from CKM unitarity. Some tensions at the 2o level are
present between the direct and the indirect estimates, namely
in |Veq| using the Ny = 2 + 1 + 1 lattice result and in | V|
using both the Ny =2 + 1 and the Ny =2 + 1 + 1 values.

In order to provide final estimates, for Ny = 2 and
Ny =2+ 1+ 1 we take the only available results coming
from leptonic decays, while for Ny = 2+ 1 we average lep-
tonic and semileptonic channels. For this purpose, we assume
that the statistical errors are 100% correlated between the
FNAL/MILC and HPQCD computations because they use
the MILC asqtad gauge configurations. We also assume that
the heavy-quark discretization errors are 100% correlated
between the HPQCD calculations of leptonic and semilep-

tonic decays because they use the same charm-quark action,
and that the scale-setting uncertainties are 100% correlated
between the HPQCD results as well. Finally, we include the
100% correlation between the experimental inputs for the
two extractions of | V4 (s)| from leptonic decays. We finally
quote

our average, Ny =2+ 1+ 1:|V| =0.2164(51),

[Ves| = 1.008(17), (141)
our average, Ny =2+ 1: V4| = 0.2190(60),

[Ves| = 0.997(14), (142)
our average, Ny =2 : |Vy| = 0.2207(89),

|Ves| = 1.004(32), (143)

where the errors include both theoretical and experimental
uncertainties.

Using the lattice determinations of |V.4| and |V in
Table 31, we can test the unitarity of the second row of the
CKM matrix. We obtain

Np=241+1: Vel + Vs’ + V> = 1= 0.0603),
(144)
Np=2+1: [Veal? + 1Ves|” + [Vep|> — 1 = 0.04(3),,
(145)
Np=2: [Veal® + 1Ves|” + [Vep|> — 1 = 0.06(7) .
(146)

Again, tensions at the 20 level with CKM unitarity are vis-
ible, as also reported in the PDG review [184], where the
value 0.063(34) is quoted for the quantity in the equations
above. Given the current level of precision, this result does
not depend on |V,;|, which is of O(1072).

8 B-meson-decay constants, mixing parameters and
form factors

The (semi)leptonic decay and mixing processes of By
mesons have been playing a crucial role in flavour physics.
In particular, they contain important information for the
investigation of the b—d unitarity triangle in the Cabibbo—
Kobayashi—-Maskawa (CKM) matrix, and can be ideal probes
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to physics beyond the Standard Model. The charged-current
decay channels Bt — [Tv; and B — 7~ [Ty, where [+
is a charged lepton with v; being the corresponding neu-
trino, are essential in extracting the CKM matrix element
| Viup|. Similarly, the B to D™ semileptonic transitions can be
used to determine |V |. The flavour changing neutral current
(FCNC) processes, such as B — K®¢+¢~ and By —
£+¢~, occur only beyond the tree level in weak interactions
and are suppressed in the Standard Model. Therefore, these
processes can be sensitive to new physics, since heavy parti-
cles can contribute to the loop diagrams. They are also suit-
able channels for the extraction of the CKM matrix elements
involving the top quark which can appear in the loop. For
instance, the neutral By()-meson mixings are FCNC pro-
cesses and are dominated by the one-loop “box” diagrams
containing the top quark and the W bosons. Thus, using
the experimentally measured neutral Bg(s -meson oscillation
frequencies, AMys), and the theoretical calculations for the
relevant hadronic mixing matrix elements, one can obtain
|V;q| and | Vi, in the Standard Model.3°

Accommodating the light quarks and the b quark simul-
taneously in lattice-QCD computations is a challenging
endeavour. To incorporate the pion and the b hadrons with
their physical masses, the simulations have to be performed
using the lattice size L= L/a ~ O(10%), where a is the
lattice spacing and L is the physical (dimensionful) box size.
This is a few times larger than what one can practically afford
in contemporary numerical projects. Therefore, in addition to
employing Chiral Perturbation Theory for the extrapolations
in the light-quark mass, current lattice calculations for quanti-
ties involving b hadrons often make use of effective theories
that allow one to expand in inverse powers of my. In this
regard, two general approaches are widely adopted. On the
one hand, effective field theories such as Heavy-Quark Effec-
tive Theory (HQET) and Nonrelativistic QCD (NRQCD) can
be directly implemented in numerical computations. On the
other hand, a relativistic quark action can be improved d la
Symanzik to suppress cutoff errors, and then re-interpreted
in a manner that is suitable for heavy-quark physics calcula-
tions. This latter strategy is often referred to as the method of
the Relativistic Heavy-Quark Action (RHQA). The utiliza-
tion of such effective theories inevitably introduces system-
atic uncertainties that are not present in light-quark calcula-
tions. These uncertainties can arise from the truncation of the
expansion in constructing the effective theories (as in HQET
and NRQCD), or from more intricate cutoff effects (as in
NRQCD and RQHA). They can also be introduced through

36 The neutral B-meson leptonic decays, By s — wt ™, wererecently
observed at the LHC experiments, and the corresponding branching
fractions can be obtained by combining the data from the CMS and the
LHCb Collaborations [450]. Nevertheless, the errors of these experi-
mental results are currently too large to enable a precise determination
of [Via| and |Vis].
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more complicated renormalization procedures which often
lead to significant systematic effects in matching the lattice
operators to their continuum counterparts. For instance, due
to the use of different actions for the heavy and the light
quarks, it is more difficult to construct absolutely normal-
ized bottom-light currents.

Complementary to the above “effective-theory approach-
es”, another popular method is to simulate the heavy and
the light quarks using the same (normally improved) lattice
action at several values of the heavy-quark mass, mj, with
amy < 1 and my, < myp. This enables one to employ HQET-
inspired relations to extrapolate the computed quantities to
the physical » mass. When combined with results obtained in
the static heavy-quark limit, this approach can be rendered
into an interpolation, instead of extrapolation, in my. The
discretization errors are the main source of the systematic
effects in this method, and very small lattice spacings are
needed to keep such errors under control.

Because of the challenge described above, the efforts that
have been made to obtain reliable, accurate lattice-QCD
results for physics of the b quark have been enormous. These
efforts include significant theoretical progress in formulating
QCD with heavy quarks on the lattice. This aspect is briefly
reviewed in Appendix A.1.3.

In this section, we summarize the results of the B-meson
leptonic decay constants, the neutral B-mixing parameters,
and the semileptonic form factors, from lattice QCD. To be
focussed on the calculations which have strong phenomeno-
logical impact, we limit the review to results based on modern
simulations containing dynamical fermions with reasonably
light pion masses (below approximately 500 MeV). Com-
pared to the progress in the light-quark sector, heavy-quark
physics on the lattice is not as mature. Consequently, fewer
collaborations have finished calculations for these quantities.
In addition, the existing results are often obtained at coarser
lattice spacings and heavier pions. Therefore, for some quan-
tities, there is only a single lattice calculation that satisfies
the criteria to be included in our average. Nevertheless, sev-
eral collaborations are currently pursuing this line of research
with various lattice b-quark actions, finer lattice spacings, and
lighter pions. Thus many new results with controlled errors
are expected to appear in the near future.

Following our review of the B(s)-meson leptonic decay
constants, the neutral B-meson mixing parameters, and
semileptonic form factors, we then interpret our results
within the context of the Standard Model. We combine our
best-determined values of the hadronic matrix elements with
the most recent experimentally measured branching fractions
to obtain | V()¢5 | and compare these results to those obtained
from inclusive semileptonic B decays.

Recent lattice-QCD averages for BT- and B;-meson
decay constants were also presented by the Particle Data
Group (PDG) in Ref. [184]. The PDG three- and four-flavour
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averages for these quantities differ from those quoted here
because the PDG provides the charged-meson-decay con-
stant, fp+, while we present the isospin-averaged meson-
decay constant, f3.

8.1 Leptonic decay constants fp and fp,

The B- and Bs-meson-decay constants are crucial input for
extracting information from leptonic B decays. Charged B
mesons can decay to the lepton-neutrino final state through
the charged-current weak interaction. On the other hand, neu-
tral Bg(s) mesons can decay to a charged-lepton pair via a
flavour-changing neutral current (FCNC) process.

In the Standard Model the decay rate for BY — £t
is described by a formula identical to Eq. (125), with Dy
replaced by B, and the relevant CKM matrix element, V.,
substituted by V5,

I'(B — tvy) = 2
b4

2\ 2

DB G2 2\ Vi Pm? (1 _ m—f) (147
mp
The only charged-current B meson decay that has been
observed so far is BT — t1v,, which has been measured
by the Belle and Babar Collaborations [451,452]. Both col-
laborations have reported results with errors around 20%.
These measurements can be used to determine |V,;| when
combined with lattice-QCD predictions of the corresponding
decay constant.

Neutral B,)-meson decays to a charged-lepton pair,
By(sy — 111~ is a FCNC process, and can only occur at
one-loop in the Standard Model. Hence these processes are
expected to be rare, and they are sensitive to physics beyond
the Standard Model. The corresponding expression for the
branching fraction has the form

B(B, — ¢T¢7)
s, Gre 2k (2,,2SM 4mj
T T+ 1677 m, [, 1VipVigI"miCio - —%,
q
(148)

where the light-quark ¢ = s or d, and the coefficient Cls(l)vI
includes the NLO electroweak and NNLO QCD match-
ing corrections [453]. The factor 1/(1 + y,), with y, =
AT, /2T Bq), accounts for the fact that the measured
branching fraction corresponds to a time-integrated rate of
the oscillating B, system to €€~ [454]. That correction
is particularly important for the B; decays because of the
relatively large y; = 0.06(1) [197,455]. Evidence for both
By — ptu” and By — pTu~ decays was recently
observed by the CMS and the LHCb Collaborations. Com-
bining the data from both collaborations, the branching frac-
tions can be extracted to be [450],

B(Bq — pF ) = (397191071,

B(B; — ptu7) = 287001077, (149)

which are compatible with the Standard Model predictions
at the 2.2¢0 and 1.20 level, respectively.

The decay constants qu (with ¢ = u, d, s) parameterize
the matrix elements of the corresponding axial-vector cur-
rents, AZq = by"y>q, analogously to the definition of Ip,
in Sect. 7.1:

(0lA*|By(p)) = ip}y fB,-

For heavy-light mesons, itis convenient to define and analyse
the quantity

®p, = fp,\/MmB,

which approaches a constant (up to logarithmic corrections)
in the mp — oo limit according to HQET. In the follow-
ing discussion we denote lattice data for ®( f) obtained at
a heavy-quark mass my, and light valence-quark mass m as
D4,¢(fn1), to differentiate them from the corresponding quan-
tities at the physical b and light-quark masses.

The SU (3)-breaking ratio, fp /fp, is of interest. This is
because in lattice-QCD calculations for this quantity, many
systematic effects can be partially reduced. These include
discretization errors, heavy-quark mass tuning effects, and
renormalization/matching errors, amongst others. On the
other hand, this SU (3)-breaking ratio is still sensitive to the
chiral extrapolation. Given that the chiral extrapolation is
under control, one can then adopt f_ /fp as input in extract-
ing phenomenologically interesting quantities. For instance,
this ratio can be used to determine | V;s/ V;4|. In addition, it
often happens to be easier to obtain lattice results for f_with
smaller errors. Therefore, one can combine the Bg-meson
decay constant with the SU (3)-breaking ratio to calculate
fB. Such strategy can lead to better precision in the compu-
tation of the B-meson-decay constant, and has been adopted
by the ETM [20] and the HPQCD Collaborations [55].

It is clear that the decay constants for charged and neu-
tral B mesons play different roles in flavour physics phe-
nomenology. As already mentioned above, the knowledge of
the BT -meson decay constant, fz+,is essential for extracting
| Vup| from leptonic B decays. The neutral B-meson-decay
constants, fgo and fp, are inputs for obtaining |V;4| using
information from the B-meson mixing processes. In view of
this, it is desirable to include isospin-breaking effects in lat-
tice computations for these quantities, and have results for
fp+ and fpo. Nevertheless, as will be discussed in detail in
this section, such effects are small compared to the current
errors of the decay constants calculated using lattice QCD. In
this review, we will then concentrate on the isospin-averaged
result, fp, and the Bg-meson-decay constant, as well as the
SU (3)-breaking ratio, fp, /fp. For the world average for the
lattice determination of fp+ and fp /fp+, werefer the reader

(150)

(151)
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to the latest work from the Particle Data Group (PDG) [184].
Notice that the lattice results used in Ref. [184] and the cur-
rent review are identical. We will discuss this in further detail
at the end of this subsection.

The status of lattice-QCD computations for B-meson-
decay constants and the SU (3)-breaking ratio, using gauge-
field ensembles with light dynamical fermions, is summa-
rized in Tables 32 and 33. Figures 20 and 21 contain the
graphic presentation of the collected results and our averages.
Many results in these tables and plots were already reviewed
in detail in the previous FLAG report [2]. Below we will
describe the new results that appeared after December 2013.
In addition, we will comment on our updated strategies in
performing the averaging.

Only one new Ny = 2 project for computing fp, fp, and
fB,/fB was completed after the publication of the previous
FLAG review. This was carried out by the ALPHA Collabo-
ration [57] (ALPHA 14 in Tables 32 and 33), on the CLS
(Coordinated Lattice Simulations) gauge-field ensembles
which were generated using the Wilson plaquette action and
Ny = 2 nonperturbatively O(a)-improved Wilson fermions
with the DD-HMC [465-467] or the MP-HMC [468] algo-
rithm. There are three choices of lattice spacing, 0.048, 0.065
and 0.075 fm, in these ensembles. At each lattice spacing,
three to four lattice sizes are adopted in the simulations. The
hyper-cubic boxes are of the shape L3 x T, with the temporal
extent 7 = 2L. The smallestbox usedin ALPHA 14is L ~ 2
fm. On each of these lattice sizes, one sea-quark mass is
employed in the computation, and the condition M, L > 4 is
always ensured. This leads to subpercentage-level finite-size
effects [469]. The corresponding lightest pions composed
of the sea quarks for these three values of the lattice spac-
ing are 270, 190, and 280 MeV, respectively. In this work,
the lattice-regularized HQET action and the axial current
to the order of 1/mp, as tuned in Refs. [21,470-473] with
nonperturbative matching to QCD, are used to compute the
heavy-light meson-decay constant. This matching procedure
removes both the logarithmic and the power divergences in
the effective theory regularized on the lattice. The valence
light (up and down) quarks are implemented with the unitary
setup, such that the valence and the sea pions have identical
masses. On the other hand, the valence strange-quark mass is
tuned on the CLS gauge-field ensembles employing the kaon
decay constant [12]. The static-light axial current in this work
is also O(a)-improved to one-loop order. Using the lattice
data, the ground-state contributions to the relevant correlators
are obtained through the method of the generalized eigen-
value problem (GEVP), as detailed in Ref. [474]. With this
GEVP approach in ALPHA 14, the systematic errors arising
from the excited-state contamination are typically less than
one third of the statistical errors in the extracted decay con-
stants. Combined chiral-continuum extrapolations, adopting
the NLO HM x PT predictions, are then performed to deter-

@ Springer

mine the decay constants in the limit of physical-pion mass
and vanishing lattice spacing. The errors of the final results in
ALPHA 14 include statistical uncertainties, the discrepancy
to the static-limit results, the effects of the lattice spacing,
the uncertainties from the HQET parameters in the matching
procedure, and the systematic effects in the chiral extrapola-
tions as estimated by comparing with fits to formulae with-
out the chiral logarithms. Since the fits to the predictions
of finite-volume HM x PT [469] have not been implemented,
systematic effects resulting from the finite-lattice size are not
included in the analysis. Nevertheless, given that the con-
dition ML > 4 is always satisfied in ALPHA 14, these
effects should be at the subpercentage level according to the
one-loop formulae in Ref. [469].

The new result, ALPHA 14, satisfies all our criteria for
being included in the averaging process. Therefore, in the
current edition of the FLAG report, two Ny = 2 calculations
for the B-meson-decay constants and the SU (3)-breaking
ratio contribute to our averages. The other determination of
these quantities (ETM 13B, 13Cin Tables 32, 33) was already
reviewed in detail in the previous FLAG publication. These
two projects are based on completely different lattice simu-
lations, and there is no correlation between the errors quoted
in them. This gives our estimate,

fB =188(7) MeV  Refs. [20,57,58],

fB, =227(7) MeV  Refs. [20,57,58],

fB,/ fB = 1.206(23) Refs. [20,57,58].
(152)

Ny=2:

Two groups of authors (RBC/UKQCD 14 [53] and RBC/
UKQCD 14A [54] in Tables 32, 33) presented their Ny =
2 4 1 results for fp, fp, and fp /fp after the publica-
tion of the previous FLAG report in 2013. Both groups
belong to the RBC/UKQCD Collaboration. They use the
same gauge-field ensembles generated by this collaboration,
with the Iwasaki gauge action and domain-wall dynamical
quarks [144], adopting the “RHMC II”” algorithm [145]. Two
values of the lattice spacing, 0.11 and 0.086 fm, are used in
the simulations, with the corresponding lattice sizes being
243 x 64 and 323 x 64, respectively. This fixes the spatial
size L ~ 2.7 fm in all the datasets. For the coarse lattice,
two choices of the sea-quark masses, with M, =~ 328 and
420 MeV, are implemented in the simulations. On the other
hand, three values of the sea-quark masses (M, = 289, 344,
394 MeV) are used on the fine lattice. This makes certain
that M L > 4 is always satisfied. At each value of the lattice
spacing, only one sea strange-quark mass is implemented,
which is about 10% higher than its physical value.

In RBC/UKQCD 14, the heavy quark is described by the
relativistic lattice action proposed in Ref. [475]. The three
parameters of this relativistic heavy-quark (RHQ) action are
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Fig. 20 Decay constants of the B and By mesons. The values are taken from Table 32 (the fp entry for FNAL/MILC 11 represents fp+). The
significance of the colours is explained in Sect. 2. The black squares and grey bands indicate our averages in Eqs. (152), (153) and (154)
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Fig. 21 Ratio of the decay constants of the B and By mesons. The
values are taken from Table 33 (the fp entry for FNAL/MILC 11 repre-
sents fp+). The significance of the colours is explained in Sect. 2. The
black squares and grey bands indicate our averages in Egs. (152), (153)
and (154)

tuned nonperturbatively in Ref. [476] by requiring that the
spin-averaged Bs-meson mass, MBS = (Mp, + 3Mpx)/4,
and the hyperfine splitting, Ay, = Mpx — Mp, equal the
PDG values, and that the lattice rest and kinetic meson masses
are equal. Statistical uncertainties in the tuned parameters are
propagated to the decay constants via jackknife resampling.
Simulations with different values of the RHQ parameters are
used to estimate the remaining uncertainties in the decay con-
stants from the tuning procedure. Regarding valence light-
and strange-quarks, the authors of RBC/UKQCD 14 adopt
exactly the same domain-wall discretization as that in the sea-

quark sector. For each lattice spacing, such valence domain-
wall fermion propagators at six choices of the mass parameter
are generated. These six values straddle between the lightest
and strange sea-quark masses in the gauge-field ensembles,
and several of them correspond to the unitary points. With the
above lattice setting, the heavy-meson-decay constants are
obtained, employing an axial current that is O(a)-improved
to one-loop level. The renormalization of the axial current
is carried out with a mostly nonperturbative procedure pro-
posedin Ref. [477]. Linear interpolations for the heavy-quark
action parameters, as well as the valence strange-quark mass
are then performed on these heavy-meson-decay constants.
As for the chiral extrapolation for the light-quark mass, it
is implemented together with the continuum extrapolation
(linear in a?) adopting SU (2)-HM x PT at NLO.?’ The decay
constants, fg+ and fpo, are determined by chirally extrap-
olating to the physical u- and d-quark masses, respectively,
and their isospin-averaged counterpart, fp, is not reported.
Notice that only the unitary points in the light-quark mass
are used in the central procedure for the chiral extrapola-
tion. This extrapolation serves as the method to confirm that
finite-size effects are at the subpercentage level by comparing
with the prediction of finite-volume HM x PT [469]. Further-
more, since there is no observed sea-quark dependence in
fB,. it is extrapolated to the continuum limit straight after
the interpolation of the valence strange-quark mass. The

37 The authors of RBC/UKQCD 14 claim that using the NLO SU (3)-
HM x PT extrapolation formulae, acceptable fits for the decay constants
can be found. On the other hand, no reasonable fit for the ratio, fp /f5,
can result from this procedure, because this ratio has smaller statistical
errors. The NLO SU (3)-HM x PT predictions are then used as a means
to estimate the systematic effects arising from the chiral-continuum
extrapolation.
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authors of RBC/UKQCD 14 provided a comprehensive list
of systematic errors in their work. The dominant effect is
from the chiral-continuum extrapolation. This was investi-
gated using several alternative procedures by varying the fit
ansétze and omitting the data points at the heaviest pion mass.
The error arising from the continuum extrapolation of fp_ is
estimated by taking the result on the finer lattice as the alter-
native. One other important source of the systematic errors
is the heavy-quark discretization effect, which is estimated
using a power-counting argument in the improvement pro-
gramme.

In the other newly completed B-meson-decay constants
project, RBC/UKQCD 14A, the static heavy-quark action is
implemented with the HYP smearing [478] that reduces the
power divergences. As for the valence light- and strange-
quarks, the same domain-wall discretization as adopted for
the sea quarks is used. The masses of the valence light
quarks are chosen to be at the unitary points. On the other
hand, for each lattice spacing, two values of the valence
strange-quark mass are utilized, with one of them identical
to that of its sea-quark counterpart, and the other slightly
smaller than the physical strange-quark mass. Employing
the propagators of these valence quarks computed on the
RBC/UKQCD gauge-field ensembles, the relevant matrix
elements of the axial current are calculated to extract the
decay constant. Notice that the source and sink smearings
are applied on the valence light- and strange-quark propaga-
tors, in order to obtain better overlap with the ground state.
The axial current is O(a)-improved to one-loop order, and
its renormalization/matching is performed in a two-step fash-
ion. Namely, it is first matched from the lattice-regularized
HQET to the same effective theory in the continuum at the
inverse lattice spacing, a~!, and then matched to QCD at
the physical b-quark mass, mj. At each of these two steps,
the matching is carried out at one-loop level, and the two-
loop running between a~! and m;, is implemented accord-
ingly. Regarding the extrapolation to the physical light-quark
mass, it is achieved using SU (2)-HMxPT, after linearly
interpolating the decay constants to the physical strange-
quark mass in the valence sector. Unlike RBC/UKQCD 14,
here the isospin-averaged fp, instead of the individual fp+
and fpo, is reported in RBC/UKQCD 14A. This chiral fit
is combined with the continuum extrapolation by includ-
ing a term proportional to ¢ in the HMyPT formulae. In
addition, finite-size effects are also estimated by replacing
the one-loop integrals with sums in HMyPT [469]. The
predominant systematic error in fp and fp is from the
one-loop renormalization/matching procedure. This error is
accounted for by employing a power-counting method, and
is evaluated to be around 6%. Obviously, it is small for
fB,/fB. Another significant systematic effect (about 2—3%
in all relevant quantities) results from the chiral-continuum
extrapolation. This effect is estimated by omitting the chi-
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ral logarithms in the fitting procedure. Finally, based upon a
power-counting argument, the authors of RBC/UKQCD 14A
include a 10% error on fB(S), and a 2.2% error on fp_/fB.,
to account for the use of the static heavy quarks in their
work.

Both new computations from the RBC/UKQCD Collabo-
ration satisfy the criteria for being considered in our averages
of the relevant quantities. Since they are based on exactly
the same gauge-field configurations, we treat the statistical
errors in these two results as 100% correlated. It also has
to be pointed out that only fp+ and fpo are reported in
RBC/UKQCD 14, while we are concentrating on the isospin-
averaged fp in our current work. For this purpose, we regard
both fg+ and fpo in RBC/UKQCD 14 as fp, and completely
correlate all the errors.

In addition to RBC/UKQCD 14 and RBC/UKQCD 14A,
a few other results in Tables 32 and 33 are also in our aver-
aging procedure. These include HPQCD 12, HPQCD 11A,
and FNAL/MILC 11. Notice that there are two results of
fp from HPQCD 12 in Table 32. Both of these were in
the averaging procedure in the last edition of the FLAG
report. However, for our current work, we only include
the one with smaller error. This result is obtained by
taking fp,/fp computed with the NRQCD description
of the b quark in HPQCD 12, and multiplying it by
fB, calculated employing the HISQ discretization for the
heavy quarks in HPQCD 11A. This strategy significantly
reduces the systematic effect arising from the renormal-
ization of the axial current in Eq. (150), as compared
to the “direct” determination of fp using NRQCD heavy
quarks in HPQCD 12. Since the calculations performed in
FNAL/MILC 11, HPQCD 12 and HPQCD 11A all involve
the gauge-field ensembles generated by the MILC Collab-
oration, we treat their statistical errors as 100% correlated.
Following the above discussion, our procedure leads to the
averages,

fp =192.0(4.3) MeV
fB, = 228.4(3.7) MeV
fB,/ fs = 1.201(16)

Refs. [48,53-56],

Refs. [48,53-56],

Refs. [48,53-55].
(153)

Ny=2+1:

There have been no new Ny = 2+ 1+ 1 results for the B-
meson decay constants and the SU (3)-breaking ratio since
the release of the previous FLAG publication.?® Therefore,
our averages remain the same as those in the previous FLAG
report,

38 At the Lattice 2015 conference, the Fermilab Lattice and MILC
Collaborations reported their on-going project for computing the B-
meson-decay constants in Ny = 2 + 1+ 1 QCD [479]. However, no
result has been shown yet.
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f = 186(4) MeV  Refs. [52],

Ny=2+1+1: fB, = 224(5) MeV  Refs. [52],
fB,/fB = 1.205(7) Refs. [52].
(154)

The PDG recently presented their averages for the Ny =
2+ 1and Ny = 2+ 1+ 1 lattice-QCD determinations
of fp+, fp, and fB /fp+ [184].3° The lattice-computation
results used in Ref. [184] are identical to those included in
our current work. Regarding our isospin-averaged fp as the
representative for fg+, then the results from current FLAG
and PDG estimations for these quantities are well compati-
ble. In the PDG work, they “corrected” the isospin-averaged
fB, as reported by various lattice collaborations, using the
Ny = 2+ 1+ 1 strong isospin-breaking effect computed
in HPQCD 13 [52] (see Table 32 in this subsection). This
only accounts for the contribution from the valence-quark
masses. However, since the isospin-breaking effects from the
sea-quark masses appear in the form (m,, (sea) _ E;ea))z, the
valence sector is the predominant source of strong isospin
breaking [480].40

8.2 Neutral B-meson mixing matrix elements

Neutral B-meson mixing is induced in the Standard Model
through one-loop box diagrams to lowest order in the elec-
troweak theory, similar to those for short-distance effects in
neutral kaon mixing. The effective Hamiltonian is given by

ap=2sMm _ GEMg
Hae o0 = 12ﬂ2vv(]?3@f+]??g{)+h.c., (155)
with
Qf = [byu(1 = y5)q] [byu(1 = y5)q]. (156)
where ¢ = d or s. The short-distance function ]-'g in

Eq. (155) is much simpler compared to the kaon mixing case
due to the hierarchy in the CKM matrix elements. Here, only
one term is relevant,

Fg = higSo(x) (157)
where
hiq = Vi Vi, (158)

and where Sp(x;) is an Inami—Lim function with x;, =
m?/MZ,, which describes the basic electroweak loop con-
tributions without QCD [381]. The transition amplitude for
Bf; with ¢ = d or s can be written as

3 We thank Ruth Van de Water for communication and discussion
regarding the comparison of the averaging strategies.

40 We thank Ruth Van de Water and Andre Walker-Loud for helpful
discussion of this point.

2 2
g Soe)mas]

g(M)Z —v0/(2Po) 2w v (2)
X < ) exp f dg (
4r 0 B(g)

x (B Q% (W)|BY) +h.c.,

n0 =2 p0
(BIHGP=21BY) =

+ﬁog>}

(159)

where QqR(pL) is the renormalized four-fermion operator
(usually in the NDR scheme of MS). The running cou-
pling (g), the B-function (B(g)), and the anomalous dimen-
sion of the four-quark operator (y(g)) are defined in
Egs. (104) and (105). The product of p dependent terms
on the second line of Eq. (159) is, of course, u-independent
(up to truncation errors arising from the use of perturbation
theory). The explicit expression for the short-distance QCD
correction factor n;p (calculated to NLO) can be found in
Ref. [379].

For historical reasons the B-meson mixing matrix ele-
ments are often parameterized in terms of bag parameters
defined as

(B |og o] BY)

(160)
$15,mp

Bp, (1) =

The RGI B parameter Bis defined, as in the case of the kaon,
and expressed to two-loop order as

_ — 2
R <g('u)2> v0/(2p0)
By, =

4

gw? | Bivo — Bowi
X {1 + )2 [ 28 ]} Bg,(n),  (161)

with Bo, B1, 0, and y1 defined in Eq. (106). Note, as Eq. (159)
is evaluated above the bottom threshold (m;, < u < m;), the
active number of flavours here is Ny = 5.

Nonzero transition amplitudes result in a mass difference
between the C P eigenstates of the neutral B-meson system.
Writing the mass difference for a Bg meson as Amyg, its
Standard Model prediction is

Gymiyms

672
Experimentally the mass difference is measured as oscillation
frequency of the C P eigenstates. The frequencies are mea-
sured precisely with an error of less than a percent. Many
different experiments have measured Am,, but the current
average [151] is based on measurements from the B-factory
experiments Belle and Babar, and from the LHC experiment
LHCb. For Amy the experimental average is dominated by
results from LHCb [151]. With these experimental results
and lattice-QCD calculations of fB BBq at hand, 1,4 can be
determined. In lattice-QCD calculatlons the flavour SU (3)-
breaking ratio

Amg = L |hig | So(xt)nzgfg Bg,. (162)
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2 —
2 f By B By % a
=" (163) S =eS=
Ti,BBa S S -
d - N (SR SN o\ BN )
& I B B
can be obtained more precisely than the individual B,-mixing < - -0 0
matrix elements because statistical and systematic errors can- S s
. . . . . = o o
cel in part. With this the ratio |V;4/ V;s| can be determined, = S =%
which can be used to constrain the apex of the CKM triangle. = |5 5 g9
Neutral B-meson mixing, being loop-induced in the Stan- = - ===
dard Model is also a sensitive probe of new physics. The , =) N
. . . . 3 = s 2 . ®©
most general AB = 2 effective Hamiltonian that describes & 2 ¥ x =
contributions to B-meson mixing in the Standard Model and e SZ% 2 9g
L. . . ~ a a8« |
beyond is given in terms of five local four-fermion operators:
.|l e -
’ £ gz &
AB=2 _ o = o = °
Heff,BSM - Z ch Qi’ (164) S 29 ©
q=d,s i=1 a o | |

where Q) is defined in Eq. (156) and where

&
~
S .
75
Q} = [b(1 — y5)q] [6(1 — ys)q]. x
Qf = [(1 - y)g" ] [ — y9)q°]. =Rl
04 = [b(1 — y5)q] [6(1 + y5)q]. E
Qf = [0 — y5)g”] [6° (1 + y5)4°]. (165) E "
with the superscripts «, 8 denoting colour indices, which are % g 5
shown only when they are contracted across the two bilin- @E|] O OO0 XX ?
ears. There are three other basis operators in the AB = 2 . =
effective Hamiltonian. When evaluated in QCD, however, 8 § % n
they give identical matrix elements to the ones already listed " £%l o %x ox 0o0 % g
due to parity invariance in QCD. The short-distance Wilson £ - E E ‘i
coefficients C; depend on the underlying theory and can be g % . 2 g
calculated perturbatively. In the Standard Model only matrix & = 2 < ; g
elements of Qtf contribute to Am,, while all operators do ,‘ED - g o “‘i ié
. S| O8]l o0 oo moOooOo|& w=
for example for general SUSY extensions of the Standard g 2 g
Model [411]. The matrix elements or bag parameters for % . § % o _i
the non-SM operators are also useful to estimate the width =| 2< £ é =
difference in the Standard Model, where combinations of % é §‘ ;_" o £ i
matrix elements of Qf, QF, and Qf contribute to AT, at g C5| 0% Om ¥ X 2EES
O(1/my) [481,482]. 5 R
In this section we report on results from lattice-QCD cal- ; é i E § 5
culations for the neutral B-meson mixing parameters Bg s § § 2 é g ﬁ %:
BBS, de,/éBd, fBS\/é»BS and the SU(3)-breaking ratios 2 é Fl<ouv<<<u i; E . §
Bp,/Bp, and & defined in Egs. (160), (161), and (163). The E - = 3 é c ﬁ
results are summarized in Tables 34 and 35 and in Figs. 22 g = SEdd A 2 = e &
and 23. Additional details about the underlying simulations £ =3 ; é a
and systematic error estimates are given in Appendix B.6.2. & y = = f = Z = TT
Some collaborations do not provide the RGI quantities éBq E E g = g = g 5 ﬁ % ; g
but quote instead Bp (u)m’NDR. In such cases we convert f < = -f:f % I
the results to the RGI quantities quoted in Table 34 using ‘E = <:C M - § g ;
Eq. (161). More details of the conversion factors are pro- Z é g Qo S ?-ag 2
vided below in the descriptions of the individual results. We 3| £ X = ca 2 g g én =
do not provide the B-meson matrix elements of the other = ‘E’ o = S 3 s s % § £ &
operators Qy_5 in this report. They have been calculated in £l 3 REZEERIZET 5
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Ref. [20] for the Ny = 2 case and in Ref. [483], which is a
conference proceedings article.

There are no new results for Ny = 2 reported after the
previous FLAG review. However, the paper by the ETM Col-
laboration (ETM 13B) [20], which was a preprint, has been
published in a journal, thus, it is now eligible to enter the
averages. Because this is the only result that passes the qual-

_ ity criteria for Ny = 2, we quote their values as our averages
g L T B lg \g in this version:

1.028(60)(49)

1.06(11)
1.007(15)(14)

Bg,/Bg,
1.05(7)
1.03(2)

16)(14)(22)

§

— e e e

I8\ By, =216(10) MeV,  fp.\/ Bp, =262(10) MeV
Ref. [20], (166)
Ny =2: Bp, = 1.30(6), Bp, = 1.32(5)
NSNS OSSN Ref. [20], (167)
£ =1.225(31), Bg,/Bg, = 1.007(21)
Ref. [20]. (168)

Heavy-quark
treatment

For the Ny = 2 + 1 case there is a new report (RBC/
UKQCD 14A) [54] by the RBC/UKQCD Collaboration on
O O 0O 0O ¥ X the neutral B-meson mixing parameter, using domain-wall
fermions for the light quarks and the static approximation
for the b quark. Used gauge configuration ensembles are
the Ny = 2 + 1 domain-wall fermion and Iwasaki gauge
O«x m O OO actions with two lattice spacings (@ &~ 0.09,0.11 fm) and a
minimum pion mass of about 290 MeV. Two different static-
quark actions, smeared with HYP1 [478] and HYP2 [486] are
used to further constrain the continuum limit. The operators
used are one-loop O(a)-improved with the tadpole improved
ocoomoOO0OO perturbation theory. Two different types of chiral formulae
are adopted for the combined continuum and chiral extrap-
olation: SU(2) NLO HMyPT and first order polynomial
in quark masses with linear O(a?) terms. The central val-
ues are determined as the average of the results with two
O Om O ¥ X different chiral formulae. The systematic error is estimated
as half of the full difference of the two, with an exception
for the quantity only involving B? , where the NLO xPT is
identical to the first order polynomial. In such cases, the fit
excluding the heaviest ud mass point is used for the esti-
mate of the systematic error. The systematic error due to
the static approximation is estimated by the simple power
counting: the size of Agcp/myp, where Agcp = 0.5 GeV
and mp, (i = mp)MS = 4.18 GeV (PDG) leads to 12%. This
is the dominant systematic error for individual fg./Bg or
Bp. Due to this large error, the effect of the inclusion in
the FLAG averages of these quantities is small. The domi-
nant systematic error for the SU (3)-breaking error, instead,
comes from the combined continuum and chiral extrapo-
lation, while the statistical uncertainty is a bit larger than
that.

Due to the addition of this new result, the values for Ny =
2 4+ 1 are now averages from multiple results by multiple
collaborations, rather than being given by the values from

Renormalization/

matching

Finite
volume

extrapolation

Chiral

Continuum
extrapolation

Publication
status

f
2+1
2+1
2+1
2+

Refs
54
0]
464]
9]
20]

—_— e e e e e

Table 35 Results for SU (3)-breaking ratios of neutral B;- and Bg-meson mixing matrix elements and bag parameters

4 Wrong-spin contributions are not included in the rSx PT fits

RBC/UKQCD 10C

HPQCD 09

RBC/UKQCD 14A
ETM 13B

Collaboration
FNAL/MILC 12
ETM 12A, 12B
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mczols\deV Be, fs, V Bs,

] FLAG average for Ne=2+1 |
T ——m——— RBC/UKQCD 14A i
N
[.l_ H—{+— FNAL/MILC11A ——
P4
H--H HPQCD 09 -
HPQCD 06A —{}—
HEH FLAG average Ny =2 HEH
I
Hl ETM 13B i

180 220 260 220 260 300 MeV

FrAG2016] BB Bs,
—— FLAG average for Ny=2+1 |

e

lﬂl }—+—M—+—1— RBC/UKQCD 14A
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HPQCD 06A —{

. FLAG average for N¢ =2

)

Z“- — ETM 13B
—{— ETM 12A,12B
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Fig. 22 Neutral B- and Bs-meson mixing matrix elements and bag parameters [values in Table 34 and Egs. (166), (167), (169), (170)]

FTAG2016| § Bs./Bs,
— - FLAG average for Ne=2+1 —m——
& ———— RBC/UKQCD 14A -
Il
2 ——m— FNAL/MILC 12 l
—_T RBC/UKQCD 10C
HH HPQCD 09 e
- FLAG average for N¢=2
il
= k- ETM 13B
—— ETM 12A,12B

11 12 1.3 14 09 1.0 1.1 12

Fig. 23 The SU(3)-breaking quantities £ and Bp /Bp, [values in
Table 35 and Eqgs. (168) and (171)]

a single computation, as it was done in the previous FLAG
report. Our averages are:

fBo\ B, =219(14) MeV , fp.+/ Bp, =270(16) MeV

Refs. [54,59], (169)
Np=2+1:Bg, =1.2609), Bp, = 1.32(6)

Refs. [54,59], (170)
£ = 1.239(46), B, /Bp, = 1.039(63)

Refs. [54,60]. (171)

Here Egs. (169) and (170) are averages from HPQCD 09 [59]
and RBC/UKQCD 14A [54], while Eq. (171) is from
FNAL/MILC 12 [60] and RBC/UKQCD 14A [54].

@ Springer

Let us note that there has been a major update of these
quantities from FNAL/MILC [487] with Ny = 2 + 1 Asg-
tad MILC ensembles, extended towards physical u-d quark
mass, continuum limit and increased statistics compared to
the ones that entered this review (FNAL/MILC 12 [60],
FNAL/MILC 11A [483]). This result could make significant
improvements to the quantities for Ny = 2 + 1. However,
since the paper appeared after the closing date of this report,
the results are not reviewed or taken into the average here due
to the rule described in the Introduction and Sect. 2.2. The
corresponding averages on our website http://itpwiki.unibe.
ch/flag [3], will instead be updated soon in order to include
the new FNAL/MILC results.

As discussed in detail in the previous FLAG review [2]
HPQCD 09 does not include wrong-spin contributions,
which are staggered fermion artefacts, to the chiral-extra-
polation analysis. It is possible that the effect is significant for
& and Bp, /Bpg,, since the chiral-extrapolation error is a dom-
inant one for these SU (3) flavour breaking ratios. Indeed, a
test done by FNAL/MILC 12 [60] indicates that the omission
of the wrong-spin contribution in the chiral analysis may be a
significant source of error. We therefore took the conservative
choice to exclude & and Bg /Bp, by HPQCD 09 from our
average and we follow the same strategy in this report as well.

We note that the above results are all correlated with each
other: the numbers in Egs. (169) and (170) are dominated by
those from HPQCD 09 [59], while those in Eq. (171) involve
FNAL/MILC 12 [60] —the same Asqtad MILC ensembles are
used in these simulations. The results are also correlated with
the averages obtained in Sect. 8.1 and shown in Eq. (153),
because the calculations of B-meson-decay constants and
mixing quantities are performed on the same (or on similar)
sets of ensembles, and results obtained by a given collabo-
ration use the same actions and setups. These correlations
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must be considered when using our averages as inputs to UT
fits. In the future, as more independent calculations enter the
averages, correlations between the lattice-QCD inputs to the
UT fit will become less significant.

8.3 Semileptonic form factors for B decays to light flavours

The Standard Model differential rate for the decay B() —
P{v involving a quark-level b — u transition is given, at
leading order in the weak interaction, by a formula identical
to the one for D decays in Eq. (131) but with D — B, and
the relevant CKM matrix element | V| — |Vipl:

dC(By) — POv) G2Vl (@7 —m%)zm

dq2 247‘[3 q4m%m

2
m
x (1 + 26]—‘2) my (Ep —mp)| f1(gP)

2
3m;

+ gq_z(’"%m —mp)*| folgH)? (172)

Again, for £ = e, u the contribution from the scalar form
factor f can be neglected, and one has a similar expression
to Eq. (133), which in principle allows for a direct extraction
of |V,»| by matching theoretical predictions to experimental
data. However, while for D (or K') decays the entire physical
range 0 < g2 < g2, canbe covered with moderate momenta
accessible to lattice simulations, in B — wfv decays one
has g2, ~ 26 GeV? and only part of the full kinematic
range is reachable. As a consequence, obtaining |V,;| from
B — m{v is more complicated than obtaining |V,q(s)| from
semileptonic D-meson decays.

In practice, lattice computations are restricted to small val-
ues of the momentum transfer (see Sect. 7.2) where statistical
and momentum-dependent discretization errors can be con-
trolled,*! which in existing calculations roughly cover the
upper third of the kinematically allowed ¢ range. Since, on
the other hand, the decay rate is suppressed by phase space
at large g2, most of the semileptonic B — 7 events are
selected in experiment at lower values of ¢, leading to more
accurate experimental results for the binned differential rate
in that region.*” It is therefore a challenge to find a window
of intermediate values of ¢ at which both the experimental
and the lattice results can be reliably evaluated.

4l The variance of hadron correlation functions at nonzero three-

momentum is dominated at large Euclidean times by zero-momentum
multiparticle states [488]; therefore the noise-to-signal grows more
rapidly than for the vanishing three-momentum case.

42 Upcoming data from Belle II are expected to significantly improve

the precision of experimental results, in particular, for larger values of

q°.

In current practice, the extraction of CKM matrix ele-
ments requires that both experimental and lattice data for the
g* dependence be parameterized by fitting data to a specific
ansatz. Before the generalization of the sophisticated ansitze
that will be discussed below, the most common procedure
to overcome this difficulty involved matching the theoreti-
cal prediction and the experimental result for the integrated
decay rate over some finite interval in qz,

ap = L /q%<dr>d2
~ Wl Jp \ag2) "

1

(173)

In the most recent literature, it has become customary to
perform a joint fit to lattice and experimental results, keeping
the relative normalization |V, |? as a free parameter. In either
case, good control of the systematic uncertainty induced by
the choice of parameterization is crucial to obtain a precise
determination of |V,;|.

8.3.1 Parameterizations of semileptonic form factors

In this section, we discuss the description of the ¢> depen-
dence of form factors, using the vector form factor f, of
B — m{v decays as a benchmark case. Since in this channel
the parameterization of the ¢ dependence is crucial for the
extraction of |V,;| from the existing measurements (involv-
ing decays to light leptons), as explained above, it has been
studied in great detail in the literature. Some comments about
the generalization of the techniques involved will follow.

The vector form factor for B — m{v All form factors are
analytic functions of g2 outside physical poles and inelastic
threshold branch points; in the case of B — m{v, the only
pole expected below the Bm production region, starting at
g*® =ty = (mp + my)?, is the B*. A simple ansatz for the
g* dependence of the B — m£v semileptonic form factors
that incorporates vector-meson dominance is the Beéirevic-
Kaidalov (BK) parameterization [442], which for the vector
form factor reads

£(0)
(1 —q*/m%)(1 —ag?/m%.)

Because the BK ansatz has few free parameters, it has been
used extensively to parameterize the shape of experimen-
tal branching-fraction measurements and theoretical form-
factor calculations. A variant of this parameterization pro-
posed by Ball and Zwicky (BZ) adds extra pole factors to
the expressions in Eq. (174) in order to mimic the effect of
multiparticle states [489]. A similar idea, extending the use
of effective poles also to D — m£v decays, is explored in
Ref. [490]. Finally, yet another variant (RH) has been pro-
posed by Hill in Ref. [491]. Although all of these parame-
terizations capture some known properties of form factors,
they do not manifestly satisfy others. For example, perturba-
tive QCD scaling constrains the behaviour of f, in the deep

fr(g®) = (174)
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Euclidean region [492—494], and angular momentum conser-
vation constrains the asymptotic behaviour near thresholds —
e.g., Im f, (g% ~ (g% — t4)/? (see, e.g., Ref. [436]). Most
importantly, these parameterizations do not allow for an easy
quantification of systematic uncertainties.

A more systematic approach that improves upon the use
of simple models for the ¢ behaviour exploits the positiv-
ity and analyticity properties of 2-point functions of vec-
tor currents to obtain optimal parameterizations of form fac-
tors [435,494-498]. Any form factor f can be shown to admit
a series expansion of the form

fgh = (175)

B(g*)$(q>, 1)

where the squared momentum transfer is replaced by the
variable

o
> an(io) 2(q%, 10",
n=0

2(q% 1) = Vis —q* = iy = t().

Viy —q? + iy —1o
This is a conformal transformation, depending on an arbitrary
real parameter, fo < 7., that maps the ¢ plane cut for > >
t, onto the disk |z(¢?2, 19)| < 1 in the z complex plane. The
function B(g?) is called the Blaschke factor, and contains
poles and cuts below 7. — for instance, in the case of B — 7
decays,

(176)

(g%, 10) — 2(mFu, 10)
1 — 2(q2, t0)z(m%., 1)

B(g%) = (g% my).  (A77)
Finally, the quantity ¢ (g2, o), called the outer function, is
some otherwise arbitrary function that does not introduce
further poles or branch cuts. The crucial property of this series

expansion is that the sum of the squares of the coefficients

> 1 dz

Y oan= 755— 1B@ () f (), (178)
n=0 T <
is a finite quantity. Therefore, by using this parameterization
an absolute bound to the uncertainty induced by truncating
the series can be obtained. The aim in choosing ¢ is to obtain
a bound that is useful in practice, while (ideally) preserving
the correct behaviour of the form factor at high ¢ and around
thresholds.

The simplest form of the bound would correspond to
> a,% = 1. Imposing this bound yields the following
“standard” choice for the outer function

1
b(q*. 10) = \ ) (m-Fm)
32
< (Ve m ot i)
_5 )
I+ —q
(Ve vm)

179)

@ Springer

where 1_ = (mp — my)?, and x,-(0) is the derivative of
the transverse component of the polarization function (i.e.,
the Fourier transform of the vector 2-point function) IT,,, (¢)
at Euclidian momentum Q? = —¢? = 0. It is computed
perturbatively, using operator product expansion techniques,
by relating the B — m{¢v decay amplitude to {v — Brx
inelastic scattering via crossing symmetry and reproducing
the correct value of the inclusive v — X amplitude. We
will refer to the series parameterization with the outer func-
tion in Eq. (179) as Boyd, Grinstein, and Lebed (BGL). The
perturbative and OPE truncations imply that the bound is not
strict, and one should take it as

N
Y4 s,
n=0

where this holds for any choice of N. Since the values of
|z| in the kinematical region of interest are well below 1
for judicious choices of g, this provides a very stringent
bound on systematic uncertainties related to truncation for
N > 2. On the other hand, the outer function in Eq. (179) is
somewhat unwieldy and, more relevantly, spoils the correct
large ¢ behaviour and induces an unphysical singularity at
the Brr threshold.

A simpler choice of outer function has been proposed by
Bourrely, Caprini and Lellouch (BCL) in Ref. [436], which
leads to a parameterization of the form

(180)

N
— > _af(t0)z(q” 10)".

2y _
f+(q7) = i, &

(181)

This satisfies all the basic properties of the form factor, at the
price of changing the expression for the bound to

N

> Bjlo)a] (to)ag (1o) < 1.
J.k=0

(182)

The constants B j; can be computed and shown to be |B ;| <
O(1072) for judicious choices of fy; therefore, one again
finds that truncating at N > 2 provides sufficiently stringent
bounds for the current level of experimental and theoretical
precision. It is actually possible to optimize the properties of
the expansion by taking

fo = fopt = (mp +mzg)(Vmp — an)zv

which for physical values of the masses results in the semilep-
tonic domain being mapped onto the symmetric interval
|z] < 0.279 (where this range differs slightly for the B* and
B decay channels), minimizing the maximum truncation
error. If one also imposes the requirement that the asymp-
totic behaviour Im £, (¢%) ~ (g% — t;)*/? near threshold
is satisfied, then the highest-order coefficient is further con-
strained by

(183)
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N N—-1

Z( D' nat.

Substituting the above constraint on a; into Eq. (181) leads
to the constrained BCL parameterization

(1)

ay = (184)

N—

filg®) = 2/ - Z [Z”

n=0

n-NT" N
S
(185)

which is the standard implementation of the BCL parameter-
ization used in the literature.

Parameterizations of the BGL and BCL kind, to which we
will refer collectively as “z-parameterizations”, have already
been adopted by the BaBar and Belle Collaborations to report
their results, and also by the Heavy Flavour Averaging Group
(HFAG). Some lattice collaborations, such as FNAL/MILC
and ALPHA, have already started to report their results for
form factors in this way. The emerging trend is to use the BCL
parameterization as a standard way of presenting results for
the g2 dependence of semileptonic form factors. Our policy
will be to quote results for z-parameterizations when the latter
are provided in the paper (including the covariance matrix of
the fits); when this is not the case, but the published form fac-
tors include the full correlation matrix for values at different
qz, we will perform our own fit to the constrained BCL ansatz
in Eq. (185); otherwise no fit will be quoted. We, however,
stress the importance of providing, apart from parameteriza-
tion coefficients, values for the form factors themselves (in
the continuum limit and at physical quark masses) for a num-
ber of values of ¢2, so that the results can be independently
parameterized by the readers if so wished.

The scalar form factor for B — v The discussion of scalar
B — 7 form factor is very similar. The main differences are
the absence of a constraint analogue to Eq. (184) and the
choice of the overall pole function. In our fits we adopt the
simple expansion:

N-—1
folg ) =) al "
n=0

We do impose the exact kinematical constraint f4(0) =
fo(0) by expressing the aON_1 coefficient in terms of all

(186)

remaining a;" and ¥ coefficients. This constraint introduces
important correlations between the ;" and a° coefficients;
thus only lattice calculations that present the correlations
between the vector and scalar form factors can be used in
an average that takes into account the constraint at ¢ = 0.
Finally we point out that we do not need to use the same
number of parameters for the vector and scalar form factors.
For instance, with (Nt = 3, NO = 3) we have aafl.z and

ag » whilewith (Nt = 3, N = 4) we have ag | , and a() | ,

as independent fit parameters. In our average we will choose
the combination that optimizes uncertainties.

Extension to other form factors The discussion above largely
extends to form factors for other semileptonic transitions
(e.g., By — K and B(;) — Dg)), and semileptonic D and K
decays). As a matter of fact, after the publication of our previ-
ous review z-parameterizations have been applied in several
such cases, as discussed in the relevant sections.

A general discussion of semileptonic meson decay in this
context can be found, e.g., in Ref. [499]. Extending what
has been discussed above for B — m, the form factors
for a generic H — L transition will display a cut starting
at the production threshold 7, and the optimal value of #
required in z-parameterizations is tg = ¢t (1 — /1 — t_/t})
(where 7+ = (mp £my)?). For unitarity bounds to apply, the
Blaschke factor has to include all sub-threshold poles with
the quantum numbers of the hadronic current — i.e., vec-
tor (resp. scalar) resonances in B scattering for the vector
(resp. scalar) form factors of B — 7, By — K,or Ay, — p;
and vector (resp. scalar) resonances in B.m scattering for
the vector (resp. scalar) form factors of B — D or Ap —
AC.43 Thus, as emphasized above, the control over system-
atic uncertainties brought in by using z-parameterizations
strongly depends on implementation details. This has practi-
cal consequences, in particular, when the resonance spec-
trum in a given channel is not sufficiently well known.
Caveats may also apply for channels where resonances with
a nonnegligible width appear. A further issue is whether
ty = (mpy +mp)? is the proper choice for the start of the cut
in the cases such as By — K{v and B — D{v, where there
are lighter two-particle states that project on the current (B, w
and B,, 7 for the two processes, respectively).** In any such
situation, itis not clear a priori that a given z-parameterization
will satisfy strict bounds, as has been seen, e.g., in deter-
minations of the proton charge radius from electron-proton
scattering [500-502].

The HPQCD Collaboration pioneered a variation on the
z-parameterization approach, which they refer to as a “mod-
ified z-expansion,” that is used to simultaneously extrapolate
their lattice simulation data to the physical light-quark masses
and the continuum limit, and to interpolate/extrapolate their
lattice data in ¢2. This entails allowing the coefficients a,, to
depend on the light-quark masses, squared lattice spacing,
and, in some cases the charm-quark mass and pion or kaon
energy. Because the modified z-expansion is not derived from
an underlying effective field theory, there are several poten-
tial concerns with this approach that have yet to be studied.

43 A more complicated analytic structure may arise in other cases, such
as channels with vector mesons in the final state. We will, however, not
discuss form-factor parameterizations for any such process.

4 We are grateful to G. Herdoiza, R.J. Hill, A. Kronfeld and
A. Szczepaniak for illuminating discussions on this issue.
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The most significant is that there is no theoretical deriva-
tion relating the coefficients of the modified z-expansion to
those of the physical coefficients measured in experiment;
it therefore introduces an unquantified model dependence in
the form-factor shape. As a result, the applicability of uni-
tarity bounds has to be examined carefully. Related to this,
z-parameterization coefficients implicitly depend on quark
masses, and particular care should be taken in the event that
some state can move across the inelastic threshold as quark
masses are changed (which would in turn also affect the form
of the Blaschke factor). Also, the lattice-spacing dependence
of form factors provided by Symanzik effective-theory tech-
niques may not extend trivially to z-parameterization coef-
ficients. The modified z-expansion is now being utilized by
collaborations other than HPQCD and for quantities other
than D — mfv and D — K{v, where it was originally
employed. We advise treating results that utilize the modified
z-expansion to obtain form-factor shapes and CKM matrix
elements with caution, however, since the systematics of this
approach warrant further study.

8.3.2 Form factors for B — mlv

The semileptonic decay processes B — m{v enable deter-
minations of the CKM matrixelement | V,;| within the Stan-
dard Model via Eq. (172). At the time of our previous review,
the only available results for B — m{v form factors came
from the HPQCD [503] and FNAL/MILC [437] Collabora-
tions. Only HPQCD provided results for the scalar form fac-
tor fo. The last two years, however, have witnessed signifi-
cant progress: FNAL/MILC have significantly upgraded their
B — mlv results [504],* while a completely new computa-
tion has been provided by RBC/UKQCD [505]. All the above
computations employ Ny = 2+ 1 dynamical configurations,
and provide values for both form factors f and fy. Finally,
HPQCD have recently published the first Ny =2+ 1+ 1
results for the B — m v scalar form factor, working at zero
recoil and pion masses down to the physical value [506];
this adds to previous reports on on-going work to upgrade
their 2006 computation [507,508]. Since the latter result has
no immediate impact on current | V,,;| determinations, which
come from the vector-form-factor-dominated decay channels
into light leptons, we will from now on concentrate on the
Ny =2+ 1 determinations of the g? dependence of B — 7
form factors.

Both the HPQCD and the FNAL/MILC computations
of B — mfv amplitudes use ensembles of gauge con-
figurations with Ny = 2 + 1 flavours of rooted stag-
gered quarks produced by the MILC Collaboration; how-
ever, the latest FNAL/MILC work makes a much more

45 Since the new FNAL/MILC results supersede Ref. [437], we will
not discuss the latter work in the present version of the review.
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extensive use of the currently available ensembles, both in
terms of lattice spacings and light-quark masses. HPQCD
have results at two values of the lattice spacing (a ~
0.12, 0.09 fm), while FNAL/MILC employs four values
(a ~ 0.12, 0.09, 0.06, 0.045 fm). Lattice-discretization
effects are estimated within HMrS x PT in the FNAL/MILC
computation, while HPQCD quotes the results at a ~
0.12 fm as central values and uses the a ~ 0.09 fm results
to quote an uncertainty. The relative scale is fixed in both
cases through r1/a. HPQCD set the absolute scale through
the T 2S—18 splitting, while FNAL/MILC uses a com-
bination of f; and the same Y splitting, as described in
Ref. [48]. The spatial extent of the lattices employed by
HPQCD is L ~ 2.4 fm, save for the lightest mass point
(at a ~ 0.09 fm) for which L ~ 2.9 fm. FNAL/MILC,
on the other hand, uses extents up to L ~ 5.8 fm, in order
to allow for light pion masses while keeping finite-volume
effects under control. Indeed, while in the 2006 HPQCD
work the lightest RMS pion mass is 400 MeV, the lat-
est FNAL/MILC work includes pions as light as 165 MeV
— in both cases the bound m,L 2 3.8 is kept. Other
than the qualitatively different range of MILC ensembles
used in the two computations, the main difference between
HPQCD and FNAL/MILC lies in the treatment of heavy
quarks. HPQCD uses the NRQCD formalism, with a one-
loop matching of the relevant currents to the ones in the
relativistic theory. FNAL/MILC employs the clover action
with the Fermilab interpretation, with a mostly nonper-
turbative renormalization of the relevant currents, within
which light-light and heavy-heavy currents are renormal-
ized nonperturbatively and one-loop perturbation theory is
used for the relative normalization. (See Table 36; full
details about the computations are provided in tables in
Appendix B.6.3.)

The RBC/UKQCD computation is based on Ny =2 + 1
DWEF ensembles at two values of the lattice spacing (a ~
0.12, 0.09 fm), and pion masses in a narrow interval rang-
ing from slightly above 400 MeV to slightly below 300 MeV,
keepingm, L 2 4.Thescaleis setusing the 2~ baryon mass.
Discretization effects coming from the light sector are esti-
mated in the 1% ballpark using HM x PT supplemented with
effective higher-order interactions to describe cutoff effects.
The b quark is treated using the Columbia RHQ action, with
amostly nonperturbative renormalization of the relevant cur-
rents. Discretization effects coming from the heavy sector are
estimated with power-counting arguments to be below 2%.

Given the large kinematical range available inthe B — 7
transition, chiral extrapolations are an important source of
systematic uncertainty: apart from the eventual need to reach
physical-pion masses in the extrapolation, the applicabil-
ity of xPT is not guaranteed for large values of the pion
energy Er. Indeed, in all computations E, reaches val-
ues in the 1 GeV ballpark, and chiral-extrapolation system-
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atics is the dominant source of errors. FNAL/MILC uses
SU(2) NLO HMrSxPT for the continuum-chiral extrapo-
lation, supplemented by NNLO analytic terms and hard-
pion xPT terms [509];% systematic uncertainties are esti-
mated through an extensive study of the effects of vary-
ing the specific fit ansatz and/or data range. RBC/UKQCD
uses SU(2) hard-pion HMxPT to perform its combined
continuum-chiral extrapolation, and obtains sizeable esti-
mates for systematic uncertainties by varying the ansitze
and ranges used in fits. HPQCD performs chiral extrapola-
tions using HMrS x PT formulae, and estimates systematic
uncertainties by comparing the result with the ones from
fits to a linear behaviour in the light-quark mass, contin-
uum HMy PT, and partially quenched HMrS x PT formulae
(including also data with different sea and valence light-quark
masses).

FNAL/MILC and RBC/UKQCD describe the ¢ depen-
dence of f and fj by applying a BCL parameterization to
the form factors extrapolated to the continuum limit, within
the range of values of ¢> covered by data. RBC/UKQCD
generate synthetic data for the form factors at some val-
ues of g2 (evenly spaced in z) from the continuous function
of g2 obtained from the joint chiral-continuum extrapola-
tion, which are then used as input for the fits. After hav-
ing checked that the kinematical constraint f1(0) = fy(0)
is satisfied within errors by the extrapolation to ¢g> = 0
of the results of separate fits, this constraint is imposed
to improve fit quality. In the case of FNAL/MILC, rather
than producing synthetic data a functional method is used to
extract the z-parameterization directly from the fit functions
employed in the continuum-chiral extrapolation. The result-
ing preferred fits for both works are quoted in Table 36. In
the case of HPQCD, the parameterization of the ¢ depen-
dence of form factors is somewhat intertwined with chi-
ral extrapolations: a set of fiducial values {E,(T")} is fixed
for each value of the light-quark mass, and f, o are inter-
polated to each of the E](,n); chiral extrapolations are then
performed at fixed E, (i.e. m; and q2 are varied sub-
ject to E; = constant). The interpolation is performed
using a BZ ansatz. The ¢ dependence of the resulting
form factors in the chiral limit is then described by means
of a BZ ansatz, which is cross-checked against BK, RH,
and BGL parameterizations. Unfortunately, the correlation
matrix for the values of the form factors at different g2
is not provided, which severely limits the possibilities of
combining them with other computations into a global z-
parameterization.

Based on the parameterized form factors, HPQCD and
RBC/UKQCD provide values for integrated decay rates
ACB7 | as defined in Eq. (173); they are quoted in Table 36.

46 Note that issues are known to exist with hard-pion yPT, cf.
Ref. [510].

Table 36 Results for the B — 7£v semileptonic form factor. The quantity A¢ is defined in Eq. (173); the quoted values correspond to ¢ = 4 GeV, g2 = ¢max, and they are given in ps~!

A{B”

z-Parameterization

Heavy-quark
treatment

Renormalization

Finite volume

Chiral

Continuum

Publication

status

Ny

Refs.

Collaboration

extrapolation

extrapolation

n/a

BCL
BCL
n/a

241
241
241

[504]
[505]
[503]

FNAL/MILC 15

1.77(34)

RBC/UKQCD 15
HPQCD 06

2.07(41)(39)
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The latest FNAL/MILC work, on the other hand, does not
quote a value for the integrated ratio. Furthermore, as men-
tioned above, the field has recently moved forward to deter-
mine CKM matrix elements from direct joint fits of exper-
imental results and theoretical form factors, rather than a
matching through A¢B7. Thus, we will not provide here a
FLAG average for the integrated rate, and focus on averaging
lattice results for the form factors themselves.

In our previous review, we averaged the results for £y (¢?)
in HPQCD 06 and the superseded FNAL/MILC 2008 deter-
mination [437], fitting them jointly to our preferred BCL
z-parameterization, Eq. (185). The new results do not, how-
ever, allow for an update of such a joint fit: RBC/UKQCD
only provides synthetic values of f and fj at a few values
of q2 as an illustration of their results, and FNAL/MILC does
not quote synthetic values at all. In both cases, full results for
BCL z-parameterizations defined by Eq. (185) are quoted.
In the case of HPQCD 06, unfortunately, a fit to a BCL z-
parameterization is not possible, as discussed above.

In order to combine these form factor calculations we
start from sets of synthetic data for several ¢ values.
HPQCD and RBC/UKQCD provide directly this infor-
mation; FNAL/MILC presents only fits to a BCL z-par-
ametrization from which we can easily generate an equiv-
alent set of form factor values. It is important to note that in
both the RBC/UKQCD synthetic data and the FNAL/MILC
z-parametrization fits the kinematic constraint at g = 0 is
automatically included (in the FNAL/MILC case the con-
straint is manifest in an exact degeneracy of the (a;", a))
covariance matrix). Due to these considerations, in our opin-
ion the most accurate procedure is to perform a simultane-
ous fit to all synthetic data for the vector and scalar form
factors. Unfortunately the absence of information on the cor-
relation in the HPQCD result between the vector and scalar
form factors even at a single ¢ point makes it impossible
to include consistently this calculation in the overall fit. In
fact, the HPQCD and FNAL/MILC statistical uncertainties
are highly correlated (because they are based on overlap-
ping subsets of MILC Ny = 2 + 1 ensembles) and, without
knowledge of the fi—fy correlation we are unable to con-
struct the HPQCD-FNAL/MILC off-diagonal entries of the
overall covariance matrix.

In conclusion, we will present as our best result a com-
bined vector and scalar form factor fit to the FNAL/MILC
and RBC/UKQCD results that we treat as completely uncor-
related. For the sake of completeness we will also show the
results of a vector form factor fit alone in which we include
one HPQCD datum at g> = 17.34 GeV? assuming conser-
vatively a 100% correlation between the statistical error of
this point and of all FNAL/MILC synthetic data. In spite of
contributing just one point, the HPQCD datum has a signif-
icant weight in the fit due to its small overall uncertainty.
We stress again that this procedure is slightly inconsistent
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Fig. 24 The form factors (1 — g2/m3%.) f1(¢%) and fy(¢?) for B —
mLv plotted versus z. (See text for a discussion of the dataset.) The grey
and orange bands display our preferred N* = N° = 3 BCL fit (five
parameters) to the plotted data with errors

because FNAL/MILC and RBC/UKQCD include informa-
tion on the kinematic constraint at g2 = 0 in their f results.

The resulting dataset is then fitted to the BCL parame-
terization in Egs. (185) and (186). We assess the system-
atic uncertainty due to truncating the series expansion by
considering fits to different orders in z. In the two panels
of Fig. 24 we show the FNAL/MILC, RBC/UKQCD, and
HPQCD data points for (1 —q2 / mZB*) fr (qz) and fy (qz) ver-
sus z. The data is highly linear and we get a good x2/d.o.f.
with N = N = 3. Note that this implies three inde-
pendent parameters for fi corresponding to a polynomial
through O(z%) and two independent parameters for fy cor-
responding to a polynomial through O(z%) (the coefficient
ag is fixed using the g2 = 0 kinematic constraint). We can-
not constrain the coefficients of the z-expansion beyond this
order; for instance, including a fourth parameter in f5 yields
100% uncertainties on a;' and a;' . The outcome of the five-
parameter BCL fit to the FNAL/MILC and RBC/UKQCD
calculations is:

B—>na (Ny=2+1)

Central values Correlation matrix

aa' 0.404 (13) 1 0.404  0.118 0327 0344
a?’ —0.68 (13) 0404 1 0.741 0310  0.900
a; —0.86 (61) 0.118  0.741 1 0.363  0.886
ag 0.490 (21) 0327 0310 0363 1 0.233
a(l) —1.61 (16) 0.344 0900 0.886  0.233 1

+0 +.0

The uncertainties on a;, ", a; " and a; encompass the
central values obtained from N* = 2,4 and N° = 2.4, 5
fits and thus adequately reflect the systematic uncertainty on
those series coefficients. This can be used as the averaged
FLAG result for the lattice-computed form factor f(g2).
The coefficient a;r can be obtained from the values for a(J)r —c12+
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using Eq. (184). The coefficient ag can be obtained from all
other coefficients imposing the f1 (g = 0) = fo(g> = 0)
constraint. The fit is illustrated in Fig. 24.

It is worth stressing that, with respect to our average in
the previous edition of the FLAG report, the relative error
on ag' , which dominates the theory contribution to the deter-
mination of |V,;|, has decreased from 7.3% to 3.2%. The
dominant factor in this remarkable improvement is the new
FNAL/MILC determination of f;. We emphasize that future
lattice-QCD calculations of semileptonic form factors should
publish their full statistical and systematic correlation matri-
ces to enable others to use the data. It is also preferable to
present a set of synthetic form factors data equivalent to the
z-fit results, since this allows for an independent analysis
that avoids further assumptions about the compatibility of
the procedures to arrive at a given z-parameterization.*’ It
is also preferable to present covariance/correlation matrices
with enough significant digits to calculate correctly all their
eigenvalues.

For the sake of completeness, we present also a stan-
dalone z-fit to the vector form factor alone. In this fit we
are able to include the single f, point at g> = 17.34 GeV?
that we mentioned above. This fit uses the FNAL/MILC and
RBC/UKQCD results that do make use of the kinematic con-
straint at g2 = 0 but is otherwise unbiased. The results of the
three-parameter BCL fit to the HPQCD, FNAL/MILC and
RBC/UKQCD calculations of the vector form factor are:

Ny=2+1: af =0421(13), af =-0.35(10),
ay = —0.41(64);

1.000 0.306 0.084
0.306 1.000 0.856
0.084 0.856 1.000

(187)

corr(a;, aj) =

Note that the a(')|r coefficient, which is the one most relevant
for input to the extraction of V,; from semileptonic B —
mlve (£ = e, u) decays, shifts by about a standard deviation.

8.3.3 Form factors for By — K/{v

Similar to B — m{¢v, measurements of By — K {v enable
determinations of the CKM matrix element | V,,;| within the
Standard Model via Eq. (172). From the lattice point of
view the two channels are very similar — as a matter of fact,
By — K{v is actually somewhat simpler, in that the fact that
the kaon mass region is easily accessed by all simulations
makes the systematic uncertainties related to chiral extrapo-
lation smaller. On the other hand, By — K {v channels have

47 Note that generating synthetic data is a trivial task but less so the
number of required points and the ¢ values that lead to an optimal
description of the form factors.

not been measured experimentally yet, and therefore lattice
results provide SM predictions for the relevant rates.

Atthe time of our previous review, only preliminary results
existed for By — K/{v form factors. However, as with
B — m/lv, great progress has been made during the last
year, and first full results for By — K{v form factors have
been provided by HPQCD [511] and RBC/UKQCD [504] for
both form factors f4 and fp, in both cases using Ny = 2+ 1
dynamical configurations. Finally, the ALPHA Collabora-
tion determination of By — K/{v form factors with Ny =2
is also well under way [512]; however, since the latter is so
far described only in conference proceedings which do not
provide quotable results, it will not be discussed here.

The RBC/UKQCD computation has been published to-
gether with the B — m{fv computation discussed in
Sect. 8.3.2, all technical details being practically identical.
The main difference is that errors are significantly smaller,
mostly due to the reduction of systematic uncertainties due
to the chiral extrapolation; detailed information is provided
in tables in Appendix B.6.3. The HPQCD computation uses
ensembles of gauge configurations with Ny = 2+ 1 flavours
of rooted staggered quarks produced by the MILC Collabora-
tion at two values of the lattice spacing (@ ~ 0.12, 0.09 fm),
for three and two different sea-pion masses, respectively,
down to a value of 260 MeV. The b quark is treated within the
NRQCD formalism, with a one-loop matching of the relevant
currents to the ones in the relativistic theory, omitting terms
of O(as Aqgep/myp). A HISQ action is used for the valence s
quark. The continuum-chiral extrapolation is combined with
the description of the ¢? dependence of the form factors into
a modified z-expansion (cf. Sect. 8.3.1) that formally coin-
cides in the continuum with the BCL ansatz. The dependence
of form factors on the pion energy and quark masses is fit-
ted to a one-loop ansatz inspired by hard-pion xPT [509],
which factorizes out the chiral logarithms describing soft
physics. See Table 37 and the tables in Appendix B.6.3 for
full details.

Both RBC/UKQCD and HPQCD quote values for inte-
grated differential decay rates over the full kinematically
available region. However, since the absence of experiment
makes the relevant integration interval subject to change, we
will not discuss them here, and focus on averages of form
factors. In order to proceed to combine the results from the
two collaborations, we will follow a similar approach to the
one adopted above for B — m{fv: we will take as direct
input the synthetic values of the form factors provided by
RBC/UKQCD, use the preferred HPQCD parameterization
to produce synthetic values, and perform a joint fit to the two
datasets.

Note that the kinematic constraint at g2 = 0 is included
explicitly in the results presented by HPQCD (the coefficient
b8 is expressed analytically in terms of all others) and implic-
itly in the synthetic data provided by RBC/UKQCD. There-
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Table 37 Results for the B; — K {v semileptonic form factor

Collaboration Refs. Ny  Publication  Continuum  Chiral Finite Renormalization Heavy-quark z-Parameterization
status extrapolation extrapolation volume treatment

RBC/UKQCD 15 [505] 2+1 A ¢ o o o v BCL

HPQCD 14 [511] 24+1 A o e o o v BCL?

4 Results from modified z-expansion

fore, following the procedure we adopted for the B — m
case, we present a joint fit to the vector and scalar form
factors and implement explicitly the ¢g> = 0 constraint by
expressing the coefficient b?vo—l in terms of all others.

For the fits we employ a BCL ansatz with ry = (Mp, +
Mg+)* ~ 3435 GeV? and 1) = (Mp, + Mg+)(,/Mp, —
VMg+)? ~ 15.27 GeV?. Our pole factors will contain a
single pole in both the vector and scalar channels, for which
we take the mass values Mp+ = 5.325 GeV and Mp++) =
5.65 GeV.*8

We quote as our preferred result the outcome of the NT =
N° =3 BCL fit:

By —> K (Nf =2+1)

Central values  Correlation matrix

a(f 0.360(14) 1 0.098 —-0.216 0.730 0.345
al+ —0.828(83) 0.098 1 0.459 0.365 0.839
(12+ 1.11(55) —-0.216 0459 1 0.263  0.6526
ag 0.233(10) 0.730 0.365 0.263 1 0.506
a(l) 0.197(81) 0.345 0.839  0.652 0.506 1

where the uncertainties on ag and a; encompass the central
values obtained from O(z?) fits, and thus adequately reflect
the systematic uncertainty on those series coefficients.*”
These can be used as the averaged FLAG results for the
lattice-computed form factors f (¢2) and fy(g?). The coef-
ficient a;’ can be obtained from the values for aar —a;r using
Eq. (184). The fit is illustrated in Fig. 25.

8.3.4 Form factors for rare and radiative B-semileptonic
decays to light flavours

Lattice-QCD input is also available for some exclusive
semileptonic decay channels involving neutral-current b —

48 The values of the scalar resonance mass in Br scattering taken
by HPQCD and RBC/UKQCD are Mpx«4+) = 5.6794(10) GeV and
Mp=@+) = 5.63 GeV, respectively. We use an average of the two
values, and have checked that changing it by ~1% has a negligible
impact on the fit results.

49 In this case, O(z*) fits with just two degrees of freedom, are signifi-
cantly less stable. Still, the results for ao+ and afr are always compatible
with the ones at O(z?) and O(z°) within one standard deviation.
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Fig. 25 The form factors (1 — ¢2/m%)f+(¢®) and (I —
qz/m%*«)ﬂ)fo(qz) for By — K{v plotted versus z. (See text for a
discussion of the datasets.) The grey and orange bands display our pre-
ferred NT = N° = 3 BCL fit (five parameters) to the plotted data with
errors

q transitions at the quark level, where ¢ = d, s. Being for-
bidden at tree level in the SM, these processes allow for
stringent tests of potential new physics; simple examples are
B — K*y,B — K™{*t¢~ or B — m{*¢~ where the B
meson (and therefore the light meson in the final state) can
be either neutral or charged.

The corresponding SM effective weak Hamiltonian is
considerably more complicated than the one for the tree-
level processes discussed above: after neglecting top-quark
effects, as many as ten dimension-six operators formed by
the product of two hadronic currents or one hadronic and one
leptonic current appear.>’ Three of the latter, coming from
penguin and box diagrams, dominate at short distances and
have matrix elements that, up to small QED corrections, are
given entirely in terms of B — (7, K, K*) form factors.
The matrix elements of the remaining seven operators can be
expressed, up to power corrections whose size is still unclear,
in terms of form factors, decay constants and light-cone dis-
tribution amplitudes (for the 7w, K, K* and B mesons) by
employing OPE arguments (at large di-lepton invariant mass)
and results from Soft Collinear Effective Theory (at small
di-lepton invariant mass). In conclusion, the most important
contributions to all of these decays are expected to come
from matrix elements of current operators (vector, tensor,

50 See, e.g., Ref. [513] and references therein.
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and axial-vector) between one-hadron states, which in turn
can be parameterized in terms of a number of form factors
(see Ref. [514] for a complete description).

ate synthetic data. We then impose the kinematic constraint
filg? =0) = fo(g*> = 0)andfitto (Nt = NV = NT = 3)
BCL parametrization. The functional forms of the form fac-
tors that we use are identical to those adopted in Ref. [519] Sl
Our results are:

B— K (Nf=2+1)

Central values Correlation matrix

af 0.4696 (97) 1 0.467 0.058
at —0.73 (11) 0.467 1 0.643
af 0.39 (50) 0.058 0.643 1

al 0.3004 (73) 0.755 0.770 0.593
a? 0.42 (11) 0.553 0.963 0.749
al 0.454 (15) 0.609 0.183 —0.145
al —1.00 (23) 0.253 0.389 0.023
al —0.89 (96) 0.102 0.255 0.176

0.755 0.553 0.609 0.253 0.102
0.770 0.963 0.183 0.389 0.255
0.593 0.749 —0.145 0.023 0.176
1 0.844 0.379 0.229 0.187
0.844 1 0.206 0.325 0.245
0.379 0.206 1 0.707 0.602
0.229 0.325 0.707 1 0.902
0.187 0.245 0.602 0.902 1

In channels with pseudoscalar mesons in the final state,
the level of sophistication of lattice calculations is similar
to the B — m case and there are results for the vector,
scalar, and tensor form factors for B — K{T¢~ decays
by HPQCD [515], and (very recent) results for both B —
7€T¢~ [517] and B — K£T¢~ [516] from FNAL/MILC.
Full details about these two calculations are provided in
Table 38 and in the tables in Appendix B.6.4. Both com-
putations employ MILC Ny = 2 + 1 asqtad ensembles.
HPQCD [518] and FNAL/MILC [519] have also compan-
ion papers in which they calculate the Standard Model pre-
dictions for the differential branching fractions and other
observables and compare to experiment. The HPQCD com-
putation employs NRQCD b quarks and HISQ valence light
quarks, and parameterizes the form factors over the full kine-
matic range using a model-independent z-expansion as in
Sect. 8.3.1, including the covariance matrix of the fit coef-
ficients. In the case of the (separate) FNAL/MILC com-
putations, both of them use Fermilab b quarks and asqtad
light quarks, and a BCL z-parameterization of the form fac-
tors.

The averaging of the HPQCD and FNAL/MILC results
is similar to our treatment of the B — 7 and By — K
form factors. In this case, even though the statistical uncer-
tainties are partially correlated because of some overlap
between the adopted sets of MILC ensembles, we choose
to treat the two calculations as independent. The reason is
that, in B — K, statistical uncertainties are subdominant
and cannot be easily extracted from the results presented
by HPQCD and FNAL/MILC. Both collaborations provide
only the outcome of a simultaneous z-fit to the vector, scalar
and tensor form factors, which we use to generate appropri-

The fit is illustrated in Fig. 26. Note that the average for
the fr form factor appears to prefer the FNAL/MILC syn-
thetic data. This happens because we perform a correlated fit
of the three form factors simultaneously (both FNAL/MILC
and HPQCD present covariance matrices that include corre-
lations between all form factors). We checked that the aver-
age for the fr form factor, obtained neglecting correlations
with fo and f7, is a little lower and lies in between the two
datasets.

Lattice computations of form factors in channels with a
vector meson in the final state face extra challenges with
respect to the case of a pseudoscalar meson: the state is unsta-
ble, and the extraction of the relevant matrix element from
correlation functions is significantly more complicated; x PT
cannot be used as a guide to extrapolate results at unphysi-
cally heavy pion masses to the chiral limit. While the field
theory procedures to take resonance effects into account are
available [521-529], they have not yet been implemented in
the existing preliminary computations, which therefore suffer
from uncontrolled systematic errors in calculations of weak
decay form factors into unstable vector meson final states,
such as the K* or p mesons.>?

As a consequence of the complexity of the problem, the
level of maturity of these computations is significantly below
the one present for pseudoscalar form factors. Therefore, we
will only provide below a short guide to the existing results.

51" Note in particular that not much is known about the sub-threshold
poles for the scalar form factor. FNAL/MILC includes one pole at the
B}, mass as taken from the calculation in Ref. [520].

52 In the cases such as B — D* transitions, which will be discussed
below, this is much less of a practical problem due to the very narrow
nature of the resonance.
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Fig. 26 The B — K form factors (1 — ¢?/m%.) f(¢?), (1 —

@* /M. 04 fo(g?) and (1 — ¢ /m3.) fr(g?) plotted versus z. (See
text for a discussion of the datasets.) The grey, orange and blue bands
display our preferred Nt = N% = N7 = 3 BCL fit (eight parameters)
to the plotted data with errors

Concerning channels with vector mesons in the final state,
Horgan et al. have obtained the seven form factors govern-
ing B — K*¢*t¢~ (as well as those for By — ¢ £7¢7)
in Ref. [530] using NRQCD b quarks and asqtad staggered
light quarks. In this work, they use a modified z-expansion
to simultaneously extrapolate to the physical light-quark
masses and continuum and extrapolate in ¢ to the full
kinematic range. As discussed in Sect. 7.2, the modified z-
expansion is not based on an underlying effective theory, and
the associated uncertainties have yet to be fully studied. Hor-
gan et al. use their form-factor results to calculate the dif-
ferential branching fractions and angular distributions and
discuss the implications for phenomenology in a companion
paper [531]. Finally, on-going work on B — K*{*¢~ and

Table 38 Results for the B — K semileptonic form factors

By — ¢¢* ¢~ by RBC/UKQCD, including first results, have
recently been reported in Ref. [532].

8.4 Semileptonic form factors for B — D{v, B — D*{v,
and B — Dtv

The semileptonic processes B — D{fv and B — D*{v have
been studied extensively by experimentalists and theorists
over the years. They allow for the determination of the CKM
matrix element | V|, an extremely important parameter of
the Standard Model. | V.| appears in many quantities that
serve as inputs into CKM Unitarity Triangle analyses and
reducing its uncertainties is of paramount importance. For
example, when €k, the measure of indirect C P violation in
the neutral kaon system, is written in terms of the parameters
p and n that specify the apex of the unitarity triangle, a factor
of |Vp|* multiplies the dominant term. As a result, the errors
coming from |V,| (and not those from Bg) are now the
dominant uncertainty in the Standard Model (SM) prediction
for this quantity.

The decay rates for B — D) {v can be parameterized
in terms of vector and scalar form factors in the same way
as, e.g., B — m{v; see Sect. 8.3. Traditionally, the light
channels £ = e, w have, however, been dealt with using a
somewhat different notation, viz.

dlp- pog—5 _ Ggmy 2,2 32
= —1
Tw g3 et mp) (Wt —1)
x [newl*| Ve |G (w)I, (188)
Al pog-5 _ Ggmi. 2, 2 12
- = 3 mp —mp)P(w? = 1)
x Ew * [ Vep | x ()| F (w) |2, (189)

where w = vg-vpw,vp = pp/m p are the four-velocities of
the mesons, and ngw = 1.0066 is the one-loop electroweak
correction [533]. The function x(w) in Eq. (189) depends
upon the recoil w and the meson masses, and reduces to unity
at zero recoil [513]. These formulae do not include terms
that are proportional to the lepton mass squared, which can
be neglected for £ = e, p. Until recently, most unquenched
lattice calculations for B — D*¢v and B — D{v decays
focussed on the form factors at zero recoil F5—L" (1) and
QB_’D(I); these can then be combined with experimental
input to extract | V,p|. The main reasons for concentrating on

Collaboration Refs. Ny  Publication  Continuum  Chiral Finite Renormalization Heavy-quark z-Parameterization
status extrapolation extrapolation volume treatment

HPQCD 13E [5151 2+1 A o) o) o) ) v BCL

FNAL/MILC 15D [516] 2+1 A * @) * ) v BCL
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the zero-recoil point are that (i) the decay rate then depends
on a single form factor, and (i) for B — D*£v, there are no
O(Aocp/mg) contributions due to Luke’s theorem [534].
Further, the zero-recoil form factor can be computed via a
double ratio in which most of the current renormalization
cancels and heavy-quark discretization errors are suppressed
by an additional power of Agcp/mo.Recent workon B —
D™ ¢y transitions has started to explore the dependence of
the relevant form factors on the momentum transfer, using
a similar methodology to the one employed in B — m{v
transitions; we refer the reader to Sect. 8.3 for a detailed
discussion.

At the time of the previous version of this review, there
were no published complete computations of the form fac-
tors for B — D{v decays: Ny = 2 + 1 results by
FNAL/MILC for G2~ P (1) had only appeared in proceed-
ings form [535,536], while the (now published) Ny = 2
study by Atoui et al. [537], which in addition to providing
GB=D(1) explores the w > 1 region, was still in preprint
form. The latter work also provided the first results for By —
Dy ¢v amplitudes, again including information as regards the
momentum transfer dependence; this will allow for an inde-
pendent determination of | V.| as soon as experimental data
are available for these transitions. Meanwhile, the only fully
published unquenched results for F8~2" (1), obtained by
FNAL/MILC, dated from 2008 [538]. In the last two years,
however, significant progress has been attainedin Ny = 2+1
computations: the FNAL/MILC value for F5~P"(1) has
been updated in Ref. [539], and full results for B — D<{v
at w > 1 have been published by FNAL/MILC [540] and
HPQCD [541]. These works also provide full results for the
scalar form factor, allowing us to analyse the decay in the
T channel. In the discussion below, we will only refer to
this latest generation of results, which supersedes previous
Ny = 2 + 1 determinations and allows for an extraction of
|V, that incorporates information as regards the ¢ depen-
dence of the decay rate (cf. Sect. 8.7).

8.4.1 By — Dy decays

We will first discuss the Ny = 2 + 1 computations of B —
D¢v by FNAL/MILC and HPQCD mentioned above, both
based on MILC asqtad ensembles. Full details about all the
computations are provided in Table 39 and in the tables in
Appendix B.6.5.

The FNAL/MILC study [540] employs ensembles at four
values of the lattice spacing ranging between approximately
0.045 and 0.12 fm, and several values of the light-quark mass
corresponding to pions with RMS masses ranging between
260 and 670 MeV (with just one ensemble with MRMS ~
330 MeV at the finest lattice spacing). The b and ¢ quarks are
treated using the Fermilab approach. The quantities directly
studied are the form factors /. defined by

Table 39 Lattice results for the B — D*¢v, B — D{v, and B; — D,{v semileptonic form factors and R(D)

w = 1 form factor/ratio

Heavy-quark
treatment

Renormalization

Finite volume

Chiral

Continuum

Publication

status

Ny

Refs.

Collaboration

extrapolation

extrapolation

0.906(4)(12)
1.035(40)
1.054(4)(8)
0.300(8)
0.299(11)
1.033(95)
1.052(46)

fB*)D* )

241
241
2+1
2+1
241

gB%D(l)

gB%D(l)

R(D)
R(D)

gB%D(l)
gB;%Dx (1)

—_ — = /o=

— e e el e el

FNAL/MILC 14
HPQCD 15

ENAL/MILC 15C
HPQCD 15

FNAL/MILC 15C

Atoui 13

Atoui 13
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(D(pp)icyub| B(ps))
N

=hy(w)(vp +vp)y

+h_(w)(vp — vp)p, (190)
which are related to the standard vector and scalar form fac-
tors by

fr(g®) = (14 rhy(w) = (1= r)h_(w)],

s |

1+
fo(q2)=ﬁ[1+ h+(w)+1Th <w>} (191)
with r = mp/mp. (Recall that > = (pg — pp)? =

m% + m% — 2wmpgmp.) The hadronic form factor rele-
vant for experiment, G(w), is then obtained from the rela-
tion G(w) = 4rfy(g>)/(1 + r). The form factors are
obtained from double ratios of 3-point functions in which the
flavour-conserving current renormalization factors cancel.
The remaining matching factor Pyt is estimated with one-
loop lattice perturbation theory. In ‘order to obtain hy(w), a
joint continuum-chiral fit is performed to an ansatz that con-
tains the light-quark mass and lattice-spacing dependence
predicted by next-to-leading order HMrS x PT, and the lead-
ing dependence on m, predicted by the heavy-quark expan-
sion (l/m% for hy and 1/m. for h_). The w-dependence,
which allows for an interpolation in w, is given by analytic
terms up to (1 — w)z, as well as a contribution from the log
proportional to g%)* pr- Lhe total resulting systematic error
is 1.2% for f and 1.1% for fj. This dominates the final
error budget for the form factors. After f and fy have been
determined as functions of w within the interval of values
of g2 covered by the computation, synthetic data points are
generated to be subsequently fitted to a z-expansion of the
BGL form, cf. Sect. 8.3, with pole factors set to unity. This
in turn enables one to determine |V, ;| from a joint fit of this
z-expansion and experimental data. The value of the zero-
recoil form factor resulting from the z-expansion is
G P (1) = 1054 @)stat (8)sys- (192)

The HPQCD computation [541] considers ensembles at
two values of the lattice spacing, ¢ = 0.09, 0.12 fm, and
two and three values of light-quark masses, respectively. The
b quark is treated using NRQCD, while for the ¢ quark the
HISQ action is used. The form factors studied, extracted from
suitable 3-point functions, are

= V2Mg f,
=V2Mpph 11,

where V, is the relevant vector current and the B rest frame
is assumed. The standard vector and scalar form factors are
retrieved as

(D(pp)IV°|B)

(D(pp)IV¥|B) (193)
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1 1
S+ P fi+ M(MB —Ep)fi,
2Mp
Jfo= m [(MB - ED)fH + (Mlza’ - E%))fJ_] .

(194)

The currents in the effective theory are matched at one-loop
to their continuum counterparts. Results for the form factors
are then fitted to a modified BCL z-expansion ansatz, which
takes into account simultaneously the lattice spacing, light-
quark masses, and ¢ dependence. For the mass dependence
NLO chiral logs are included, in the form obtained in hard-
pion xPT. As in the case of the FNAL/MILC computation,
once f, and fy have been determined as functions of g2,
|Vep| can be determined from a joint fit of this z-expansion
and experimental data. The work quotes for the zero-recoil
vector form factor the result

gB—)D(l) —

This value is 1.80 smaller than the FNAL/MILC result and
significantly less precise. The dominant source of errors in the
| Ve | determination by HPQCD are discretization effects and
the systematic uncertainty associated with the perturbative
matching.

In order to combine the form factors determinations of
HPQCD and FNAL/MILC into a lattice average, we pro-
ceed in a similar way as with B — mfv and By, — K{v
above. FNAL/MILC quotes synthetic values for the form
factors at three values of w (or, alternatively, ¢%) with a
full correlation matrix, which we take directly as input. In
the case of HPQCD, we use their preferred modified z-
expansion parameterization to produce synthetic values of
the form factors at two different values of ¢2. This leaves
us with a total of five data points in the kinematical range
w € [1.00, 1.11]. As in the case of B — m{v, we conserva-
tively assume a 100% correlation of statistical uncertainties
between HPQCD and FNAL/MILC. We then fit this dataset
toa BCL ansatz, using t, = (Mo + Mp+)? ~ 51.12 GeV?
and 19 = (M go + Mp+)(\/Mpgo — /Mp=)?> >~ 6.19 GeV>.
In our fits, pole factors have been set to unity — i.e., we do
not take into account the effect of sub-threshold poles, which
is then implicitly absorbed into the series coefficients. The
reason for this is our imperfect knowledge of the relevant
resonance spectrum in this channel, which does not allow us
to decide the precise number of poles needed.’® This in turn
implies that unitarity bounds do not rigorously apply, which
has to be taken into account when interpreting the results (cf.
Sect. 8.3.1).

1.035(40). (195)

33 As noted above, this is the same approach adopted by FNAL/MILC
in their fits to a BGL ansatz. HPQCD, meanwhile, uses one single pole
in the pole factors that enter their modified z-expansion, using their
spectral studies to fix the value of the relevant resonance masses.
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Fig. 27 The form factors f(¢%) and fy(¢?) for B — D{v plotted
versus z. (See text for a discussion of the datasets.) The grey and orange
bands display our preferred Nt = NO = 3 BCL fit (five parameters)
to the plotted data with errors

With a procedure similar to what we adopted for the
B — m and By — K cases, we impose the kinematic
constraint at g2 = 0 by expressing the a?vo_ , coefficient
in the z-expansion of fp in terms of all other coefficients.
As mentioned above FNAL/MILC provides synthetic data
for f+ and fp including correlations; HPQCD presents the
result of simultaneous z-fits to the two form factors includ-
ing all correlations and, thus enabling us to generate a com-
plete set of synthetic data for f and fy. Since both calcula-
tions are based on MILC ensembles, we then reconstruct the
off-diagonal HPQCD-FNAL/MILC entries of the covariance
matrix by conservatively assuming that statistical uncertain-
ties are 100% correlated. The Fermilab/MILC (HPQCD) sta-
tistical error is 58% (31%) for every f4 value and 64% (49%)
for every fy one. Using this information we can easily build
the off-diagonal block of the overall covariance matrix (e.g.,
the covariance between [ f (qlz)]FNAL and [ fo(qg)] HPQCD 18
BL+(gD)TNaL x 0.58) (8 fo(g3)IpqeD x 0.49), where § f
is the total error).

For our central value, we choose an Nt = N = 3 BCL
fit:

B— D(Nj=2+1)

Central values

Correlation matrix

aO+ 0.909 (14) 1 0.737 0594 0976  0.777
al+ —7.11 (65) 0.737 1 0940  0.797  0.992
a; 66 (11) 0594 0940 1 0.666  0.938
a8 0.794 (12) 0976  0.797 0.666 1 0.818
a(l) —2.45 (65) 0.777 0992 0938 0.818 1

where the coefficient a;' can be obtained from the values for

ag —a; using Bq. (184). The fit is illustrated in Fig. 27.
Reference [537] is the only existing Ny = 2 work on

B — D¢{v transitions, which furthermore provides the only

available results for By — Dgfv. This computation uses
the publicly available ETM configurations obtained with the
twisted-mass QCD action at maximal twist. Four values of
the lattice spacing, ranging between 0.054 fm and 0.098 fm,
are considered, with physical box lengths ranging between
1.7 and 2.7 fm. At two values of the lattice spacing two dif-
ferent physical volumes are available. Charged-pion masses
range between 2270 MeV and ~490 MeV, with two or three
masses available per lattice spacing and volume, save for the
a ~ 0.054 fm point at which only one light mass is available
for each of the two volumes. The strange and heavy valence
quarks are also treated with maximally twisted-mass QCD.
The quantities of interest are again the form factors s 4
defined above. In order to control discretization effects from
the heavy quarks, a strategy similar to the one employed by
the ETM Collaboration in their studies of B-meson-decay
constants (cf. Sect. 8.1) is employed: the value of G(w) is
computed at a fixed value of m . and several values of a heav-
ier quark mass mg‘) = A m,, where A is a fixed scaling
parameter, and step-scaling functions are built as

G(w, ¥ *lme, me, a?)
g(wa )"kmLW mC7 aZ) '

Each ratio is extrapolated to the continuum limit, o (w) =
lim,_.0 ¢ (w). One then exploits the fact that the mj; — oo
limit of the step scaling is fixed — in particular, it is easy to
find from the heavy-quark expansion that lim,,, o, 0 (1) =
1. In this way, the physical result at the b-quark mass can
be reached by interpolating o (w) between the charm region
(where the computation can be carried out with controlled
systematics) and the known static-limit value.

In practice, the values of m. and m; are fixed at each
value of the lattice spacing such that the experimental kaon
and D, masses are reached at the physical point, as deter-
mined in Ref. [11]. For the scaling parameter, A = 1.176
is chosen, and eight scaling steps are performed, reaching
mp/me = 1.176° ~ 4.30, approximately corresponding to
the ratio of the physical b- and c-masses in the MS scheme
at 2 GeV. All observables are obtained from ratios that do
not require (re)normalization. The ansatz for the continuum
and chiral extrapolation of X} contains a constant and linear
terms in mge, and a>. Twisted boundary conditions in space
are used for valence-quark fields for better momentum res-
olution. Applying this strategy the form factors are finally
obtained at four reference values of w between 1.004 and
1.062, and, after a slight extrapolation to w = 1, the result is
quoted

r(w) = (196)

GB=Ds(1) = 1.052(46). (197)

The authors also provide values for the form factor rele-
vant for the meson states with light valence quarks, obtained
from a similar analysis to the one described above for the
By — Dy case. Values are quoted from fits with and without
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a linear mgey /m term in the chiral extrapolation. The result
in the former case, which safely covers systematic uncertain-
ties, i

GB=P (1) = 1.033(95). (198)

Given the identical strategy, and the small sensitivity of the
ratios used in their method to the light valence- and sea-quark
masses, we assign this result the same ratings in Table 39
as those for their calculation of GB—Ps(1). Currently the
precision of this calculation is not competitive with that of
Ny =2+ 1 work, but this is due largely to the small number
of configurations analysed by Atoui et al. The viability of
their method has been clearly demonstrated, however, which
leaves significant room for improvement on the errors of both
the B — D andthe By — D; form factors with this approach
by including either additional two-flavour data or analysing
more recent ensembles with Ny > 2.

Finally, Atoui et al. also study the scalar and tensor form
factors, as well as the momentum transfer dependence of
J+.0. The value of the ratio folg®)/f1(g?) is provided at a
reference value of ¢? as a proxy for the slope of G(w) around
the zero-recoil limit.

8.4.2 Ratios of B — DX{v form factors

The availability of results for the scalar form factor fy in the
latest generation of results for B — D<{v amplitudes allows
us to study interesting observables that involve the decay in
the v channel. One such quantity is the ratio

R(D) = B(B — Dtv)/B(B — D{v) withl =e, u,
(199)

which is sensitive to fo, and can be accurately determined by
experiment.>* Indeed, the recent availability of experimental
results for R(D) has made this quantity particularly rele-
vant in the search for possible physics beyond the Standard
Model. Both FNAL/MILC and HPQCD provide values for
R(D) from their recent form factor computations, discussed
above. In the FNAL/MILC case, this result supersedes their
2012 determination, which was discussed in the previous ver-
sion of this review. The quoted values by FNAL/MILC and
HPQCD are

R(D) =0.299(11) Ref. [35],

R(D) = 0.300(8) Ref. [36]. (200)

These results are in excellent agreement, and can be averaged
(using the same considerations for the correlation between

54 A similar ratio R(D*) can be considered for B — D* transitions
— as a matter of fact, the experimental value of R(D*) is significantly
more accurate than the one of R(D). However, the absence of lattice
results for the B — D™ scalar form factor, and indeed of results at
nonzero recoil (see below), takes R(D*) out of our current scope.

@ Springer

the two computations as we did in the averaging of form
factors) into

R(D) = 0.300(8), our average. (201)
This result is about 1.60° lower than the current experimental
average for this quantity. It has to be stressed that achiev-
ing this level of precision critically depends on the reliability
with which the low-¢? region is controlled by the parameter-
izations of the form factors.

Another area of immediate interest in searches for physics
beyond the Standard Model is the measurement of By —
wt ™ decays, recently achieved by LHCb.>® In addition to
the By decay constant (see Sect. 8.1), one of the hadronic
inputs required by the LHCb analysis is the ratios of B,
meson (¢ = d,s) fragmentation fractions, f;/fs. A ded-
icated Ny = 2 + 1 study by FNAL/MILC>® Ref. [542]

addresses the ratios of scalar form factors fo(q)(qZ), and
quotes:

FEM2) 1P (M%) = 1.046(44)(15),

d
FEM2) 1P (M2) = 1.05447)(17), (202)
where the first error is statistical and the second systematic.
These results lead to fragmentation fraction ratios f/f; that
are consistent with LHCb’s measurements via other meth-
ods [543].

84.3 B — D™ decays

The most precise computation of the zero-recoil form fac-
tors needed for the determination of |V,,| from exclu-
sive B semileptonic decays comes from the B — D*{v
form factor at zero recoil, F B*D*(l), calculated by the
FNAL/MILC Collaboration. The original computation, pub-
lished in Ref. [538], has now been updated [539] by employ-
ing a much more extensive set of gauge ensembles and
increasing the statistics of the ensembles originally consid-
ered, while preserving the analysis strategy. There is cur-
rently no unquenched computation of the relevant form fac-
tors at nonzero recoil.

This work uses the MILC Ny = 2 + 1 ensembles. The
bottom and charm quarks are simulated using the clover
action with the Fermilab interpretation and light quarks are
treated via the asqtad staggered fermion action. At zero recoil
fB_’D*(l) reduces to a single form factor /4, (1) coming
from the axial-vector current

55 See Ref. [450] for the latest results, obtained from a joint analysis
of CMS and LHCD data.

6 This work also provided a value for R(D), now superseded by
Ref. [540].
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(D*(v, €| Au|B(v)) = iy/2mp2mp+ €/ ha (1),  (203)

where €’ is the polarization of the D*. The form factor is

accessed through a ratio of 3-point correlators, viz.

(D*|cy,ysb|B) (Blby,ysc|D¥)
(D*|cyac|D*) (B|bysb|B)

= |ha, (D%

(204)

A —

Simulation data are obtained on MILC ensembles with
five lattice spacings, ranging from a ~ 0.15 fm to a =
0.045 fm, and as many as five values of the light-quark
masses per ensemble (though just one at the finest lattice
spacing). Results are then extrapolated to the physical, con-
tinuum/chiral, limit employing staggered y PT.

The D* meson is not a stable particle in QCD and decays
predominantly into a D plus a pion. Nevertheless, heavy—
light meson y PT can be applied to extrapolate lattice simu-
lation results for the B — D*£v form factor to the physical
light-quark mass. The D* width is quite narrow, 0.096 MeV
for the D**(2010) and less than 2.1MeV for the D*(2007),
making this system much more stable and long lived than the
p or the K* systems. The fact that the D* — D mass differ-
ence is close to the pion mass leads to the well known “cusp”
in R4, just above the physical-pion mass [544-546]. This
cusp makes the chiral extrapolation sensitive to values used
in the xPT formulae for the D*Dm coupling gp+py. The
error budget in Ref. [539] includes a separate error of 0.3%
coming from the uncertainty in g p» p in addition to general
chiral-extrapolation errors in order to take this sensitivity into
account.

The final updated value presented in Ref. [539], that we
quote as our average for this quantity, is

FB=D (1) = hy, (1) = 0.906(4)(12) (205)

where the first error is statistical, and the second the sum
of systematic errors added in quadrature, making up a total
error of 1.4% (down from the original 2.6% of Ref. [538]).
The largest systematic uncertainty comes from discretization
errors followed by the effects of higher-order corrections in
the chiral perturbation theory ansatz.

8.5 Semileptonic form factors for A, — pfv and
Ap —> Ay

A recent new development in Lattice QCD computations
for heavy-quark physics is the study of semileptonic decays
of the A, baryon, with first unquenched results provided
in a work by Detmold, Lehner and Meinel [547]. The
importance of this result is that, together with a recent
analysis by LHCb of the ratio of decay rates I'(A, —
pev)/T(Ap — AcLv) [548], it allows for an exclusive
determination of the ratio |Vyp|/|Vep| largely independent

from the outcome of different exclusive channels, thus con-
tributing a very interesting piece of information to the exist-
ing tensions in the determination of third-column CKM
matrix elements (cf. Sects. 8.6, 8.7). For that reason, we
will discuss these results briefly, notwithstanding the fact that
baryon physics is in general out of the scope of the present
review.

The amplitudes of the decays A, — pfv and Ay —
ALy receive contributions from both the vector and the
axial components of the current in the matrix elements
(plgy™ (1 — y5)blAp) and (AclGy™ (1 — y5)b|Ap), and can
be parameterized in terms of six different form factors — see,
e.g., Ref. [549] for a complete description. They split into
three form factors f.y, fo, f1 in the parity-even sector, medi-
ated by the vector component of the current, and another three
form factors g, go, g1 in the parity-odd sector, mediated by
the axial component. All of them provide contributions that
are parametrically comparable.

The computation of Detmold et al. uses RBC/UKQCD
Ny =2+ 1 DWF ensembles, and treats the b and ¢ quarks
within the Columbia RHQ approach. Two values of the lat-
tice spacing (a ~ 0.112, 0.085 fm) are considered, with the
absolute scale set from the T (25)-Y (1S) splitting. Sea pion
masses lie in a narrow interval ranging from slightly above
400 MeV to slightly below 300 MeV, keeping m,L = 4;
however, lighter pion masses are considered in the valence
DWEF action for the u, d quarks, leading to partial quenching
effects in the chiral extrapolation. More importantly, this also
leads to values of My minL close to 3.0 (cf. Appendix B.6.3
for details); compounded with the fact that there is only
one lattice volume in the computation, an application of the
FLAG criteria would lead to a ® rating for finite-volume
effects. It has to be stressed, however, that our criteria have
been developed in the context of meson physics, and their
application to the baryon sector is not straightforward; as a
consequence, we will refrain from providing a conclusive
rating of this computation for the time being.

Results for the form factors are obtained from suitable 3-
point functions, and fitted to a modified z-expansion ansatz
that combines the ¢> dependence with the chiral and contin-
uum extrapolations. The main results of the paper are the pre-
dictions (errors are statistical and systematic, respectively)

1 f9ms dT(Ap — pu o) | o
— 5 dg
[Vib| 15 GeV? dg

= 12.32(93)(80) ps !,

1 qrznax dF(Ab — AC/J,_]_)M) 2

2 2 dg

[Venl= Ji5 Gev? dg
= 8.39(18)(32) ps !,

(206)

which are the input for the LHCb analysis. Prediction for the
total rates in all possible lepton channels, as well as for ratios
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Table 40 Experimental measurements for B(B~ — v~ v). The first
error on each result is statistical, while the second error is systematic

Collaboration Tagging method B(B~ — 17 v) x 10*
Belle [550] Hadronic 0.724037 £ 0.11
Belle [452] Semileptonic 1.25+0.28 £0.27
BaBar [451] Hadronic 1.83f8:ig +0.24
BaBar [551] Semileptonic 1.7+ 0.8+£0.2

similar to R(D) (cf. Sect. 8.4) between the 7 and light lepton
channels are also available.

8.6 Determination of | V3|

We now use the lattice-determined Standard Model tran-
sition amplitudes for leptonic (Sect. 8.1) and semileptonic
(Sect. 8.3) B-meson decays to obtain exclusive determi-
nations of the CKM matrix element |V,;|. In this sec-
tion, we describe the aspect of our work that involves
experimental input for the relevant charged-current exclu-
sive decay processes. The relevant formulae are Eqs. (147)
and (172). Among leptonic channels the only input comes
from B — tv,, since the rates for decays to e and
have not yet been measured. In the semileptonic case we
only consider B — m{v transitions (experimentally mea-
sured for £ = e, u). As discussed in Sects. 8.3 and 8.5,
there are now lattice predictions for the rates of the decays
By — K¢v and A, — plv; however, in the former
case the process has not been experimentally measured yet,
while in the latter case the only existing lattice computation
does not meet FLAG requirements for controlled systemat-
ics.

We first investigate the determination of |V,;| through
the B — 7ty transition. This is the only experimen-
tally measured leptonic decay channel of the charged B-
meson. After the publication of the previous FLAG report [2]
in 2013, the experimental measurements of the branching
fraction of this channel, B(B~ — t7v), were updated.
While the results from the BaBar Collaboration remain
the same as those reported before the end of 2013, the
Belle Collaboration reanalysed the data and reported that
the value of B(B~ — 1t v) obtained with semilep-
tonic tags changed from 1.54f8:§§‘1(2)?31 x 107% to 1.25 +
0.28 + 0.27 x 10~* [452]. Table 40 summarizes the cur-
rent status of experimental results for this branching frac-
tion.

It is obvious that all the measurements listed in Table 40
have significance less than 5o, and the uncertainties are
dominated by statistical errors. These measurements lead to
the averages of experimental measurements for B(B~ —
Tv) [451,452],
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B(B™ — tv) = 0.91 £0.22 from Belle,

=1.79+£0.48 from BaBar. (207)

We notice that minor tension between results from the two
collaborations can be observed, even in the presence of large
errors. Despite this situation, in Ref. [184] the Particle Data
Group performed a global average of B(B~ — tv) employ-
ing all the information in Table 40. Here we choose to proceed
with the strategy of quoting different values of |V, | as deter-
mined using inputs from the Belle and the BaBar experiments
shown in Eq. (207), respectively.

Combining the results in Eq. (207) with the experimental
measurements of the mass of the t-lepton and the B-meson
lifetime and mass, the Particle Data Group presented [184]

[Vub| fB = 0.72 £ 0.09 MeV from Belle,

= 1.01 £0.14 MeV from BaBar, (208)

which can be used to extract | V,p|.

Np=2 Belle B — tvy :  |Vip| = 3.83(48)(15) x 1073,
Np=2+1 Belle B — tvr :  |Vip| = 3.75(47)(9) x 1073,
Nyp=2+1+1 BelleB— tv,: |Vl =3.87(48)(9) x 1073;
Nf=2 Babar B — tv; @ |Vyp| =5.37(74)(21) x 1073,
Np=2+1 Babar B — tvy ;@ |Vip| = 5.26(73)(12) x 1073,
Np=2+1+1 Babar B — tv;: |Vl =5.43(75)(12) x 1073,

(209)

where the first error comes from experiment and the second
comes from the uncertainty in fp.

Let us now turn our attention to semileptonic decays. The
experimental value of |V,|f;(¢%) can be extracted from
the measured branching fractions for B — 7*¢v and/or
B* — 7% applying Eq. (172);%7 |V,| can then be deter-
mined by performing fits to the constrained BCL z parame-
terization of the form factor f (¢?%) given in Eq. (185). This
can be done in two ways: one option is to perform sepa-
rate fits to lattice and experimental results, and extract the
value of | V| from the ratio of the respective ag coeffi-
cients; a second option is to perform a simultaneous fit to
lattice and experimental data, leaving their relative normal-
ization |V, | as a free parameter. We adopt the second strat-
egy, because it combines the lattice and experimental input
in a more efficient way, leading to a smaller uncertainty on
[Vib |-

The available state-of-the-art experimental input, as em-
ployed, e.g., by HFAG, consists of five datasets: three
untagged measurements by BaBar (6-bin [552] and 12-
bin [439]) and Belle [438], all of which assume isospin sym-
metry and provide combined B — 7~ and BT — x*
data; and the two tagged Belle measurements of B — 7+

5T Since £ = e, u the contribution from the scalar form factor in
Eq. (172) is negligible.
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(13-bin) and B~ — 79 (7-bin ) [553]. In the previous
version of the FLAG review [2] we only used the 13-
bin Belle and 12-bin BaBar datasets, and performed sep-
arate fits to them due to the lack of information on sys-
tematic correlations between them. Now, however, we will
follow established practice and perform a combined fit to
all the experimental data. This is based on the existence
of new information as regards cross-correlations, which
allows us to obtain a meaningful final error estimate.’®
The lattice input dataset will be the same as discussed in
Sect. 8.3.

We perform a constrained BCL fit of the vector and scalar
form factors (this is necessary in order to take into account
the fy (q2 =0)= fo (q2) constraint) together with the com-
bined experimental datasets. We find that the error on V;
stabilizes for (Nt = N° = 3). The result of the combined
fitis

FLIAG2016
T T T

1.0 3 }

0.8

I+
f+ FNAL/MILC 15
f+ RBC/UKQCD 15
fo FNAL/MILC 15
fo RBC/UKQCD 15
BaBar untagged 12bin
BaBar untagged 6bin
Belle tagged 13bin
Belle untagged 13bin

T

0.6 - Belle tagged 7bin

el %ﬁiiﬂﬁi%

1 | |
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Z<q27 topL)

B(¢*)¢(a*) f(q?)

04

0.2

Fig. 28 Lattice and experimental data for (1 —q%/ m%,* ) f f =7 (g%)and
fOB 7 (g?) versus z. Green symbols denote lattice-QCD points included
in the fit, while blue and indigo points show experimental data divided
by the value of |V,;| obtained from the fit. The grey and orange bands
display the preferred N* = N® = 3 BCL fit (six parameters) to the
lattice-QCD and experimental data with errors

B— mlv (Ny=2+1)

Central values Correlation matrix

v, x 103 3.73 (14) 1 0.852
ad 0.414 (12) 0.852 1

af —0.494 (44) 0.345 0.154
af —0.31 (16) —0.374 —0.456
al 0.499 (19) 0.211 0.259
a? —1.426 (46) 0.247 0.144

0.345 —0.374 0.211 0.247
0.154 —0.456 0.259 0.144

1 —0.797 —0.0995 0.223
—0.797 1 0.0160 —0.0994
—0.0995 0.0160 1 —0.467
0.223 —0.0994 —0.467 1

Figure 28 shows both the lattice and the experimental data
for (1 — qz/m%*)f+(q2) as a function of z(g?), together
with our preferred fit; experimental data have been rescaled
by the resulting value for |V, |?. It is worth noting the good
consistency between the form factor shapes from lattice and
experimental data. This can be quantified, e.g., by com-
puting the ratio of the two leading coefficients in the con-
strained BCL parameterization: the fit to lattice form fac-
tors yields af /ao+ = —1.67(12) (cf. the results presented
in Sect. 8.3.2), while the above lattice+experiment fit yields
af jaj = —1.193(16).

We plot the values of | V,,| we have obtained in Fig. 30,
where the determination through inclusive decays by the
Heavy Flavour Averaging Group (HFAG) [197], yielding
[Vup| = 4.62(20)(29) x 1073, is also shown for compar-
ison. In this plot the tension between the BaBar and the
Belle measurements of B(B~ — 17 v) is manifest. As dis-
cussed above, it is for this reason that we do not extract | V|
through the average of results for this branching fraction from
these two collaborations. In fact this means that a reliable
determination of |V,;| using information from leptonic B-
meson decays is still absent; the situation will only clearly

58 See, e.g., Sect. V.D of [504] for a detailed discussion.

improve with the more precise experimental data expected
from Belle II. The value for | V5| obtained from semileptonic
B decays for Ny = 2+ 1, on the other hand, is significantly
more precise than both the leptonic and the inclusive deter-
minations, and exhibits the well-known ~30 tension with
the latter.

8.7 Determination of |V, |

We will now use the lattice QCD results for the B — D™ ¢y
form factors in order to obtain determinations of the CKM
matrix element |V,;| in the Standard Model. The relevant
formulae are given in Eq. (189).

Let us summarize the lattice input that satisfies FLAG
requirements for the control of systematic uncertainties, dis-
cussed in Sect. 8.4. In the (experimentally more precise)
B — D*{v channel, there is only one Ny = 2 4 I lat-
tice computation of the relevant form factor F2~2" at zero
recoil. Concerning the B — D{v channel, for Ny = 2 there
is one determination of the relevant form factor G2~ P at zero
recoil;>® while for Ny =2+ 1 there are two determinations

59 The same work provides G Bs=Ds for which there are, however, no
experimental data.
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of the B — D form factor as a function of the recoil param-
eter in roughly the lowest third of the kinematically allowed
region. In the latter case, it is possible to replicate the anal-
ysis carried out for |V,;| in Sect. 8.6, and perform a joint
fit to lattice and experimental data; in the former, the value
of |V,p| has to be extracted by matching to the experimental
value for 52" (1) new|Vep| and G#7 P (new Ve .

The latest experimental average by HFAG [197] for the
B — D* form factor at zero recoil is
FB2D" (ppw | Ves| = 35.81(0.45) x 1072, (210)
By using ngw = 1.00662%° and the lattice value for
FB-D* (1) in Eq. (205), we thus extract our average

|Vep| =39.27(56)(49) x 1073,
(211)

Ny=2+1 B— D*v:

where the first uncertainty comes from the lattice compu-
tation and the second from the experimental input. For the
zero-recoil B — D form factor, HFAG quotes

conservatively use the value in Eq. (212) to provide an aver-
age for Ny = 2, and quote

Ny =2 B — D :|Vy|=41.03.8)(1.5) x 1072
(214)

Finally, for Ny = 2 + 1 we will perform, as discussed
above, a joint fit to the available lattice data, discussed in
Sect. 8.4, and state-of-the-art experimental determinations.
In this case we will combine the aforementioned recent
Belle measurement [554], which provides partial integrated
decay rates in 10 bins in the recoil parameter w, with the
2010 BaBar dataset in Ref. [555], which quotes the value of
GB=P (w)ngw|Vep| for ten values of w.! The fit is domi-
nated by the more precise Belle data; given this, and the fact
that only partial correlations among systematic uncertainties
are to be expected, we will treat both datasets are uncorre-
lated.?

A constrained (Nt = N° = 3) BCL fit using the same
ansatz as for lattice-only data in Sect. 8.4, yields our average

B— Dtv (Ny=2+1)

Central values Correlation matrix

[Vep| x 103 40.1 (1.0) 1 -0.525
ad 0.8944 (95) -0.525 1

al -8.08 (22) -0.431 0.282

ay 49.0 (4.6) -0.185 -0.162
al 0.7802 (75) -0.526 0.953

a? -3.42(22) -0.497 0.450

-0.431 -0.185 -0.526 -0.497
0.282 -0.162 0.953 0.450
1 0.613 0.350 0.934
0.613 1 -0.0931 0.603
0.350 -0.0931 1 0.446
0.934 0.603 0.446 1

HFAG: GB7P(1)new|Vep| = 42.65(1.53) x 1073, (212)

This average is strongly dominated by the BaBar input. The
set of experimental results for B — D£v has, however, been
significantly improved by the recent publication of a new
Belle measurement [554], which quotes

Belle 2016: G5 P (1)npw|Vep| = 42.29(1.37) x 1073,
(213)

Given the difficulties to include the latter number in a
global average replicating the procedure followed by HFAG,
and the fact that the final uncertainty will be completely dom-
inated by the error of the lattice input in Eq. (198), we will

0 Note that this determination does not include the electromagnetic
Coulomb correction roughly estimated in Ref. [539]. Currently the
numerical impact of this correction is negligible.
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The fit is illustrated in Fig. 29. In passing, we note that, if
correlations between the FNAL/MILC and HPQCD calcula-
tions are neglected, the V,,;, central value rises to 40.3 x 10~3
in nice agreement with the results presented in Ref. [800].

Our results are summarized in Table 41, which also shows
the HFAG inclusive determination of |V,;| for comparison,
and illustrated in Fig. 30. The Ny = 2 + 1 results coming
from B — D*fv and B — D{v could in principle be aver-
aged; we will, however, not do so, due to the difficulties of
properly taking into account experimental correlations. We
will thus leave them as separate exclusive estimates, which
show good mutual consistence, and the well-known tension
with the inclusive determination.

61 'We thank Marcello Rotondo for providing the ten bins result of the
BaBar analysis.

2 We have checked that results using just one experimental dataset are
compatible within 1o In the case of BaBar, we have taken into account
the introduction of some EW corrections in the data.
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Table41 Results for |V,;|. When two errors are quoted in our averages,
the first one comes from the lattice form factor, and the second from
the experimental measurement. The HFAG inclusive average obtained
in the kinetic scheme from Ref. [197] is shown for comparison

From [Vep| x 103
Our average for Ny =2+ 1 B — D*{v 39.27(56)(49)
Our average for Ny =2 + 1 B — Dtv 40.1(1.0)
Our average for Ny =2 B — Dtv 41.0(3.8)(1.5)
HFAG inclusive average B — X A4v 42.46(88)
FTAG2016
1.3 T T T | T
T fo BCL fit
i 7+ BCL fit
1.2 % f+ HPQCD 15 = -
f+ FNAL/MILC 15C 44—
e ' HPQCD 15 &
11 L fo FNAL/MILC 15C —&—
—~ BaBar 2009 %
RS * E Belle 2016 F—+—
=10 .
=
209 -
Lot
I £ T % % i
0.7 %
0.6 | | | | 1 %

I
-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
Z(qza topt)

Fig. 29 Lattice and experimental data for f _f =D (4?) and fOB =D (g2
versus z. Green symbols denote lattice-QCD points included in the fit,
while blue and indigo points show experimental data divided by the
value of |V, | obtained from the fit. The grey and orange bands display
the preferred N* = N 0 = 3 BCL fit (six parameters) to the lattice-QCD
and experimental data with errors

G2016 Vuplx10°
T
T = B-tv(BaBar)
(ﬁ‘ —_— B—1v (BEHE)
b

| FLAG estimate for N,=2+1

Z— ~a B—ntv
] — = B-t (BaBar)
z — . B—1v (Belle)

B—tv (BaBar)
B—1v (Belle)

|

i

—+e—+— HFAG Inclusive

non — latt.
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Fig. 30 Left Summary of |V,;| determined using: (i) the B-meson lep-
tonic decay branching fraction, B(B~ — t~ v), measured at the Belle

and BaBar experiments, and our averages for fp from lattice QCD; and
(i) the various measurements of the B — m{v decay rates by Belle

9 The strong coupling o
9.1 Introduction

The strong coupling g () defined at scale u, plays a key role
in the understanding of QCD and in its application for col-
lider physics. For example, the parametric uncertainty from
o, is one of the dominant sources of uncertainty in the Stan-
dard Model prediction for the H — bb partial width, and
the largest source of uncertainty for H — gg. Thus higher
precision determinations of ¢, are needed to maximize the
potential of experimental measurements at the LHC, and for
high-precision Higgs studies at future colliders [556-558].
The value of o also yields one of the essential boundary
conditions for completions of the standard model at high
energies.
In order to determine the running coupling at scale u

g (W)

dr
we should first “measure” a short-distance quantity Q at scale
W either experimentally or by lattice calculations and then
match it with a perturbative expansion in terms of a running
coupling, conventionally taken as og(1t),

ag(n) = 215)

Q(w) = crog(i) + coagg(W)* + -+ . (216)

The essential difference between continuum determinations
of g and lattice determinations is the origin of the values of
Qin Eq. (216).

The basis of continuum determinations are experimen-
tally measurable cross sections from which Q is defined.
These cross sections have to be sufficiently inclusive and at

3

FEEG 2016 [Veplx10
T o B—D¢tv
D)
f B B—»D*fv
o~
I B—D¢v
pd
8
_‘f —e—i HFAG inclusive
c
2 ‘

36 38 40 42 44 46
and BaBar, and our averages for lattice determinations of the relevant

vector form factor f (qz). Right Same for determinations of |V, | using
semileptonic decays. The HFAG inclusive results are from Ref. [197]
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sufficiently high scales such that perturbation theory can be
applied. Often hadronization corrections have to be used to
connect the observed hadronic cross sections to the pertur-
bative ones. Experimental data at high 1, where perturbation
theory is progressively more precise, usually have increasing
experimental errors, and it is not easy to find processes which
allow one to follow the u dependence of a single Q(u) over
a range where o, (1) changes significantly and precision is
maintained.

In contrast, in lattice gauge theory, one can design Q(u)
as Euclidean short-distance quantities which are not directly
related to experimental observables. This allows us to follow
the u dependence until the perturbative regime is reached and
nonperturbative “corrections” are negligible. The only exper-
imental input for lattice computations of «; is the hadron
spectrum which fixes the overall energy scale of the the-
ory and the quark masses. Therefore experimental errors are
completely negligible and issues such as hadronization do not
occur. We can construct many short-distance quantities that
are easy to calculate nonperturbatively in lattice simulations
with small statistical uncertainties. We can also simulate at
parameter values that do not exist in nature (for example with
unphysical quark masses between bottom and charm) to help
control systematic uncertainties. These features mean that
precise results for oy can be achieved with lattice gauge the-
ory computations. Further, as in the continuum, the different
methods available to determine ¢ in lattice calculations with
different associated systematic uncertainties enable valuable
cross-checks. Practical limitations are discussed in the next
section, but a simple one is worth mentioning here. Experi-
mental results (and therefore the continuum determinations)
of course have all quarks present, while in lattice gauge theo-
ries only the light ones are included and one then is forced to
use the matching at thresholds, as discussed in the following
subsection.

It is important to keep in mind that the dominant source of
uncertainty in most present day lattice-QCD calculations of
o, are from the truncation of continuum/lattice perturbation
theory and from discretization errors. Perturbative trunca-
tion errors are of a different nature than most other lattice (or
continuum) systematics, in that they often cannot easily be
estimated from studying the data itself. Further, the size of
higher-order coefficients in the perturbative series can some-
times turn out to be larger than naive expectations based on
power counting from the behaviour of lower-order terms.

The various phenomenological approaches to determin-
ing the running coupling, oz%(M z) are summarized by the
Particle Data Group [151]. The PDG review lists 4 cate-
gories of phenomenological results used to obtain the run-
ning coupling using hadronic t decays, hadronic final states
of eTe™ annihilation, deep inelastic lepton—nucleon scatter-
ing and electroweak precision data. Excluding lattice results,
the PDG quotes a weighted average of
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oz%(Mz) —0.1175(17), 217)
compared to oz%(M z) = 0.1183(12) of the previous review
[559]. For a general overview of the various phenomenolog-
ical and lattice approaches see e.g. Ref. [560]. We note that
perturbative truncation errors are also the dominant source
of uncertainty in several of the phenomenological determi-
nations of «. In particular, the extraction of g from t data,
which is the most precise and has the largest impact on the
nonlattice average in Eq. (217) is especially sensitive to the
treatment of higher-order perturbative terms. This is impor-
tant to keep in mind when comparing our chosen range for
a® (Mz) from lattice determinations in Eq. (261) with the

MS
nonlattice average from the PDG.

9.1.1 Scheme and scale dependence of oy and Agcp

Despite the fact that the notion of the QCD coupling is ini-
tially a perturbative concept, the associated A parameter is
nonperturbatively defined

A = p (bog*(u)) 01/ @60 o= 1/2bog* ()

8(w) 1 1 by .
X exp —/O dx ,B(x)+bo?_b%_x , (218)

where B is the full renormalization group function in the
scheme which defines g, and by and b; are the first two
scheme-independent coefficients of the perturbative expan-
sion

B(x) ~ —box® —byx® 4 -, (219)

with

by = ! 11 2N b = ! 102 38N-

07 @n)? 377 ) TN T an)t 3°7)
(220)

Thus the A parameter is renormalization-scheme-dependent
but in an exactly computable way, and lattice gauge theory
is an ideal method to relate it to the low-energy properties of
QCD.

The change in the coupling from one scheme, S, to another
(taken here to be the MS scheme) is perturbative,

grs(1) = g5 () (1 + ¢V gg(w) + -+, (221)
where cg) are the finite renormalization coefficients. The
scale u must be taken high enough for the error in keep-
ing only the first few terms in the expansion to be small. On
the other hand, the conversion to the A parameter in the MS
scheme is given exactly by

Aygs = Asexpley” /(2bo)]. (222)
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By convention ogyg is usually quoted at a scale u = Mz
where the appropriate effective coupling is the one in the 5-
flavour theory: a%(M 7). In order to obtain it from a result
with fewer flavours, one connects effective theories with dif-
ferent number of flavours as discussed by Bernreuther and
Wetzel [561]. For example one considers the MS scheme,
matches the 3-flavour theory to the 4-flavour theory at a
scale given by the charm-quark mass, runs with the 4-loop
B-function of the 4-flavour theory to a scale given by the b-
quark mass and there matches to the 5-flavour theory, after
which one runs up to u = M. For the matching relation at
a given quark threshold we use the mass m, which satisfies
m, = myg(m,), where m is the running mass (analogous to
the running coupling). Then

vy —1(m) = gy, (m) x [1+ 1 gy (m)

+1388, )+ -] (223)

with [562]
111
Hh=— 224
2T @i (224)
L] 82043 SG4T3L 2633
3T @n2)3 | 2764877 T 124416 31104
(225)

(where ¢3 is the Riemann zeta-function) provides the match-
ing at the thresholds in the MS scheme. While 1, 73 are
numerically small coefficients, the charm threshold scale is
also relatively low and so there are nonperturbative uncer-
tainties in the matching procedure, which are difficult to
estimate but which we assume here to be negligible. Obvi-
ously there is no perturbative matching formula across the
strange “threshold”; here matching is entirely nonperturba-
tive. Model dependent extrapolations of gZN from Ny =0,2
to Ny = 3 were done in the early days of lattice gauge theory.
We will include these in our listings of results but not in our
estimates, since such extrapolations are based on untestable
assumptions.

9.1.2 Overview of the review of o

We begin by explaining lattice-specific difficulties in Sect. 9.2
and the FLAG criteria designed to assess whether the associ-
ated systematic uncertainties can be controlled and estimated
in a reasonable manner. We then discuss, in Sects. 9.3-9.8,
the various lattice approaches. For completeness, we present
results from calculations with Ny = 0, 2, 3, and 4 flavours.
Finally, in Sect. 9.9, we present averages together with our
best estimates for o). These are determined from 3- and
4-flavour QCD simulations. The earlier Ny = 0,2 work
obtained results for Ny = 3 by extrapolation in N y. Because
this is not a theoretically controlled procedure, we do not
include these results in our averages. For the A parameter,

we also give results for other number of flavours, including
Ny = 0. Even though the latter numbers should not be used
for phenomenology, they represent valuable nonperturbative
information concerning field theories with variable numbers
of quarks.

9.1.3 Differences compared to the FLAG 13 report

For the benefit of the readers who are familiar with our pre-
vious report, we list here where changes and additions can
be found which go beyond slight improvements of the pre-
sentation.

Our criteria are unchanged as far as the explicit ratings on
renormalization scale, perturbative behaviour and continuum
extrapolation are concerned. However, where we discuss the
criteria, we emphasize that it is also important whether finite-
size effects and topology sampling are under control. In a few
cases, this influences our decision on which computations
enter our ranges and averages.

New computations which are reviewed here are

Karbstein 14 [563] and Bazavov 14 [61] based on the
static-quark potential (Sect. 9.4),

FlowQCD 15 [564] based on a tadpole-improved bare
coupling (Sect. 9.6),

HPQCD 14A [5] based on heavy-quark current 2-point
functions (Sect. 9.7).

They influence the final ranges marginally.

9.2 Discussion of criteria for computations entering the
averages

As in the PDG review, we only use calculations of o
published in peer-reviewed journals, and that use NNLO
or higher-order perturbative expansions, to obtain our final
range in Sect. 9.9. We also, however, introduce further criteria
designed to assess the ability to control important systemat-
ics which we describe here. Some of these criteria, e.g. that
for the continuum extrapolation, are associated with lattice-
specific systematics and have no continuum analogue. Other
criteria, e.g. that for the renormalization scale, could in prin-
ciple be applied to nonlattice determinations. Expecting that
lattice calculations will continue to improve significantly in
the near future, our goal in reviewing the state of the art here is
to be conservative and avoid prematurely choosing an overly
small range.

In lattice calculations, we generally take Q to be some
combination of physical amplitudes or Euclidean correlation
functions which are free from UV and IR divergences and
have a well-defined continuum limit. Examples include the
force between static quarks and 2-point functions of quark
bilinear currents.
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In comparison to values of observables Q determined
experimentally, those from lattice calculations require two
more steps. The first step concerns setting the scale w in
GeV, where one needs to use some experimentally mea-
surable low-energy scale as input. Ideally one employs a
hadron mass. Alternatively convenient intermediate scales
such as /%y, wo, ro, r1, [136,245,246,565] can be used if
their relation to an experimental dimensionful observable is
established. The low-energy scale needs to be computed at
the same bare parameters where Q is determined, at least as
long as one does not use the step-scaling method (see below).
This induces a practical difficulty given present computing
resources. In the determination of the low-energy reference
scale the volume needs to be large enough to avoid finite-
size effects. On the other hand, in order for the perturbative
expansion of Eq. (216) to be reliable, one has to reach suffi-
ciently high values of 4, i.e. short enough distances. To avoid
uncontrollable discretization effects the lattice spacing a has
to be accordingly small. This means

L > hadron size ~ AaéD and 1/a > u, (226)
(where L is the box size) and therefore
L/a>> u/Aqcp. (227)

The currently available computer power, however, limits
L/a,typically to L /a = 20-64. Unless one accepts compro-
mises in controlling discretization errors or finite-size effects,
this means one needs to set the scale u according to

n <K L/a x Agcp ~ 5—20GeV. (228)

Therefore, i can be 1-3 GeV at most. This raises the concern
whether the asymptotic perturbative expansion truncated at
1-loop, 2-loop, or 3-loop in Eq. (216) is sufficiently accurate.
There is a finite-size scaling method, usually called step-
scaling method, which solves this problem by identifying
u = 1/L in the definition of Q(u); see Sect. 9.3.

For the second step after setting the scale w in physical
units (GeV), one should compute Q on the lattice, Oy (a, 1)
for several lattice spacings and take the continuum limit to
obtain the left hand side of Eq. (216) as

Q) = {}1_% Quat(a, w) with p fixed. (229)
This is necessary to remove the discretization error.

Here it is assumed that the quantity Q has a continuum
limit, which is regularization-independent up to discretiza-
tion errors. The method discussed in Sect. 9.6, which is based
on the perturbative expansion of a lattice-regulated, diver-
gent short-distance quantity Wiy (a) differs in this respect
and must be treated separately.

In summary, a controlled determination of o needs to
satisfy the following:
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1. The determination of oy is based on a comparison of a
short-distance quantity Q at scale p with a well-defined
continuum limit without UV and IR divergences to a per-
turbative expansion formula in Eq. (216).

2. Thescale p is large enough so that the perturbative expan-
sion in Eq. (216) is precise to the order at which it is
truncated, i.e. it has good asymptotic convergence.

3. If Q is defined by physical quantities in infinite volume,
one needs to satisfy Eq. (227).

Nonuniversal quantities need a separate discussion; see
Sect. 9.6.

Conditions 2. and 3. give approximate lower and upper
bounds for p respectively. It is important to see whether there
is a window to satisfy 2. and 3. at the same time. If it exists,
it remains to examine whether a particular lattice calculation
is done inside the window or not.

Obviously, an important issue for the reliability of a cal-
culation is whether the scale u that can be reached lies in a
regime where perturbation theory can be applied with confi-
dence. However, the value of i does not provide an unam-
biguous criterion. For instance, the Schrodinger Functional,
or SF-coupling (Sect. 9.3) is conventionally taken at the scale
u = 1/L, but one could also choose u = 2/L. Instead of
we therefore define an effective ofr. For schemes such as SF
(see Sect. 9.3) or gq (see Sect. 9.4) this is directly the cou-
pling of the scheme. For other schemes such as the vacuum
polarization we use the perturbative expansion Eq. (216) for
the observable Q to define

aer = Q/c1. (230)

If there is an «g-independent term it should first be sub-
tracted. Note that this is nothing but defining an effective,
regularization-independent coupling, a physical renormal-
ization scheme.

Let us now comment further on the use of the pertur-
bative series. Since it is only an asymptotic expansion, the
remainder R,(Q) = Q — Y ;_, c;al of a truncated per-

turbative expression Q ~ > ._ c;al cannot just be esti-

i<n
mated as a perturbative error k" *!. The error is nonper-
turbative. Often one speaks of “nonperturbative contribu-
tions”, but nonperturbative and perturbative cannot be strictly
separated due to the asymptotic nature of the series (see
e.g. Ref. [566]).

Still, we do have some general ideas concerning the size of
nonperturbative effects. The known ones such as instantons
or renormalons decay for large u like inverse powers of
and are thus roughly of the form

exp(—y/ay), (231)

with some positive constant y. Thus we have, loosely speak-
ing,
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Q = co, + czots2 + - F ooy + (’)(a;"H)
+ O(exp(—y /o).

For small oy, the exp(—y /o) is negligible. Similarly the
perturbative estimate for the magnitude of relative errors
in Eq. (232) is small; as an illustration for n = 3 and
oy = 0.2 the relative error is ~0.8% (assuming coefficients
lent1/ci] ~ 1).

For larger values of oy nonperturbative effects can become
significant in Eq. (232). An instructive example comes from
the values obtained from 7 decays, for which oy ~ 0.3. Here,
different applications of perturbation theory (fixed order,
FOPT, and contour improved, CIPT) each look reasonably
asymptotically convergent but the difference does not seem
to decrease much with the order (see, e.g., the contribution of
Pich in Ref. [560]). In addition nonperturbative terms in the
spectral function may be nonnegligible even after the integra-
tion up to m (see, e.g., Ref. [567], Golterman in Ref. [560]).
All of this is because «; is not really small.

Since the size of the nonperturbative effects is very hard
to estimate one should try to avoid such regions of the cou-
pling. In a fully controlled computation one would like to
verify the perturbative behaviour by changing o over a sig-
nificant range instead of estimating the errors as ~a"*! .
Some computations try to take nonperturbative power ‘cor-
rections’ to the perturbative series into account by including
such terms in a fit to the u dependence. We note that this is
a delicate procedure, both because the separation of nonper-
turbative and perturbative is theoretically not well defined
and because in practice a term like, e.g., o (w)? is hard to
distinguish from a 1/u2 term when the zi-range is restricted
and statistical and systematic errors are present. We consider
it safer to restrict the fit range to the region where the power
corrections are negligible compared to the estimated pertur-
bative error.

The above considerations lead us to the following special
criteria for the determination of «;.

(232)

e Renormalization scale

Y all points relevant in the analysis have e < 0.2
O all points have ot < 0.4 and at least one ooy < 0.25
B otherwise

e Perturbative behaviour

Y verified over a range of a factor 4 change in a:}f with-
out power corrections or alternatively agf'f = 0.01is
reached

O agreement with perturbation theory over a range of a
factor 2.25 in a:f‘f possibly fitting with power correc-
tions or alternatively agf‘f = 0.02 is reached

B otherwise

Here n is the loop order to which the connection of ot
to the MS scheme is known. The S-function of aeg is
then known to nj + 1 loop order.%3

e Continuum extrapolation
At a reference point of aest = 0.3 (or less) we require

Y three lattice spacings with ua < 1/2 and full O(a)
improvement, or three lattice spacings with ua < 1/4
and 2-loop O(a) improvement, or ua < 1/8 and 1-
loop O(a) improvement

O three lattice spacings with na < 1.5 reaching down
to wa = 1 and full O(a) improvement, or three lattice
spacings with ua < 1/4 and one-loop O(a) improve-
ment

B otherwise

e Finite-size effects
These are a less serious issue for the determination of
o since one looks at short-distance observables where
such effects are expected to be suppressed. We therefore
have no special criterion in our tables, but do check that
volumes are not too small and in particular the scale is
determined in large enough volume.®* Remarks are added
in the text when appropriate.
e Topology sampling

In principle a good way to improve the quality of deter-
minations of «; is to push to very small lattice spacings
thus enabling large p. It is known that the sampling of
field space becomes very difficult for the HMC algorithm
when the lattice spacing is small and one has the standard
periodic boundary conditions. In practice, for all known
discretizations the topological charge slows down dra-
matically for a ~ 0.05 fm and smaller [68,71-75,351].
Open boundary conditions solve the problem [76] but
are rarely used. Since the effect of the freezing is gen-
erally not known, we also do need to pay attention to
this issue. Remarks are added in the text when appropri-
ate.

93 Once one is in the perturbative region with ceef, the error in extracting
the A parameter due to the truncation of perturbation theory scales
like agf‘f, as seen e.g. in Eq. (218). In order to well detect/control such
corrections, one needs to change the correction term significantly; we
require a factor of four for a % and a factor 2.25 for a O. In comparison
to FLAG 13, where n; = 2 was taken as the default, we have made the
n; dependence explicit and list it in Tables 157, 158, 159 and 160. An
exception to the above is the situation where the correction terms are
small anyway, i.e. aLf & 0.02 is reached.

64 Note also that the determination of the scale does not need to be very
precise, since using the lowest-order S-function shows that a 3% error
in the scale determination corresponds to a ~0.5% error in «s (M 7). So
as long as systematic errors from chiral-extrapolation and finite-volume
effects are below 3% we do not need to be concerned about those. This
covers most cases.
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We assume that quark-mass effects of light quarks (includ-
ing strange) are negligible in the effective coupling itself
where large, perturbative, 1 is considered.

We also need to specify what is meant by ©. Here are our
choices:

Schrodinger Functional : = 1/L,
heavy-quark—antiquark potential : © =2/r,
observables in momentum space : 4 = q ,

moments of heavy-quark currents : u = 2my (233)

where g is the magnitude of the momentum and m, the heavy-
quark mass. We note again that the above criteria cannot be
applied when regularization dependent quantities Wiy (a) are
used instead of O (). These cases are specifically discussed
in Sect. 9.6.

A popular scale choice is the intermediate ry scale,
although one should also bear in mind that its determination
from physical observables has also to be taken into account.
The phenomenological value of ry was originally deter-
mined as r9p ~ 0.49 fm through potential models describ-
ing quarkonia [136]. Recent determinations from 2-flavour
QCD are rg = 0.420(14)-0.450(14) fm by the ETM Col-
laboration [32,36], using as input f; and fx and carrying
out various continuum extrapolations. On the other hand, the
ALPHA Collaboration [12] determined o = 0.503(10) fm
with input from fg, and the QCDSF Collaboration [568]
cites 0.501(10)(11) fm from the mass of the nucleon (no con-
tinuum limit). Recent determinations from 3-flavour QCD
are consistent with 1 = 0.313(3) fm and ro = 0.472(5) fm
[29,250,569]. Due to the uncertainty in these estimates, and
as many results are based directly on r( to set the scale, we
shall often give both the dimensionless number 9 Agzg and
Agfs- In the cases where no physical ry scale is given in
the original papers or we convert to the r( scale, we use the
value ro = 0.472 fm. In the case ry Agg is given in the pub-
lications, we use ro/r; = 1.508 [569] to convert, neglect-
ing the error on this ratio. In some, mostly early, compu-
tations the string tension, /o was used. We convert to rg
using rga = 1.65 — /12, which has been shown to be an
excellent approximation in the relevant pure gauge theory
[570,571]. The new scales fg, wy based on the Wilson flow
are very attractive alternatives to ro but have not yet been used
as much and their discretization errors are still under discus-
sion [572-575]. We remain with rg as our main reference
scale for now.

The attentive reader will have noticed that bounds such
as wa < 1.5 or at least one value of e < 0.25 which
we require for a O are not very stringent. There is a con-
siderable difference between O and . We have chosen the
above bounds, unchanged as compared to FLAG 13, since not
too many computations would satisfy more stringent ones at
present. Nevertheless, we believe that the O criteria already
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give reasonable bases for estimates of systematic errors. In
the future, we expect that we will be able to tighten our cri-
teria for inclusion in the average, and that many more com-
putations will reach the present J rating in one or more
categories.

In principle one should also account for electroweak radia-
tive corrections. However, both in the determination of o
at intermediate scales p and in the running to high scales,
we expect electroweak effects to be much smaller than the
presently reached precision. Such effects are therefore not
further discussed.

9.3 oy from the Schrodinger functional
9.3.1 General considerations

The method of step-scaling functions avoids the scale prob-
lem, Eq. (226). It is in principle independent of the par-
ticular boundary conditions used and was first developed
with periodic boundary conditions in a two-dimensional
model [576]. However, at present most applications in QCD
use Schrodinger functional boundary conditions [153,577].
An important reason is that these boundary conditions avoid
zero modes for the quark fields and quartic modes [578] in
the perturbative expansion in the gauge fields. Furthermore
the corresponding renormalization scheme is well studied
in perturbation theory [579-581] with the 3-loop B-function
and two-loop cutoff effects (for the standard Wilson regular-
ization) known.

Let us first briefly review the step-scaling strategy. The
essential idea is to split the determination of the running
coupling at large n and of a hadronic scale into two lattice
calculations and connect them by ‘step scaling’. In the for-
mer part, we determine the running coupling constant in a
finite-volume scheme, in practice a ‘Schrodinger Functional
(SF) scheme’ in which the renormalization scale is set by the
inverse lattice size u = 1/L. In this calculation, one takes a
high renormalization scale while keeping the lattice spacing
sufficiently small as

pw=1/L~10...100GeV, a/L < 1. (234)

In the latter part, one chooses a certain g2, = g>(1/Lmax),
typically such that L,y is around 0.5 fm. With a common
discretization, one then determines Lpax/a and (in a large
volume L > 2-3 fm) a hadronic scale such as a hadron mass,
J/To/a or ro/a at the same bare parameters. In this way one
gets numbers for Lmax /7o and by changing the lattice spacing
a carries out a continuum limit extrapolation of that ratio.
In order to connect $2(1/Lmax) to (1) at high u, one
determines the change of the coupling in the continuum limit
when the scale changes from L to L/2, starting from L =
Lmax and arriving at ;& = 2% /L .« This part of the strategy
is called step scaling. Combining these results yields g2(u)
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Table 42 Results for the A parameter from computations using step scaling of the SF-coupling. Entries without values for A computed the running

and established perturbative behaviour at large 1

Collaboration Refs. Ny Publication Renormalization Perturbative Continuum  Scale Ays[ MeV] roAyrs
status scale behaviour extrapolation

ALPHA 10A [586] 4 A * * * Only running of oy in Fig. 4

Perez 10 [587] 4 P * * O Only step-scaling function in Fig. 4

PACS-CS 09A [62] 2+1 A * * o mpy 371(13)(8)(F),)* 0.888(30)(18)(T04)P
A * * o m, 345(59)° 0.824(141)®

ALPHA 12¢  [12] 2 A * * * /K 310(20) 0.789(52)

ALPHA 04  [588] 2 A u * * ro = 0.5 fm® 245(16)(16)¢ 0.62(2)(2)¢

ALPHA 01A [589] 2 A * * * Only running of «; in Fig. 5

CP-PACS 04" [582]1 0 A * * o Only tables of g2,

ALPHA 988  [590] O A * * O ro = 0.5 fm 238(19) 0.602(48)

Liischer 93 [579] O A * o o ro = 0.5 fm 233(23) 0.590(60)"

# Result with a constant (in ) continuum extrapolation of the combination Lyaxn1,

b In conversion to 70 Ajs» 7o is taken to be 0.472 fm

¢ Result with a linear continuum extrapolation in a of the combination Lmax,

4 Supersedes ALPHA 04

¢ The Ny = 2 results were based on values for ro/a which have later been found to be too small by [12]. The effect will be of the order of 10-15%,
presumably an increase in Arg. We have taken this into account by a B in the renormalization scale
f This investigation was a precursor for PACS-CS 09A and confirmed two step-scaling functions as well as the scale setting of ALPHA 98

& Uses data of Liischer 93 and therefore supersedes it
b Converted from um(37r(;') = 0.1108(25)

at U = 2k Lr%ro_ 1, where r( stands for the particular chosen
hadronic scale.

In order to have a perturbatively well-defined scheme, the
SF scheme uses Dirichlet boundary condition at time t = 0
and ¢t = T. These break translation invariance and permit
O(a) counter terms at the boundary through quantum cor-
rections. Therefore, the leading discretization error is O(a).
Improving the lattice action is achieved by adding counter
terms at the boundaries whose coefficients are denoted as
¢t, ¢;. In practice, these coefficients are computed with 1-
loop or 2-loop perturbative accuracy. A better precision in
this step yields a better control over discretization errors,
which is important, as can be seen, e.g., in Refs. [570,582].
The finite ¢{’, Eq. (221), are known for i = 1, 2 [580,581].

Also computations with Dirichlet boundary conditions do
in principle suffer from the insufficient change of topology
in the HMC algorithm at small lattice spacing. However, in a
small volume the weight of nonzero charge sectors in the path
integral is exponentially suppressed [583]% and one practi-
cally should not sample any nontrivial topology. Considering
the suppression quantitatively Ref. [584] finds a strong sup-
pression below L &~ 0.8 fm. Therefore the lack of topology
change of the HMC is not a real issue in the computations
discussed here. A mix of Dirichlet and open boundary con-

5 We simplify here and assume that the classical solution associated
with the used boundary conditions has charge zero. In practice this is
the case.

ditions is expected to remove this worry [585] and may be
considered in the future.

9.3.2 Discussion of computations

In Table 42 we give results from various determinations of the
A parameter. For a clear assessment of the N dependence,
the last column also shows results that refer to a common
hadronic scale, rg. As discussed above, the renormalization
scale can be chosen large enough such that oy < 0.2 and the
perturbative behaviour can be verified. Consequently only
J is present for these criteria except for early work where
the n; = 2 loop connection to MS was not yet known. With
dynamical fermions, results for the step-scaling functions are
always available for atleasta/L = pna = 1/4,1/6,1/8. All
calculations have a nonperturbatively O(a) improved action
in the bulk. For the discussed boundary O(a) terms this is not
so0. In most recent calculations two-loop O(a) improvement
is employed together with at least three lattice spacings.®
This means a 7 for the continuum extrapolation. In the other
contributions only one-loop ¢; was available and we arrive at
O. We note that the discretization errors in the step-scaling
functions are usually found to be very small, at the percent
level or below. However, the overall desired precision is very

6 With two-loop O(a) improvement we here mean ¢, including the
gé term and ¢; with the gé term. For gluonic observables such as the
running coupling this is sufficient for cutoff effects being suppressed to
O(gba).

@ Springer



112 Page 120 of 228

Eur. Phys. J. C (2017) 77:112

high as well, and the results in CP-PACS 04 [582] show
that discretization errors at the below percent level cannot
be taken for granted. In particular with staggered fermions
(unimproved except for boundary terms) few percent effects
are seen in Perez 10 [587].

In the work by PACS-CS 09A [62], the continuum extrap-
olation in the scale setting is performed using a constant
function in a and with a linear function. Potentially the for-
mer leaves a considerable residual discretization error. We
here use, as discussed with the collaboration, the continuum
extrapolation linear in a, as given in the second line of PACS-
CS 09A [62] results in Table 42.

A single computation, PACS-CS 09A [62], quotes also
ays(Mz). We take the linear continuum extrapolation as
discussed above:

a%(Mz) —0.118(3),

(235)
where the conversion from a 3-flavour result to 5-flavours
was done perturbatively (see Sect. 9.2). Other results do not
have a sufficient number of quark flavours (ALPHA 10A
[586], Perez 10 [587]) or do not yet contain the conversion
of the scale to physical units. Thus no value for (x%(M z) 18
quoted.

More results for a%(M 7) using step-scaling functions
can be expected soon. Their precision is likely to be much
better than what we were able to report on here. A major
reason is the use of the gradient flow [245] in definitions of
finite-volume schemes [591,592].

9.4 «ay from the potential at short distances

9.4.1 General considerations

The basic method was introduced in Ref. [593] and developed
in Ref. [594]. The force or potential between an infinitely

massive quark and antiquark pair defines an effective cou-
pling constant via

(236)

The coupling can be evaluated nonperturbatively from the
potential through a numerical differentiation; see below. In
perturbation theory one also defines couplings in different
schemes oy, ay via
vey =0 or Vo) = —CF%,
where one fixes the unphysical constant in the potential by
lim, 0o V(r) = 0 and V(Q) is the Fourier transform of
V (r). Nonperturbatively, the subtraction of a constant in the
potential introduces an additional renormalization constant,
the value of V (rrf) at some distance ry¢. Perturbatively, it
is believed to entail a renormalon ambiguity. In perturbation

(237)
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theory, these definitions are all simply related to each other,
and their perturbative expansions are known including the a;‘
and as log o terms [595-602].

The potential V (r) is determined from ratios of Wilson
loops, W (r, t), which behave as

(W(r, ) = |colPe™" "+ " eql?e™ ",
n#0

where ¢ is taken as the temporal extension of the loop, r is the
spatial one and V,, are excited-state potentials. To improve
the overlap with the ground state, and to suppress the effects
of excited states, ¢ is taken large. Also various additional
techniques are used, such as a variational basis of operators
(spatial paths) to help in projecting out the ground state. Fur-
thermore some lattice-discretization effects can be reduced
by averaging over Wilson loops related by rotational sym-
metry in the continuum.

In order to reduce discretization errors it is of advantage
to define the numerical derivative giving the force as

V(ir)—Vr —a)

Fi)=——""

(238)

(239)

where ry is chosen so that at tree level the force is the con-
tinuum force. F(r1) is then a ‘tree-level improved’ quantity
and similarly the tree-level improved potential can be defined
[603].

Lattice potential results are in position space, while per-
turbation theory is naturally computed in momentum space
at large momentum. Usually, the Fourier transform is then
taken of the perturbation expansion to match to the lattice
data.

Finally, as was noted in Sect. 9.2, a determination of the
force can also be used to determine the g scale, by defining
it from the static force by

rg F(ro) = 1.65, (240)

and with rle(rl) = 1 the r; scale.

9.4.2 Discussion of computations

In Table 43, we list results of determinations of roAgg
(together with Az using the scale determination of the
authors). Since the last review, FLAG 13, there have been two
new computations, Karbstein 14 [563] and Bazavov 14 [61].

The first determinations in the three-colour Yang Mills
theory are by UKQCD 92 [594] and Bali 92 [607] who
used aqq as explained above, but not in the tree-level
improved form. Rather a phenomenologically determined
lattice-artefact correction was subtracted from the lattice
potentials. The comparison with perturbation theory was on a
more qualitative level on the basis of a two-loop B-function
(n; = 1) and a continuum extrapolation could not be per-
formed as yet. A much more precise computation of crgq with
continuum extrapolation was performed in Refs. [570,603].
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Table 43 Short-distance potential results

Collaboration Refs. Ny  Publication Renormalization  Perturbative ~ Continuum Scale Ajs[MeV] roAgs
status scale behaviour extrapolation
Bazavov 14 [61] 2+1 A o * o} ri =0.3106(17) fm* 315(H18)°  0.746(732)
Bazavov 12 [604] 2+1 A o°¢ (@) od ro = 0.468 fm 295(30)¢ 0.70(7)f
Karbstein 14 [563] 2 A O O ) ro = 0.42 fm 331(21) 0.692(31)
ETM 11C [605] 2 A O O ) ro = 0.42 fm 315(30)% 0.658(55)
Brambilla 10 [606] 0 A o * oh 266(13)F  0.637(T3H)h
UKQCD 92 [594] O A * ol Jo =0.44 GeV 256(20) 0.686(54)
Bali 92 [607] O A * ol Jo =0.44 GeV 247(10) 0.661(27)

4 Determination on lattices with m, L = 2.2-2.6. About 10 changes of topological charge on the finest lattice [351]. Scale from r; [351] as

determined from f;; in Ref. [29]
b ot%(lﬁ GeV) = 0.336(*1%), a%(MZ) =0.1166(*}?)

¢ Since values of aefr within our designated range are used, we assign a O despite values of aefr up to aerr = 0.5 being used
d Since values of 2a/r within our designated range are used, we assign a O although only values of 2a/r > 1.14 are used at ey = 0.3

¢ Using results from Ref. [569]

3 5
f a%(lj GeV) = 0.326(19), ozl(v[é(Mz) =0.1156(*2)

€ Both potential and ro/a are determined on a small (L = 3.2rp) lattice

h Uses lattice results of Ref. [570], some of which have very small lattice spacings where according to more recent investigations a bias due to the

freezing of topology may be present
! Only roAgjg is given, our conversion using ro = 0.472 fm

I'We give a O because only a NLO formula is used and the error bars are very large; our criterion does not apply well to these very early calculations

Satisfactory agreement with perturbation theory was found
[603] but the stability of the perturbative prediction was not
considered sufficient to be able to extract a A parameter.

In Brambilla 10 [606] the same quenched lattice results
of Ref. [603] were used and a fit was performed to the con-
tinuum potential, instead of the force. Perturbation theory
to n; = 3 loop was used including a resummation of terms
0(;’ (otg In o)™ and a?(as In oy)". Close agreement with per-
turbation theory was found when a renormalon subtraction
was performed. Note that the renormalon subtraction intro-
duces a second scale into the perturbative formula which is
absent when the force is considered.

Bazavov 14 [61] is an update of Bazavov 12 [604] and
modify this procedure somewhat. They consider the well-
defined perturbative expansion for the force, where renor-
malon problems disappear. They set 4 = 1/r to eliminate
logarithms and then integrate the force to obtain an expres-
sion for the potential. The resulting integration constant is
fixed by requiring the perturbative potential to be equal to
the nonperturbative one exactly at a reference distance ryef
and the two are then compared at other values of r. As a
further check, the force is also used directly.

For the quenched calculation Brambilla 10 [606] very
small lattice spacings were available, a ~ 0.025 fm, [603].
For ETM 11C [605], Bazavov 12 [604], Karbstein 14 [563]
and Bazavov 14 [61] using dynamical fermions such small
lattice spacings are not yet realized (Bazavov 14 reaches
down to a ~ 0.041 fm). They all use the tree-level improved
potential as described above. We note that the value of Ay in
physical units by ETM 11C [605] is based on a value of rg =

0.42 fm. This is at least 10% smaller than the large majority
of other values of ry. Also the value of ry/a or r{/a on the
finest lattices in ETM 11C [605] and Bazavov 14 [61] come
from rather small lattices with m, L ~ 2.4, 2.2 respectively.

Instead of the procedure discussed previously, Karbstein
14 [563] reanalyses the data of ETM 11C [605] by first esti-
mating the Fourier transform ‘7( p) of V(r) and then fits
the perturbative expansion of V( p) in terms of ayg(p). Of
course, the Fourier transform cannot be computed without
modelling the r-dependence of V (r) at short and at large dis-
tances. The authors fit a linearly rising potential at large dis-
tances together with string-like corrections of order » " and
define the potential at large distances by this fit.®” Recall that
for observables in momentum space we take the renormal-
ization scale entering our criteria as u = p, Eq. (233). The
analysis (asin ETM 11C [605]) is dominated by the data at the
smallest lattice spacing, where a controlled determination of
the overall scale is difficult due to possible finite-size effects.

One of the main issues for all these computations is
whether the perturbative running of the coupling constant has
been reached. While for quenched or Ny = 0 fermions this
seems to be the case at the smallest distances, for dynamical
fermions at present there is no consensus. Brambilla 10 [606],
Bazavov 12 [604] and Bazavov 14 [61] report good agree-
ment with perturbation theory after the renormalon is sub-
tracted or eliminated, but Ref. [608] uses the force directly,
where no renormalon contributes, and finds that far shorter

7 Note that at large distances, where string breaking is known to occur,
this is not any more the ground state potential defined by Eq. (238).
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Table 44 Vacuum polarization results

Collaboration Refs. Ny Publication Renormalization Perturbative ~ Continuum Scale Ajs[MeV] roAy

status scale behaviour extrapolation
JLQCD 10 [613] 24+1 A u ro = 0.472 fm 247(5)* 0.591(12)
JLQCD/TWQCD [614] 2 A ro =0.49fm 234(9) (:1)6) 0.581(22) (Jjgo)
08C

‘5) o (Mz) = 0.11183)("[9)

distances are needed than are presently accessible for dynam-
ical fermion simulations in order to match to perturbation
theory. Further work is needed to clarify this point.

A second issue is the coverage of configuration space in
some of the simulations, which use very small lattice spac-
ings with periodic boundary conditions. Affected are the
smallest two lattice spacings of Bazavov 14 [61] where very
few tunnellings of the topological charge occur [351]. With
present knowledge, it also seems possible that the older data
by Refs. [570,603] used by Brambilla 10 [606] are partially
done in (close to) frozen topology.

9.5 «g from the vacuum polarization at short distances
9.5.1 General considerations

The vacuum polarization function for the flavour nonsinglet
currents J;j (a = 1,2, 3) in the momentum representation is
parameterized as

LIy =818, 0 — 0,011V (Q)
- 0,0,1%0)].

where Q,, is a space like momentum and J, = V,, for a
vector current and J, = A, for an axial-vector current.

Defining IT,;(Q) = H(JO)(Q) + H(Jl)(Q), the operator prod-
uct expansion (OPE) of the vacuum polarization function

(241)

My4+a(Q) =y (Q) + [Ta(Q) is given by
=2
My4alope(Q% o) = ¢ + C1(Q%) + CXH(QZ)mQ(ZQ)
cl {mqqq)
' Zd ()=
sGG
C6(Q%) (aQ >+O(Q 6).
(242)

for large Q2. Cy T4(0%) = Y ;.0(Cy ™) Dl (Q?) are the
perturbative coefficient functions for the operators X (X = 1,
qq.,GG)and m is the running mass of the mass-degenerate up
and down quarks. C is known including Ol? in a continuum
renormalization scheme such as the MS scheme [609-611].
Nonperturbatively, there are terms in Cx which do not have
a series expansion in «. For an example for the unit operator

@ Springer

see Ref. [612]. The term ¢ is Q—independent and divergent
in the limit of infinite ultraviolet cutoff. However the Adler
function defined as

2 _ 2410
D(Q%) =-0 407
is a scheme-independent finite quantity. Therefore one can
determine the running coupling constant in the MS scheme
from the vacuum polarization function computed by a lattice-
QCD simulation. In more detail, the lattice data of the vacuum
polarization is fitted with the perturbative formula Eq. (242)
with fit parameter Ayg parameterizing the running coupling
a5 (02).

While there is no problem in discussing the OPE at the
nonperturbative level, the ‘condensates’ such as («;GG) are
ambiguous, since they mix with lower-dimensional operators
including the unity operator. Therefore one should work in
the high- Q? regime where power corrections are negligible
within the given accuracy. Thus setting the renormalization
scale as u = \/@, one should seek, as always, the window
Aqgep € < al.

(243)

9.5.2 Discussion of computations

Results using this method are, to date, only available using
overlap fermions. These are collected in Table 44 for Ny = 2,
JLQCD/TWQCD 08C [614] and for Ny = 2 + 1, JLQCD
10 [613]. At present, only one lattice spacing a ~ 0.11 fm
has been simulated.

The fit to Eq. (242) is done with the 4-loop relation
between the running coupling and Aggg. It is found that
without introducing condensate contributions, the momen-
tum scale where the perturbative formula gives good agree-
ment with the lattice results is very narrow, aQ =~ 0.8-1.0.
When condensate contributions are included the perturba-
tive formula gives good agreement with the lattice results
for the extended range aQ =~ 0.6-1.0. Since there is only
a single lattice spacing there is a ® for the continuum limit.
The renormalization scale p is in the range of Q0 = 1.6—
2GeV. Approximating aeff ~ ogg(Q), we estimate that
aerf = 0.25-0.30 for Ny = 2 and aef = 0.29-0.33 for

= 2 + 1. Thus we give a O and ® for Ny = 2 and
Ny =2+ 1 respectively for the renormalization scale and a
m for the perturbative behaviour.
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We note that more investigations of this method are in
progress [615].

9.6 o, from observables at the lattice-spacing scale
9.6.1 General considerations

The general method is to evaluate a short-distance quantity
Q at the scale of the lattice spacing ~1/a and then determine
its relationship to ojg via a power series expansion.

This is epitomized by the strategy of the HPQCD Col-
laboration [616,617], discussed here for illustration, which
computes and then fits to a variety of short-distance quanti-
ties, Y,

Nmax

Y = Z CnOtQ//(q*) .

n=1

(244)

Y is taken as the logarithm of small Wilson loops (includ-
ing some nonplanar ones), Creutz ratios, ‘tadpole-improved’
Wilson loops and the tadpole-improved or ‘boosted’ bare
coupling (O(20) quantities in total). ¢, are perturbative coef-
ficients (each depending on the choice of Y) known ton = 3
with additional coefficients up to nmax being numerically fit-
ted. ary is the running coupling constant related to ay from
the static-quark potential (see Sect. 9.4).%8

The coupling constant is fixed at a scale g* = d/a. This
is chosen as the mean value of In ¢ with the one gluon loop
as measure [618,619]. (Thus a different result for d is found
for every short-distance quantity.) A rough estimate yields
d =~ m, and in general the renormalization scale is always
found to lie in this region.

For example for the Wilson loop W,,,, = (W (ma, na))
we have

W,
In (ﬂm—“) = crayi(q*) + c203,(¢")
0

+ezay (@) 4+ (245)

for the tadpole-improved version, where ci, ¢z, ... are the
appropriate perturbative coefficients and ug = W”4. Sub-
stituting the nonperturbative simulation value in the left hand
side, we can determine ayr (g ™), at the scale ¢*. Note that one
finds empirically that perturbation theory for these tadpole-
improved quantities have smaller ¢, coefficients and so the
series has a faster apparent convergence.

Using the B-function in the V' scheme, results can be run
to areference value, chosen as a9 = ay/(q0), go = 7.5 GeV.
This is then converted perturbatively to the continuum MS
scheme

axis(qo) = oo + diaf + drad + - - (246)

68 @y is defined by Ayr = Ay and b)" = bY fori = 0, 1,2 but
bY =0fori > 3.

where d1, d are known one and two loop coefficients.

Other collaborations have focussed more on the bare
‘boosted’ coupling constant and directly determined its rela-
tionship to aggg. Specifically, the boosted coupling is defined
by

1 g

ap(l/a) = ot (247)

again determined at a scale ~1/a. As discussed previously
since the plaquette expectation value in the boosted cou-
pling contains the tadpole diagram contributions to all orders,
which are dominant contributions in perturbation theory,
there is an expectation that the perturbation theory using the
boosted coupling has smaller perturbative coefficients [618],
and hence smaller perturbative errors.

9.6.2 Continuum limit

Lattice results always come along with discretization errors,
which one needs to remove by a continuum extrapolation.
As mentioned previously, in this respect the present method
differs in principle from those in which «; is determined
from physical observables. In the general case, the numeri-
cal results of the lattice simulations at a value of u fixed in
physical units can be extrapolated to the continuum limit, and
the result can be analysed as to whether it shows perturbative
running as a function of p in the continuum. For observables
at the cutoff-scale (¢* = d/a), discretization effects cannot
easily be separated out from perturbation theory, as the scale
for the coupling comes from the lattice spacing. Therefore
the restriction apu < 1 (the ‘continuum extrapolation’ cri-
terion) is not applicable here. Discretization errors of order
a? are, however, present. Since a ~ exp(—1/ (2b0g(2))) ~
exp(—1/(8mboa(g™)), these errors now appear as power cor-
rections to the perturbative running, and have to be taken into
account in the study of the perturbative behaviour, which is
to be verified by changing a. One thus usually fits with power
corrections in this method.

In order to keep a symmetry with the ‘continuum extrap-
olation’ criterion for physical observables and to remember
that discretization errors are, of course, relevant, we replace
it here by one for the lattice spacings used:

e Lattice spacings

Y 3 or more lattice spacings, at least 2 points below
a=0.1fm

O two lattice spacings, at least 1 point below a = 0.1 fm
B otherwise
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9.6.3 Discussion of computations

Note that due to u ~ 1/a being relatively large the results
easily have a Y or O in the rating on renormalization scale.

The work of El-Khadra 92 [620] employs a one-loop
formula to relate a%(n/a) to the boosted coupling for

three lattice spacings a~! = 1.15, 1.78, 2.43GeV. (The
lattice spacing is determined from the charmonium 1S-1P
splitting.) They obtain A% = 234MeV, corresponding

a(w/a) ~ 0.15-0.2. The work of Aoki 94

[621] calculates a%,z ) and oz% for a single lattice spacing

a~! ~ 2GeV again determined from charmonium 1S-1P

splitting in 2-flavour QCD. Using one-loop perturbation the-
ory with boosted coupling, they obtain a%,z) = 0.169 and
oz% = (0.142. Davies 94 [622] gives a determination of oy

from the expansion

o teff =

(Ny)

4
—lnwns?a (3.41/a)

(Ny)

x[1 = (1.185 + 0.070N f)ay, * 1, (248)

neglecting higher-order terms. They compute the Y spec-
trum in Ny = 0, 2 QCD for single lattice spacings at
a~! = 2.57, 2.47GeV and obtain ay(3.41/a) ~ 0.15,
0.18 respectively. Extrapolating the inverse coupling linearly
in Ny, a value of o (8.3GeV) = 0.196(3) is obtained.
SESAM 99 [623] follows a similar strategy, again for a
single lattice spacing. They linearly extrapolated results for
1/0[(0) 1/0{(2) at a fixed scale of 9 GeV to give ag), which
is then perturbatively converted to a(3) This finally gave

f\j) (Mz) = 0.1118(17). Wingate 95 [624] also follow this
method. With the scale determined from the charmonium
1S-1P splitting for single lattice spacings in Ny =0,2giv-
inga~! ~ 1.80GeV for Ny = 0 and a~! >~ 1.66GeV for
Ny = 2 they obtain o’ (3.41/a) ~ 0.15 and &\’ ~ 0.18
respectively. Extrapolating the coupling linearly in Nz, they
obtain & (6.48 GeV) = 0.194(17).

The QCDSF/UKQCD Collaborations, QCDSF/UKQCD
05 [625-628], use the two-loop relation (re-written here in
terms of o)

1
ays(n)

= +47QboInap —th)
ap(1/a) :

+ @m)*2bi Inap — tf)ap(1/a), (249)

where th and tzP are known. (A two-loop relation corresponds
to a 3-loop lattice B-function.) This was used to directly com-
pute g, and the scale was chosen so that the (’)(ozg) term
vanishes, i.e.

2.63/a Ny =0

l4/a Np=2" (250)

1
W= —expli’ /bo)] ~ {
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The method is to first compute ap(1/a) and from this using
Eq. (249) to find g (1 *). The RG equation, Eq. (218), then
determines */ Ay and hence using Eq. (250) leads to the
result for ro Aggg. This avoids giving the scale in MeV until
the end. In the Ny = 0 case 7 lattice spacings were used
[570], giving arange u*/ Ay ~ 24-72 (ora—! ~ 2-7GeV)
and aefr = agg(n®) ~ 0.15-0.10. Neglecting higher-order
perturbative terms (see discussion after Eq. (251) below) in
Eq. (249) this is sufficient to allow a continuum extrapo-
lation of roAgg. A similar computation for Ny = 2 by
QCDSF/UKQCD 05 [625] gave u*/Ayg ~ 12-17 (or
roughly a=! &~ 2-3GeV) and aep = ays(n®) ~ 0.20-
0.18. The Ny = 2 results of QCDSF/UKQCD 05 [625] are
affected by an uncertainty which was not known at the time
of publication: It has been realized that the values of rg/a
of Ref. [625] were significantly too low [12]. As this effect
is expected to depend on a, it influences the perturbative
behaviour leading us to assign a ® for that criterion.

Since FLAG 13, there has been one new result for Ny =
0 by FlowQCD 15 [564]. They also use the techniques as
described in Eqs. (249), (250), but together with the gradient
flow scale wy (rather than the r( scale). The continuum limit
is estimated by extrapolating the data at 9 lattice spacings
linearly in a?. The data range used is t*/ Agg A~ 40-120 (or
a=! ~ 3-11GeV) and a55(1*) ~ 0.12-0.09. Since a very
small value of g is reached, there is a ¢ in the perturbative
behaviour. Note that our conversion to the common rq scale
leadsto a signiﬁcant increase of the error of the A parameter
compared to % wo, 4 Az = 0.2388(5)(13).

The work of HPQCD 05A [616] (which supersedes the
original work [629]) uses three lattice spacings a~! ~ 1.2,
1.6,2.3 GeV for 2 + 1 flavour QCD. Typically the renormal-
ization scale ¢ &~ m/a ~ 3.50-7.10 GeV, corresponding to
ay ~ 0.22-0.28.

In the later update HPQCD 08A [617] 12 datasets (with six
lattice spacings) are now used reachingup toa ! &~ 4.4 GeV
corresponding to ey & 0.18. The values used for the scale rq
were further updated in HPQCD 10 [9]. Maltman 08 [63] uses
most of the same lattice ensembles as HPQCD 08A [617],
but considers a much smaller set of quantities (three versus
22) that are less sensitive to condensates. They also use dif-
ferent strategies for evaluating the condensates and for the
perturbative expansion, and a slightly different value for the
scale r;. The central values of the final results from Malt-
man 08 [63] and HPQCD 08A [617] differ by 0.0009 (which
would be decreased to 0.0007 taking into account a reduction
of 0.0002 in the value of the r; scale used by Maltman 08
[63]).

As mentioned before, the perturbative coefficients are
computed through 3-loop order [630], while the higher-

% The scale w4 used in FlowQCD 15 [564] is a modified wo Wilson
flow scale. With this notation wy = wo 3.
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order perturbative coefficients ¢, with nmax > n > 3 (with
nmax = 10) are numerically fitted using the lattice-simulation
data for the lattice spacings with the help of Bayesian meth-
ods. It turns out that corrections in Eq. (245) are of order
|c,~/cl|ai = 5-15% and 3-10% for i = 2, 3, respectively.
The inclusion of a fourth-order term is necessary to obtain a
good fit to the data, and leads to a shift of the result by 1-2
sigma. For all but one of the 22 quantities, central values of
|ca/c1| &= 2—4 were found, with errors from the fits of *2.

Animportant source of uncertainty is the truncation of per-
turbation theory. In HPQCD 08A [617], 10 [9] it is estimated
to be about 0.4% of agyg(Mz). In FLAG 13 we included a
rather detailed discussion of the issue with the result that we
prefer for the time being a more conservative error based on
the above estimate |c4/c1| = 2. From Eq. (244) this gives an
estimate of the uncertainty in aefr of

C4

Adeit(n1) = ‘; (251)

Olgff(l/vl),

atthe scale 11 where aegr is computed from the Wilson loops.
This can be used with a variation in A at lowest order of per-
turbation theory and also applied to o5 evolved to a different
scale ,u2,70

AA 1 Aoy

AN Aag(p2) _ of (p2)
A 8mhoors o5

Aag(nr)  a2(uy)’

(252)

We shall later use this with uy = Mz and o () = 0.2 as
a typical value extracted from Wilson loops in HPQCD 10
[9], HPQCD 08A [617].

Again we note that the results of QCDSF/UKQCD 05
[625] (Ny = 0) and FlowQCD 15 [564] may be affected
by frozen topology as they have lattice spacings significantly
below a = 0.05fm. The associated additional systematic
error is presently unknown.

Table 45 summarizes the results.

9.7 a from current 2-point functions
9.7.1 General considerations

The method has been introduced in Ref. [152] and updated in
Ref. [9]; see also Ref. [631]. Since FLAG 13 a new applica-
tion, HPQCD 14A [5], with 2 4 1 + 1 flavours has appeared.
There the definition for larger-n moments is somewhat sim-
plified and we describe it here. The previously used one can
be found in FLAG 13.

The basic observable is constructed from a current

J(x) = imop ¥, (x)ys ¥ (x) (253)

70 From Eq. (223) we see that o is continuous and differentiable across
the mass thresholds (at the same scale). Therefore to leading order o
and Ao are independent of N.

of two mass-degenerate heavy-valence quarks, i, i’. The
pre-factor mg;, denotes the bare mass of the quark. With a
residual chiral symmetry, J(x) is a renormalization group
invariant local field, i.e. it requires no renormalization. Stag-
gered fermions and twisted mass fermions have such a resid-
ual chiral symmetry. The (Euclidean) time-slice correlation
function

Gxo) =a’ ) (I ()T (0), (254)

(JT(x) = imon ¥y (x)ys¥n(x)) has a ~ x, singularity at
short distances and moments
T/2—a

G,=a Z

t=—(T/2—a)

" G(1), (255)

are nonvanishing for even n and furthermore finite forn > 4.
Here T is the time extent of the lattice. The moments
are dominated by contributions at ¢ of order 1/mygy. For
large mass moy, these are short distances and the moments
become increasingly perturbative for decreasing n. Denot-
ing the lowest-order perturbation theory moments by Gf,o),
one defines the normalized moments

0
G4/GY
GI/(n—4)

n
1/(n—4)
o (6)

of even order n. Note that Eq. (253) contains the variable
(bare) heavy-quark mass my,, while Eq. (256) is defined with
the charm-quark mass, tuned to its physical value. The nor-
malization moc(G,(IO))l/ =4 in Eq. (256) ensures that R,
remains renormalization group invariant, but introduces a
mass scale. In the continuum limit the normalized moments
can then be parameterized in terms of functions

forn =4,

R, = (256)

forn > 6,

~ ra(as(p)) forn =4,

= forn > 6, (257)

n = rn(as (1))
me ()
with m () being the renormalized charm-quark mass. The
reduced moments r, have a perturbative expansion

rm=14r, 105 + r,,,gaf + r,,,gots +..., (258)

where the written terms r,, ; (u/mp(@)), i < 3 are known
for low n from Refs. [632-636]. In practice, the expansion
is performed in the MS scheme. Matching nonperturbative
lattice results for the moments to the perturbative expan-
sion, one determines an approximation to agg(u) as well
as m¢(w). With the lattice spacing (scale) determined from
some extra physical input, this calibrates 1. As usual suitable
pseudoscalar masses determine the bare quark masses, here
in particular the charm mass, and then through Eq. (257) the
renormalized charm-quark mass.

A difficulty with this approach is that large masses are
needed to enter the perturbative domain. Lattice artefacts can
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Fig. 31 o for R4 from HPQCD 10 data (left) and from HPQCD 14A
(right). A similar graph for R¢/Rg is shown in FLAG 13. Symbols cor-
respond to O for datawith 1 < ap < 1.5and ®forapu > 1.5, while *
(ap < 1/2) is not present. This corresponds exactly to the ap part of

then be sizeable and have a complicated form. The ratios in
Eq. (256) use the tree-level lattice results in the usual way
for normalization. This results in unity as the leading term in
Eq. (258), suppressing some of the kinematical lattice arte-
facts. We note that in contrast to e.g. the definition of agq,
here the cutoff effects are of order a*« s, While there the tree-
level term defines oy and therefore the cutoff effects after
tree-level improvement are of order afa2.

Finite-size effects (FSE) due to the omission of |¢| > T /2
in Eq. (255) grow with n as (mpT/2)" exp (—m,T/2). In
practice, however, since the (lower) moments are short-
distance dominated, the FSE are expected to be irrelevant
at the present level of precision.

Moments of correlation functions of the quark’s electro-
magnetic current can also be obtained from experimental
data for eTe™ annihilation [637,638]. This enables a non-
lattice determination of o using a similar analysis method.
In particular, the same continuum perturbation theory com-
putation enters both the lattice and the phenomenological
determinations.

9.7.2 Discussion of computations

The method has originally been applied in HPQCD 08B [152]
and in HPQCD 10 [9], based on the MILC ensembles with
2+ 1 flavours of Asqtad staggered quarks and HISQ valence
quarks. The scale was set using r; = 0.321(5) fm in HPQCD
08B [152] and the updated value r; = 0.3133(23) fm in
HPQCD 10 [9]. The effective range of couplings used is
here given for n = 4, which is the moment most dominated
by short (perturbative) distances and important in the deter-
mination of «y. The range is similar for other ratios. With

ﬂGZOlB‘
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our continuum limit criterion, but does not consider how many lattice
spacings are present. Note that mistunings in the quark masses have
not been accounted for, but, estimated as in HPQCD 14A [5], they are
smaller than the size of the symbols in the graphs

r4,1 = 0.7427 and R4 = 1.28 determined in the continuum
limit at the charm mass in Ref. [152], we have aeff = 0.38
at the charm-quark mass, which is the mass value where
HPQCD 08B [152] carries out the analysis. In HPQCD 10
[9] a set of masses is used, with R4 € [1.09, 1.29] which
corresponds to aefr € [0.12, 0.40].

The available data of HPQCD 10 [9] is summarized in the
left panel of Fig. 31 where we plot aefr against mpr. For the
continuum limit criterion, we choose the scale u = 2m; ~
myp/1.1, where we have taken my, in the MS scheme at scale
my, and the numerical value 1.1 was determined in HPQCD
10B [51].

The data in Fig. 31 are grouped according to the range of
ap that they cover. The vertical spread of the results for gt
at fixed rymyp in the figure measures the discretization errors
seen: in the continuum we would expect all the points to
lie on one universal curve. The plots illustrate the selection
applied by our criterion for the continuum limit with our
choices for . Figure 31 gives reason for concern, since it
shows that the discretization errors that need to be removed
in the continuum extrapolation are not small.

With our choices for wu, the continuum limit criterion
is satisfied for three lattice spacings when aef < 0.3 and
n = 4. Larger-n moments are more influenced by non-
perturbative effects. For the n values considered, adding a
gluon condensate term only changed error bars slightly in
HPQCD’s analysis. We note that HPQCD in their papers
perform a global fit to all data using a joint expansion in
powers of ety , (A /(mp/ 2))/ to parameterize the heavy-quark
mass dependence, and (amp/ 2)% to parameterize the lattice-
spacing dependence. To obtain a good fit, they must exclude
data with amp > 1.95 and include lattice-spacing terms a%
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Table 46 Current 2-point function results

Collaboration Refs. Ny Publication Renormalization Perturbative  Continuum Scale Azis[MeV] roAg
status scale behaviour extrapolation

HPQCD 14A [5] 2+1+1 A (@] * (@) wo = 0.1715(9) fm?® 294(11)P<  0.703(26)

HPQCD 10 [9] 2+1 A (@] * r1 = 0.3133(23) fm9 338(10)° 0.809(25)

HPQCD 08B [152] 2+1 A u u u ri=03215) fmd  325(18)f 0.777(42)

 Scale determined in [26] using f

b @ _ &) —
am(S GeV) = 0.2128(25), Olm(MZ) = 0.11822(74)

¢ Our conversion for Ay for Ny = 4. We also used ro = 0.472 fm
4 Scale is determined from Y mass splitting

€@l (5GeV) = 0.203421), a2l (M) = 0.1183(7)

all(3GeV) = 0.251(6), ok (Mz) = 0.1174(12)

with i greater than 10. Because these fits include many more
fit parameters than data points, HPQCD uses their expecta-
tions for the sizes of coefficients as Bayesian priors. The fits
include data with masses as large as amp/2 ~ 0.86, so there
is only minimal suppression of the many high-order contri-
butions for the heavier masses. It is not clear, however, how
sensitive the final results are to the larger am,, /2 values in the
data. The continuum limit of the fitis in agreement with a per-
turbative scale dependence (a 5-loop running oz with a fit-
ted 5-loop coefficientin the B-function is used). Indeed, Fig. 2
of Ref. [9] suggests that HPQCD’s fit describes the data well.

The new computation, HPQCD 14A [5], is based on
MILC’s 2 + 1 + 1 HISQ staggered ensembles. Compared
to HPQCD 10 [9] valence- and sea-quarks now use the same
discretization and the scale is set through the gradient flow
scale wg, determined to wg = 0.1715(9) fm in Ref. [639].

We again show the values of aef as a function of the
physical scale. Discretization errors are noticeable. A number
of data points, satisfy our continuum limit criterion ap <
1.5, at two different lattice spacings. This does not by itself
lead to a O but the next-larger lattice spacing does not miss
the criterion by much; see Table 165. We therefore assign a
O in that criterion.

The other details of the analysis by HPQCD 10 [9] are
very similar to the ones described above, with one notewor-
thy exception. The new definition of the moments does not
involve the pseudoscalar 7/ mass anymore. Therefore its
relation to the quark mass does not need to be modeled in
the fit. Since it is now replaced by the renormalized charm-
quark mass, the analysis produces a result for oy and the
charm-quark mass at the same time. Here we only discuss
the result for o.

In Table 46 we list the current 2-point function results.
Thus far, only one group has used this approach, which mod-
els complicated and potentially large cutoff effects together
with a perturbative coefficient. We therefore are waiting to
see confirmation by other collaborations of the small system-
atic errors obtained (cf. discussion in Sect. 9.9.2). (We note

@ Springer

that more investigations of this method are in progress [174].)
We do, however, include the values of agg(Mz) and Ay
of HPQCD 10 [9] and HPQCD 14A [5] in our final range.

9.8 «y from QCD vertices
9.8.1 General considerations

The most intuitive and in principle direct way to determine
the coupling constant in QCD is to compute the appro-
priate three- or 4-point gluon vertices or alternatively the
quark—quark—gluon vertex or ghost—ghost—gluon vertex (i.e.
qq A or ccA vertex respectively). A suitable combination of
renormalization constants then leads to the relation between
the bare (lattice) and renormalized coupling constant. This
procedure requires the implementation of a nonperturbative
renormalization condition and the fixing of the gauge. For
the study of nonperturbative gauge fixing and the associated
Gribov ambiguity, we refer to Refs. [640-642] and refer-
ences therein. In practice the Landau gauge is used and the
renormalization constants are defined by requiring that the
vertex is equal to the tree level value at a certain momen-
tum configuration. The resulting renormalization schemes
are called ‘MOM’ scheme (symmetric momentum configu-
ration) or ‘1\76?/1’ (one momentum vanishes), which are then
converted perturbatively to the MS scheme.

A pioneering work to determine the three-gluon vertex in
the Ny = 0 theory is Alles 96 [643] (which was followed
by Ref. [644] for two flavour QCD); a more recent Ny = 0
computation was Ref. [645] in which the three-gluon ver-
tex as well as the ghost—ghost—gluon vertex was considered.
(This requires in general a computation of the propagator
of the Faddeev—Popov ghost on the lattice.) The latter paper
concluded that the resulting A5 depended strongly on the
scheme used, the order of perturbation theory used in the
matching and also on nonperturbative corrections [646].

Subsequently in Refs. [647,648] a specific MOM scheme
with zero ghost momentum for the ghost—ghost—gluon vertex
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was used. In this scheme, dubbed the ‘MM’ (Minimal MOM)
or ‘Taylor’ (T) scheme, the vertex is not renormalized, and
so the renormalized coupling reduces to

o2 g£<a>’

ar () = DR () D™ (. @) 2

lat lat

(259)

where Dl‘(’;}:ost and Dlg;tu " are the (bare lattice) dressed ghost

and gluon ‘form factors’ of these propagator functions in the
Landau gauge,

b Dghost(p)
p*

b b
D (p) = 6 (a,w

D (p) = =8

(260)

. Pupv> Dpeluon (p)

P pr
and we have written the formula in the continuum with
pghost/gluon )y — Diﬂosr/ gluon( p, 0). Thus there is now no
need to compute the ghost—ghost—gluon vertex, just the ghost
and gluon propagators.

9.8.2 Discussion of computations

For the calculations considered here, to match to perturbative
scaling, it was first necessary to reduce lattice artefacts by an
H (4) extrapolation procedure (addressing O(4) rotational
invariance), e.g. ETM 10F [654] or by lattice perturbation
theory, e.g. Sternbeck 12 [652]. To match to perturbation the-
ory, collaborations vary in their approach. In ETM 10F [654]
it was necessary to include the operator A in the OPE of the
ghost and gluon propagators, while in Sternbeck 12 [652]
very large momenta are used and a?p? and a*p* terms are
included in their fit to the momentum dependence. A further
later refinement was the introduction of higher nonperturba-
tive OPE power corrections in ETM 11D [651] and ETM
12C [650]. Although the expected leading power correction,
1/p*, was tried, ETM finds good agreement with their data
only when they fit with the next-to-leading-order term, 1/ p®.
The update ETM 13D [649] investigates this point in more
detail, using better data with reduced statistical errors. They
find that after again including the 1/ p® term they can describe
their data over a large momentum range from about 1.75 to
7 GeV.

In all calculations except for Sternbeck 10 [653], Stern-
beck 12 [652] , the matching with the perturbative formula
is performed including power corrections in the form of con-
densates, in particular (A?). Three lattice spacings are present
in almost all calculations with Ny = 0, 2, but the scales ap
are rather large. This mostly results in a ® on the continuum
extrapolation (Sternbeck 10 [653], Boucaud 01B [644] for
Ny = 2. Ilgenfritz 10 [655], Boucaud 08 [648], Boucaud 05
[645], Becirevic 99B [660], Becirevic 99A [661], Boucaud
98B [662], Boucaud 98A [663], Alles 96 [643] for Ny = 0).
A O is reached in the Ny = 0 computations Boucaud 00A

[659], 00B [658], 01A [657], Soto 01 [656] due to a rather
small lattice spacing, but this is done on a lattice of a small
physical size. The Ny = 2 + 1 + 1 calculation, fitting with
condensates, is carried out for two lattice spacings and with
ap > 1.5, giving ® for the continuum extrapolation as well.
In ETM 10F [654] we have 0.25 < aef < 0.4, while in
ETM 11D [651], ETM 12C [650] (and ETM 13 [33]) we
find 0.24 < oefr < 0.38 which gives a green circle in these
cases for the renormalization scale. In ETM 10F [654] the
values of ap violate our criterion for a continuum limit only
slightly, and we give a O.

In Sternbeck 10 [653], the coupling ranges over 0.07 <
aeff < 0.32for Ny =0and 0.19 < aer < 0.38 for Ny =2
giving * and O for the renormalization scale respectively.
The fit with the perturbative formula is carried out without
condensates, giving a satisfactory description of the data. In
Boucaud 01A [657], depending on a, a large range of o is
used which goes down to 0.2 giving a O for the renormal-
ization scale and perturbative behaviour, and several lattice
spacings are used leading to O in the continuum extrapola-
tion. The Ny = 2 computation Boucaud 01B [657], fails the
continuum limit criterion because both au is too large and
an unimproved Wilson fermion action is used. Finally in the
conference proceedings Sternbeck 12 [652],the Ny = 0,2, 3
coupling o is studied. Subtracting one-loop lattice artefacts
and subsequently fitting with a” p* and a* p* additional lat-
tice artefacts, agreement with the perturbative running is
found for large momenta (rg p2 > 600) without the need
for power corrections. In these comparisons, the values of
roAgg from other collaborations are used. As no numbers
are given, we have not introduced ratings for this study.

In Table 47 we summarize the results. Presently there are
no Ny > 3 calculations of oy from QCD vertices that satisfy
the FLAG criteria to be included in the range.

9.9 Summary
9.9.1 The present situation

We first summarize the status of lattice-QCD calculations of
the QCD scale Agg. Figure 32 shows all results for ro Aygg
discussed in the previous sections.

Many of the numbers are the ones given directly in the
papers. However, when only Agg in physical units (MeV) is
available, we have converted them by multiplying with the
value of rg in physical units. The notation used is full green
squares for results used in our final average, while a lightly
shaded green square indicates that there are no red squares
in the previous colour coding but the computation does not
enter the ranges because either it has been superseded by an
update or it is not published. Red open squares mean that
there is at least one red square in the colour coding.
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Fig. 32 roAyg estimates for Ny = 0, 2, 3, 4 flavours. Full green
squares are used in our final ranges, pale green squares also indicate
that there are no red squares in the colour coding but the computations
were superseded by later more complete ones or not published, while
red open squares mean that there is at least one red square in the colour
coding

For Ny = 0 there is relatively little spread in the more
recent numbers, even in those which do not satisfy our crite-
ria.

When two flavours of quarks are included, the numbers
extracted by the various groups show a considerable spread,
as in particular older computations did not yet control the sys-
tematics sufficiently. This illustrates the difficulty of the prob-
lem and emphasizes the need for strict criteria. The agree-
ment among the more modern calculations with three or more
flavours, however, is quite good.

We now turn to the status of the essential result for phe-
nomenology, a%(M 7). In Table 48 and Fig. 33 we show all

the results for a%(M z) (i.e. ayg at the Z mass) obtained
from Ny = 2+ 1and Ny = 2 + 1 + 1 simulations. For
comparison, we also include results from Ny = 0, 2 simu-
lations, which are not relevant for phenomenology. For the
Ny > 3 simulations, the conversion from Ny = 3or Ny = 4
to Ny = 5 is made by matching the coupling constant at the
charm and bottom quark thresholds and using the scale as
determined or used by the authors. For Ny = 0, 2 the results
for oz in the summary table come from evaluations of oy
atarelatively low scale and are extrapolatedin Ny to Ny = 3.

As can be seen from the tables and figures, at present there
are several computations satisfying the criteria to be included
in the FLAG average. Since FLAG 13 two new computations
of a%(Mz), Bazavov 14 [61] and HPQCD 14A [5], pass all

our criteria with a ©. We note that none of those calculations
of oe%(M 7) satisfy all of our more stringent criteria: a % for
the renormalization scale, perturbative behaviour and contin-
uum extrapolation. The results, however, are obtained from
four different methods that have different associated system-

atics, and agree quite well within the stated uncertainties.

5
9.9.2 Our range for al(vT;

We now explain the determination of our range. We only
include those results without a red tag and that are published
in a refereed journal. We also do not include any numbers
which were obtained by extrapolating from theories with less
than three flavours. There is no real basis for such extrapola-
tions; rather they use ad hoc assumptions on the low-energy
behaviour of the theories. One also notices from the pub-
lished results that the estimated numbers are quite signifi-
cantly below those with at least 2 + 1 flavours.

A general issue with most recent determinations of ogg;,
both lattice and nonlattice, is that they are dominated by
perturbative truncation errors, which are difficult to esti-
mate. Further, all results discussed here except for those of
Sects. 9.3 and 9.6 are based on extractions of ag;g that are
largely influenced by data with aerr > 0.3. At smaller o
the momentum scale u quickly is at or above a~!. We have
included computations using au up to 1.5 and oefr up to
0.4, but one would ideally like to be significantly below that.
Accordingly we choose at this stage to estimate the error
ranges in a conservative manner, and not simply perform
weighted averages with the individual errors estimated by
each group.

Many of the methods have thus far only been applied by

a single collaboration, and with simulation parameters that
could still be improved. We therefore think that the following
aspects of the individual calculations are important to keep
in mind, and look forward to additional clarification and/or
corroboration in the future.
e The potential computations Brambilla 10 [606], ETM 11C
[605] and Bazavov 12 [604] give evidence that they have
reached distances where perturbation theory can be used.
However, in addition to A, a scale is introduced into the per-
turbative prediction by the process of subtracting the renor-
malon contribution. This subtraction is avoided in Bazavov
14 [61] by using the force and again agreement with perturba-
tive running is reported. The extractions of A are dominated
by data with et > 0.3. In contrast, Ref. [608], which studies
the force instead of the potential and therefore does not need
a renormalon subtraction, finds that significantly smaller lat-
tice spacings would be needed in order for perturbation the-
ory to be reliable in a region of © = 1/r where discretization
errors are controlled. Further study is still needed to clarify
the situation.
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Fig. 33 ol (Mz), the coupling constant in the MS scheme at the Z
mass. The results labeled Ny = 0, 2 use estimates for Ny = 3 obtained
by first extrapolating in Ny from Ny = 0, 2 results. Since this is not
a theoretically justified procedure, these are not included in our final
estimate and are thus given a red symbol. However, they are shown
to indicate the progress made since these early calculations. The PDG
entry indicates the outcome of their analysis excluding lattice results
(see Sect. 9.9.4)

e In the determination of oy from observables at the lattice-
spacing scale, there is an interplay of higher-order pertur-
bative terms and lattice artefacts. In HPQCD 05A [616],
HPQCD 08A [617] and Maltman 08 [63] both lattice artefacts
(which are power corrections in this approach) and higher-
order perturbative terms are fitted. We note that Maltman
08 [63] and HPQCD 08A [617] analyse largely the same
dataset but use different versions of the perturbative expan-
sion and treatments of nonperturbative terms. After adjust-
ing for the slightly different lattice scales used, the values of
ays(Mz) differ by 0.0004 to 0.0008 for the three quantities
considered. In fact the largest of these differences (0.0008)
comes from a tadpole-improved loop, which is expected to
be best behaved perturbatively.

e Other computations with very small errors are HPQCD
10 [9] and HPQCD 14A [5], where correlation functions
of heavy quarks are used to construct short-distance quan-
tities. Due to the large quark masses needed to reach the
region of small coupling, considerable discretization errors
are present; see Fig. 31. These are treated by fits to the per-
turbative running (a 5-loop running agg with a fitted 5-loop
coefficient in the S-function is used) with high-order terms in
a double expansion in a>A? and azm% supplemented by pri-
ors which limit the size of the coefficients. The priors play an
especially important role in these fits given the much larger
number of fit parameters than data points. We note, however,
that the size of the coefficients does not prevent high-order
terms from contributing significantly, since the data includes
values of amy /2 that are rather close to 1.

As previously mentioned ) (M 7z) is summarized in
Table 48 and Fig. 33. A number of calculations that include
at least the effect of the strange quark make up our final esti-
mate. These are Bazavov 14 [61], HPQCD 14A [5], HPQCD
10 [9] (Wilson loops and current 2-point correlators), PACS-
CS 09A [62], Maltman 08 [63] while HPQCD 08A/05A
[616,617] and Bazavov 12 [604] have been superseded by
more recent calculations. We obtain the central value for our
range,

(5> ) (Mz) =0.1182(12), 261)

from the weighted average of the six results.”! Of the results
that enter our range, those from Wilson loops (HPQCD 10
[9], and Maltman 08 [63]) and current 2-point correlators
(HPQCD 10 [9]) presently have the smallest quoted errors.
We have just listed reasons to be careful in estimating the
present overall uncertainty. We therefore take a larger range
for a(S) (M7) than one would obtain from the weighted aver-
age, or even from the most precise individual calculation.
We arrive at its value as follows. We make a conservative
estimate of the perturbative uncertainty in the calculation of
o from small Wilson loops. One approach for making such
an estimate would be to take the largest of the differences
between the calculations of Maltman 08 [63] and HPQCD
08A [617],0.0008, which comes from the quantity computed
by both groups that is expected to be best behaved perturba-
tively. This is somewhat larger than some of the estimates
in the individual papers. Our choice is instead to take an
estimate of the perturbative truncation error as the overall
uncertainty. As explained in Sect. 9.6 the first unknown coef-
ficient in the perturbative series was estimated in the fits to
be |cs/c1| A~ 2. Using it in Eqgs. (251) and (252)7? yields
Aa%(MZ) = 0.0012. This is larger than the estimate of
0.0008 above and is what we adopt as the uncertainty of the
Wilson loop results. The second number with small errors
entering the average comes from the analysis of moments of
heavy-quark correlators. Here an independent estimate of the
uncertainty due to the fit to the a-dependence (see Fig. 31)
is much more difficult to make; as discussed above, and in
the absence of confirmation by other groups, we are not yet
ready to use the result of HPQCD 10 [9] from the analysis of
moments to reduce the size of our range. Thus the overall size
of the range is determined by our estimate of the uncertainty
of oz%(M z) from Wilson loops. It is further reassuring to
see that almost all central values that qualify for averaging
are within the so-determined range.

71" We have symmetrized the asymmetric error bars of Bazavov 14 [61]
to 0.1166(10) in taking the average
72 More precisely, we use af(S GeV) = 0.203 corresponding to Eq.

(263) and a (MZ) = 0.1182 in Egs. (251) and (252).
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The range for o&%(M 7) presented here is based on results
with rather different systematics (apart from the matching
across the charm threshold). We therefore believe that the
true value is quite likely to lie within this range.

We emphasize once more that all computations which
enter this range rely on a perturbative inclusion of the charm
and beauty quarks. While perturbation theory for the match-
ing of gfv and g}vf_l looks very well behaved even at the
mass of tlfle charm, this scale is rather low and we have no
accurate information about the precision of perturbation the-
ory. Nonperturbative studies are not yet precise enough [90].
However, it seems unlikely that the associated uncertainty
is comparable with the present errors. With future improved
precision, this will become a relevant issue. Note that this
uncertainty is also present in some of the phenomenological
determinations, in particular from t decays.

9.9.3 Ranges for [ro ATV and Agrs

In the present situation, we give ranges for [rgA]?™/) and
Ajfs, discussing their determination case by case. We include
results with Ny < 3 because it is interesting to see the Ny-
dependence of the connection of low- and high-energy QCD.
This aids our understanding of the field theory and helps in
finding possible ways to tackle it beyond the lattice approach.
It is also of interest in providing an impression on the size of
the vacuum polarization effects of quarks, in particular with
an eye on the still difficult-to-treat heavier charm and beauty
quarks. Even if this information is rather qualitative, it may
be valuable, given that it is of a completely nonperturbative
nature. We emphasize that results for [roA]® and [roA]?®
are not meant to be used in phenomenology.

For Ny = 2 + 1 + 1, we presently do not quote a range
as there is a single result: HPQCD 14A [5] found [roA](4) =
0.70(3).

For Ny = 2 + 1, we take as a central value the weighted
average of Bazavov 14 [61], HPQCD 10 [9] (Wilson loops
and current 2-point correlators), PACS-CS 09A [62] and
Maltman 08 [63]. Since the uncertainty in rg is small com-
pared to that of A, we can directly propagate the error from
Eq. (261) and arrive at

[roAxis]® = 0.80(5). (262)

It is in good agreement with all 2 4- 1 results without red
tags. In physical units, using ro = 0.472 fm and neglecting
its error, this means

® _
A8 = 336(19) MeV. (263)

For Ny = 2, at present there is one computation with a
Y rating for all criteria, ALPHA 12 [12]. We adopt it as our
central value and enlarge the error to cover the central values
of the other three results with filled green boxes. This results
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in an asymmetric error. Our range is unchanged as compared
to FLAG 13,

[roAysl® = 0.79(7 %), (264)
and in physical units, using ro = 0.472 fm,
A% =330(*2}) MeV. (265)

A weighted average of the four eligible numbers would yield
[roAys] ) = 0.709(22), not covering the best result and in
particular leading to a smaller error than we feel is justified,
given the issues discussed previously in Sect. 9.4.2 (Karb-
stein 14 [563], ETM 11C [605]) and Sect. 9.8.2 (ETM 10F
[654]). Thus we believe that our estimate is a conservative
choice; the low value of ETM 11C [605] leads to a large
downward error. We hope that future work will improve the
situation.

For Ny = 0 we take into account ALPHA 98 [590],
QCDSF/UKQCD 05 [625], and Brambilla 10 [606] for form-
ing a range. We exclude the older estimates shown in the
graph which have a limited control of the systematic errors
due to power law corrections and discretization errors.”3
None of the computations have a full set of % and has P for
publication status. Taking a weighted average of the three
numbers, we obtain [roAWS](O) = 0.615(5), dominated by
the QCDSF/UKQCD 05 [625] result.

Since we are not yet convinced that such a small uncer-
tainty has been reached, we prefer to presently take a range
which encompasses all four central values and whose uncer-
tainty comes close to our estimate of the perturbative error in
QCDSF/UKQCD 05 [625]: based on |c4/c1| & 2 as before,
we find A[roAz]© = 0.018. We then have

[roA51? = 0.62(2). (266)

Converting to physical units, again using ro = 0.472fm
yields

o _
Ak = 260(7) MeV. (267)

While the conversion of the A parameter to physical units
is quite unambiguous for Ny = 2 + 1, our choice of ry =
0.472 fm also for smaller numbers of flavour amounts to a
convention, in particular for Ny = 0. Indeed, in the Tables 42,
43,44, 45, 46 and 47 somewhat different numbers in MeV
are found.

How sure are we about our ranges for [roAxg] V) ? In
one case we have a result, Eq. (264) which easily passes our
criteria, in another one (Eq. (266)) we have three compatible
results which are close to that quality and agree. For Ny =
2+ 1 the range (Eq. (262)) takes account of results with rather

73 We have assigned a O for the continuum limit, in Boucaud 00A
[659], 00B [658], 01 A [657], Soto 01 [656] but these results are from
lattices of a very small physical size with finite-size effects that are not
easily quantified.
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different systematics. We therefore find it difficult to imagine
that the ranges could be violated by much.

9.9.4 Conclusions

With the present results our range for the strong coupling is
(repeating Eq. (261))
al(Mz) = 0.1182(12) Refs. [5,9,61-63],

and the associated A parameter

AL =211(14) MeV  Refs. [5,9,61-63]. (268)

These have changed little compared to the previous FLAG
review. As can be seen from Fig. 33, when surveying the
green data points, the individual lattice results agree within
their quoted errors. Furthermore those points are based on
different methods for determining o, each with its own dif-
ficulties and limitations. Thus the overall consistency of the
lattice «g results engenders confidence in our range.

It is interesting to compare to the new Particle Data Group
world average, which appeared in February 2016 [151]. The
PDG performs their averages, both of lattice determinations
and of different categories of phenomenological determina-
tions of oy, in a way differing significantly from how we
determine our range. They perform an unweighted average
of the mean values. As its error they use the average of the
quoted errors of the different determinations that went into
the average. This procedure leads to larger final uncertain-
ties than the one used in the previous edition [559]. When
one applies this method to the numbers entering Eq. (261),
i.e. the ones satisfying our criteria, one obtains a%(M 7)) =
0.1181(12) . This number is close to our result Eq. (261). It
differs a little from the value quoted by the PDG since in
a couple of cases we used updated results and because not
all determinations entering the PDG average satisfy our cri-
teria. For comparison, the PDG number for lattice results
is 0.1187(12), and their average of all phenomenological
results is 0.1175(17).

Our range for the lattice determination of ogg(Mz) in
Eq. (261) is in excellent agreement with the PDG nonlattice
average Eq. (217). This is an excellent check for the subtle
interplay of theory, phenomenology and experiments in the
nonlattice determinations. The work done on the lattice pro-
vides an entirely independent determination, with negligible
experimental uncertainty, which reaches a better precision
even with our conservative estimate of its uncertainty.

We finish by commenting on perspectives for the future.
In the next few years we anticipate that a growing number of
lattice calculations of oy from different quantities and by dif-
ferent collaborations will enable increasingly precise deter-
minations, coupled with stringent cross-checks. The deter-
mination of o« from observables at the lattice-spacing scale

may improve due to a further reduction of the lattice spac-
ing. This reduces a.fr and thus the dominating error in og;g
as long as perturbative results for the simulated action are
available to high order. Schrédinger functional methods for
Ny =2+ 1 will certainly reach the precision of the present
Ny = 2results soon, as this just requires an application of the
presently known techniques. Furthermore, we may expect a
significant reduction of errors due to new definitions of run-
ning couplings [591,592] using the Yang Mills gradient flow
[245]. Factors of two and more in precision are certainly pos-
sible. At this point it will then also be necessary to include the
charm quark in the computations such that the perturbative
matching of Ny = 2+1and 2+ 1+ 1 theories at the charm-
quark threshold is avoided. First generation Ny =2+ 1+ 1
simulations are presently being carried out.
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Appendix A: Glossary
A.1 Lattice actions

In this appendix we give brief descriptions of the lattice
actions used in the simulations and summarize their main
features.

A.1.1 Gauge actions

The simplest and most widely used discretization of the
Yang—Mills part of the QCD action is the Wilson plaque-
tte action [664]:

Sa=8Y.> <1 - —ReTr Wm(x)) ,

X p<v

(269)

where 8 = 6/ go (with go the bare gauge coupling) and the
plaquette Wlivx I(x) is the product of link variables around an

elementary square of the lattice, i.e.
WL () = U () U,y (x + af) U (x +ad) ™ Uy (1)~
(270)

This expression reproduces the Euclidean Yang—Mills action
in the continuum up to corrections of order a2. There is a
general formalism, known as the “Symanzik improvement
programme” [64,65], which is designed to cancel the lead-
ing lattice artefacts, such that observables have an accelerated
rate of convergence to the continuum limit. The improvement
programme is implemented by adding higher-dimensional
operators, whose coefficients must be tuned appropriately
in order to cancel the leading lattice artefacts. The effec-
tiveness of this procedure depends largely on the method
with which the coefficients are determined. The most widely
applied methods (in ascending order of effectiveness) include
perturbation theory, tadpole-improved (partially resummed)
perturbation theory, renormalization group methods, and the
nonperturbative evaluation of improvement conditions.

In the case of Yang—Mills theory, the simplest version of
an improved lattice action is obtained by adding rectangular
1 x 2 loops to the plaquette action, i.e.

"“P ,BZ {co Z (1 — —ReTr W1X1(x)>

n<v

+c Z (1 - —ReTr Wlxz(x)>} ,

271)
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Table 49 Summary of lattice gauge actions. The leading lattice arte-
facts are O(a?) or better for all discretizations

Abbrev. cy Description

Wilson 0 Wilson plaquette action

tISym —1/12 Tree-level Symanzik-improved
gauge action

tadSym Variable Tadpole Symanzik-improved
gauge action

Iwasaki —0.331 Renormalization group improved
(“Iwasaki”) action

DBW2 —1.4088 Renormalization group improved

(“DBW2”) action

where the coefficients cg, c; satisfy the normalization condi-
tion cg + 8c; = 1. The Symanzik-improved [665], Iwasaki
[666], and DBW2 [667,668] actions are all defined through
Eq. (271) via particular choices for cg, c. Details are listed in
Table 49 together with the abbreviations used in the summary
tables. Another widely used variant is the tadpole Symanzik-
improved [618,669] action which is obtained by adding addi-
tional 6-link parallelogram loops Wlij(,l *1(x) to the action in
Eq. (271), i.e.

Sgdsym= lmp—i-ﬂZcz Z (1—7ReTr Wliffgl“( )),

n<v<o

(272)
where

WEPN () = Uy () Uy (x + af)Uq (x + aji + ab)
xUy(x +a6 +ad)~ Uy (x)~!

(273)

WU, (x +aé)™!

allows for one-loop improvement [665].
A.1.2 Light-quark actions

If one attempts to discretize the quark action, one is faced with
the fermion doubling problem: the naive lattice transcription
produces a 16-fold degeneracy of the fermion spectrum.

Wilson fermions:

Wilson’s solution to the fermion doubling problem is based
on adding a dimension-5 (irrelevant) operator to the lattice
action. The Wilson-Dirac operator for the massless case
reads [664,670]

Dy = 3yu(Vu + Vi) +aViv,, (274)

where V, VZ denote the covariant forward and backward
lattice derivatives, respectively. The addition of the Wilson
term aV;;V,,, results in fermion doublers acquiring a mass
proportional to the inverse lattice spacing; close to the con-
tinuum limit these extra degrees of freedom are removed
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from the low-energy spectrum. However, the Wilson term
also results in an explicit breaking of chiral symmetry even at
zero bare quark mass. Consequently, it also generates diver-
gences proportional to the UV cutoff (inverse lattice spacing),
besides the usual logarithmic ones. Therefore the chiral limit
of the regularized theory is not defined simply by the vanish-
ing of the bare quark mass but must be appropriately tuned.
As a consequence quark-mass renormalization requires a
power subtraction on top of the standard multiplicative log-
arithmic renormalization. The breaking of chiral symmetry
also implies that the nonrenormalization theorem has to be
applied with care [671,672], resulting in a normalization fac-
tor for the axial current which is a regular function of the bare
coupling. On the other hand, vector symmetry is unaffected
by the Wilson term and thus a lattice (point split) vector cur-
rent is conserved and obeys the usual nonrenormalization
theorem with a trivial (unity) normalization factor. Thus,
compared to lattice fermion actions which preserve chiral
symmetry, or a subgroup of it, the Wilson regularization typ-
ically results in more complicated renormalization patterns.

Furthermore, the leading-order lattice artefacts are of
order a. With the help of the Symanzik improvement pro-
gramme, the leading artefacts can be cancelled in the action
by adding the so-called “Clover” or Sheikholeslami—Wohlert
(SW) term [673]. The resulting expression in the massless
case reads

ia =~

Dgw = Dy + Z CSWUMUFMV7 (275)
where o0, = %[Vu’ yv], and ﬁ,w is a lattice transcription
of the gluon field strength tensor F,,. The coefficient cgy,
can be determined perturbatively at tree-level (cgw = 1;
tree-level improvement or tISW for short), via a mean-field
approach [618] (mean-field improvement or mfSW) or via a
nonperturbative approach [674] (nonperturbatively improved
or npSW). Hadron masses, computed using Ds,, with the
coefficient cgy, determined nonperturbatively, will approach
the continuum limit with a rate proportional to a*; with tISW
for cgy the rate is proportional to g%a.

Other observables require additional improvement coef-
ficients [673]. A common example consists in the compu-
tation of the matrix element («¢|Q|B) of a composite field
QO of dimension-d with external states |o) and |B). In the
simplest cases, the above bare matrix element diverges log-
arithmically and a single renormalization parameter Z is
adequate to render it finite. It then approaches the contin-
uum limit with a rate proportional to the lattice spacing a,
even when the lattice action contains the Clover term. In
order to reduce discretization errors to O (a?), the lattice def-
inition of the composite operator Q must be modified (or
“improved”), by the addition of all dimension-(d + 1) oper-
ators with the same lattice symmetries as Q. Each of these
terms is accompanied by a coefficient which must be tuned

in a way analogous to that of cgy. Once these coefficients
are determined nonperturbatively, the renormalized matrix
element of the improved operator, computed with a npSW
action, converges to the continuum limit with a rate propor-
tional to a. A tISW improvement of these coefficients and
csw Will result in a rate proportional to g%a.

It is important to stress that the improvement procedure
does not affect the chiral properties of Wilson fermions; chi-
ral symmetry remains broken.

Finally, we mention “twisted-mass QCD” as a method
which was originally designed to address another problem
of Wilson’s discretization: the Wilson—Dirac operator is not
protected against the occurrence of unphysical zero modes,
which manifest themselves as “exceptional” configurations.
They occur with a certain frequency in numerical simulations
with Wilson quarks and can lead to strong statistical fluctu-
ations. The problem can be cured by introducing a so-called
“chirally twisted”” mass term. The most common formulation
applies to a flavour doublet ¢ = (1 d) of mass-degenerate
quarks, with the fermionic part of the QCD action in the
continuum assuming the form [396]

Slt:m;mm - /d4x ll}(x)(VuDu +m + iMqVSTS)W(x)- (276)

Here, pq is the twisted-mass parameter, and 73 is a Pauli
matrix in flavour space. The standard action in the contin-
uum can be recovered via a global chiral field rotation. The
physical quark mass is obtained as a function of the two mass
parameters m and pq. The corresponding lattice regulariza-
tion of twisted-mass QCD (tmWil) for Ny = 2 flavours is
defined through the fermion matrix
Dy +mo + ipqyst’. 277)
Although this formulation breaks physical parity and flavour
symmetries, resulting in nondegenerate neutral and charged
pions, is has a number of advantages over standard Wil-
son fermions. First of all, the presence of the twisted-mass
parameter j1q protects the discretized theory against unphys-
ical zero modes. A second attractive feature of twisted-mass
lattice QCD is the fact that, once the bare mass parameter
mo is tuned to its “critical value” (corresponding to mass-
less pions in the standard Wilson formulation), the leading
lattice artefacts are of order a® without the need to add the
Sheikholeslami—Wohlert term in the action, or other improv-
ing coefficients [675]. A third important advantage is that,
although the problem of explicit chiral symmetry breaking
remains, quantities computed with twisted fermions with a
suitable tuning of the mass parameter 114, are subject to renor-
malization patterns which are simpler than the ones with stan-
dard Wilson fermions. Well known examples are the pseu-
doscalar decay constant and Bg.
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Staggered fermions:

An alternative procedure to deal with the doubling problem is
based on so-called “staggered” or Kogut—Susskind fermions
[676—679]. Here the degeneracy is only lifted partially, from
16 down to 4. It has become customary to refer to these
residual doublers as “tastes” in order to distinguish them from
physical flavours. Taste changing interactions can occur via
the exchange of gluons with one or more components of
momentum near the cutoff v /a. This leads to the breaking of
the SU (4) vector symmetry among tastes, thereby generating
order a? lattice artefacts.

The residual doubling of staggered quarks (four tastes
per flavour) is removed by taking a fractional power of the
fermion determinant [680] — the “fourth-root procedure,” or,
sometimes, the “fourth-root trick.” This procedure would be
unproblematic if the action had full SU (4) taste symmetry,
which would give a Dirac operator that was block-diagonal
in taste space. However, the breaking of taste symmetry at
nonzero lattice spacing leads to a variety of problems. In fact,
the fourth root of the determinant is not equivalent to the
determinant of any local lattice Dirac operator [681]. This in
turn leads to violations of unitarity on the lattice [682-685].

According to standard renormalization group lore, the
taste violations, which are associated with lattice operators
of dimension greater than four, might be expected to go away
in the continuum limit, resulting in the restoration of locality
and unitarity. However, there is a problem with applying the
standard lore to this nonstandard situation: the usual renor-
malization group reasoning assumes that the lattice action is
local. Nevertheless, Shamir [686,687] shows that one may
apply the renormalization group to a “nearby” local theory,
and thereby gives a strong argument that the desired local,
unitary theory of QCD is reproduced by the rooted staggered
lattice theory in the continuum limit.

A version of chiral perturbation that includes the lattice
artefacts due to taste violations and rooting (“rooted stag-
gered chiral perturbation theory”) can also be worked out
[329,688,689] and shown to correctly describe the unitarity-
violating lattice artefacts in the pion sector [683,690]. This
provides additional evidence that the desired continuum limit
can be obtained. Further, it gives a practical method for
removing the lattice artefacts from simulation results. Ver-
sions of rooted staggered chiral perturbation theory exist for
heavy-light mesons with staggered light quarks but nonstag-
gered heavy quarks [691], heavy—light mesons with stag-
gered light and heavy quarks [692,693], staggered baryons
[694], and mixed actions with a staggered sea [276,278], as
well as the pion-only version referenced above.

There is also considerable numerical evidence that the
rooting procedure works as desired. This includes investi-
gations in the Schwinger model [695-697], studies of the
eigenvalues of the Dirac operator in QCD [698-701], and
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evidence for taste restoration in the pion spectrum as a — 0
[89,107].

Issues with the rooting procedure have led Creutz [702—
708] to argue that the continuum limit of the rooted stag-
gered theory cannot be QCD. These objections have, how-
ever, been answered in Refs. [86-88,701,709-712]. In par-
ticular, a claim that the continuum ’t Hooft vertex [713,714]
could not be properly reproduced by the rooted theory has
been refuted [701,710].

Overall, despite the lack of rigorous proof of the correct-
ness of the rooting procedure, we think the evidence is strong
enough to consider staggered QCD simulations on a par with
simulations using other actions. See the following reviews for
further evidence and discussion: Refs. [85-89].

Improved staggered fermions:

An improvement program can be used to suppress taste-
changing interactions, leading to “improved staggered
fermions,” with the so-called “Asqtad” [715], “HISQ” [716],
“Stout-smeared” [717], and “HYP” [478] actions as the most
common versions. All these actions smear the gauge links in
order to reduce the coupling of high-momentum gluons to the
quarks, with the main goal of decreasing taste-violating inter-
actions. In the Asqtad case, this is accomplished by replacing
the gluon links in the derivatives by averages over 1-, 3-, 5-
, and 7-link paths. The other actions reduce taste changing
even further by smearing more. In addition to the smear-
ing, the Asqtad and HISQ actions include a three-hop term
in the action (the “Naik term” [718]) to remove order a?
errors in the dispersion relation, as well as a “Lepage term”
[719] to cancel other order a? artefacts introduced by the
smearing. In both the Asqtad and HISQ actions, the leading
taste violations are of order agaz, and “generic” lattices arte-
facts (those associated with discretization errors other than
taste violations) are of order asa?. The overall coefficients
of these errors are, however, significantly smaller with HISQ
than with Asqtad. With the stout-smeared and HYP actions,
the errors are formally larger (order aga? for taste violations
and order a? for generic lattices artefacts). Nevertheless, the
smearing seems to be very efficient, and the actual size of
errors at accessible lattice spacings appears to be at least as
small as with HISQ.

Although logically distinct from the light-quark improve-
ment program for these actions, it is customary with the
HISQ action to include an additional correction designed
to reduce discretization errors for heavy quarks (in practice,
usually charm quarks) [716]. The Naik term is adjusted to
remove leading (am.)* and ag(am.)? errors, where m, is
the charm-quark mass and “leading” in this context means
leading in powers of the heavy-quark velocity v (v/c ~ 1/3
for D). With these improvements, the claim is that one can
use the staggered action for charm quarks, although it must
be emphasized that it is not obvious a priori how large a value
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of am. may be tolerated for a given desired accuracy, and this
must be studied in the simulations.

Ginsparg—Wilson fermions:

Fermionic lattice actions, which do not suffer from the dou-
bling problem whilst preserving chiral symmetry go under
the name of “Ginsparg—Wilson fermions”. In the continuum
the massless Dirac operator (D) anticommutes with y5. At
nonzero lattice spacing a chiral symmetry can be realized if
this condition is relaxed to [720-722]
{D,ys} =aDysD, (278)
which is now known as the Ginsparg—Wilson relation [398].
The Nielsen—Ninomiya theorem [723], which states that
any lattice formulation for which D anticommutes with
y5 necessarily has doubler fermions, is circumvented since
{D,ys} #0.

A lattice Dirac operator which satisfies Eq. (278) can
be constructed in several ways. The so-called “overlap”
or Neuberger-Dirac operator [724] acts in four space-time
dimensions and is, in its simplest form, defined by

DN = % (1 —€(A)), wheree(A) = AATA)1/2,

(279)

Dy, is the massless Wilson—Dirac operator and |s| < 1 is
a tunable parameter. The overlap operator Dy removes all
doublers from the spectrum, and can readily be shown to
satisfy the Ginsparg—Wilson relation. The occurrence of the
sign function €(A) in Dy renders the application of Dy in
a computer program potentially very costly, since it must be
implemented using, for instance, a polynomial approxima-
tion.

The most widely used approach to satisfying the Ginsparg—
Wilson relation Eq. (278) in large-scale numerical simula-
tions is provided by Domain Wall Fermions (DWF) [725-
727] and we therefore describe this in some more detail.
Following early exploratory studies [728]. this approach has
been developed into a practical formulation of lattice QCD
with good chiral and flavour symmetries leading to results
which contribute significantly to this review. In this for-
mulation, the fermion fields ¥ (x, s) depend on a discrete
fifth coordinate s = 1, ..., N as well as the physical four-
dimensional space-time coordinates x,, u = 1---4 (the
gluon fields do not depend on s). The lattice on which the
simulations are performed, is therefore a five-dimensional
one of size L3 x T x N, where L, T and N represent the
number of points in the spatial, temporal and fifth dimensions
respectively. The remarkable feature of DWF is that for each
flavour there exists a physical light mode corresponding to
the field g (x):

1 5 1 — 5

40 = —L v+ Ly m (280)
_ 1 5 1—9°

G() =¥ N) +2V + e n—1 (281)

The left and right-handed modes of the physical field are
located on opposite boundaries in the five-dimensional space
which, for N — o0, allows for independent transformations
of the left and right components of the quark fields, that is,
for chiral transformations. Unlike Wilson fermions, where
for each flavour the quark-mass parameter in the action is
fine-tuned requiring a subtraction of contributions of O(1/a)
where a is the lattice spacing, with DWF no such subtraction
is necessary for the physical modes, whereas the unphysical
modes have masses of O(1/a) and decouple.

In actual simulations N is finite and there are small viola-
tions of chiral symmetry which must be accounted for. The
theoretical framework for the study of the residual breaking
of chiral symmetry has been a subject of intensive investiga-
tion (for a review and references to the original literature see
e.g. [729]). The breaking requires one or more crossings of
the fifth dimension to couple the left and right-handed modes;
the more crossings that are required the smaller the effect. For
many physical quantities the leading effects of chiral symme-
try breaking due to finite N are parameterized by a residual
mass, myes. For example, the PCAC relation (for degenerate
quarks of mass m) 9, A, (x) = 2mP(x), where A, and P
represent the axial current and pseudoscalar density respec-
tively, is satisfied withm = mPWF ~+ myes, Where mPWVF is the
bare mass in the DWF action. The mixing of operators which
transform under different representations of chiral symmetry
is found to be negligibly small in current simulations. The
important thing to note is that the chiral symmetry-breaking
effects are small and that there are techniques to mitigate
their consequences.

The main price which has to be paid for the good chiral
symmetry is that the simulations are performed in 5 dimen-
sions, requiring approximately a factor of N in computing
resources and resulting in practice in ensembles at fewer val-
ues of the lattice spacing and quark masses than is possible
with other formulations. The current generation of DWF sim-
ulations is being performed at physical quark masses so that
ensembles with good chiral and flavour symmetries are being
generated and analysed [31]. For a discussion of the equiva-
lence of DWF and overlap fermions see Refs. [730,731].

A third example of an operator which satisfies the
Ginsparg—Wilson relation is the so-called fixed-point action
[732—734]. This construction proceeds via a renormalization
group approach. A related formalism are the so-called “chi-
rally improved” fermions [735].

Smearing:
A simple modification which can help improve the action as
well as the computational performance is the use of smeared
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gauge fields in the covariant derivatives of the fermionic
action. Any smearing procedure is acceptable as long as it
consists of only adding irrelevant (local) operators. More-
over, it can be combined with any discretization of the
quark action. The “Asqtad” staggered quark action men-
tioned above [715] is an example which makes use of so-
called “Asqtad” smeared (or “fat”) links. Another exam-
ple is the use of n-HYP-smeared [478,736], stout-smeared
[737,738] or HEX (hypercubic stout) smeared [739] gauge
links in the tree-level clover improved discretization of the
quark action, denoted by “n-HYP tISW”, “stout tISW” and
“HEX tISW” in the following.

In Table 50 we summarize the most widely used discretiza-
tions of the quark action and their main properties together
with the abbreviations used in the summary tables. Note that
in order to maintain the leading lattice artefacts of the actions
as given in the table in nonspectral observables (like opera-
tor matrix elements) the corresponding nonspectral operators
need to be improved as well.

A.1.3 Heavy-quark actions

Charm and bottom quarks are often simulated with differ-
ent lattice-quark actions than up, down, and strange quarks
because their masses are large relative to typical lattice spac-
ings in current simulations; for example, am, ~ 0.4 and
amp ~ 1.3 at a = 0.06 fm. Therefore, for the actions
described in the previous section, using a sufficiently small
lattice spacing to control generic (amy,)" discretization errors
is computationally costly, and in fact prohibitive at the phys-
ical b-quark mass.

One approach for lattice heavy quarks is direct appli-
cation of effective theory. In this case the lattice heavy-
quark action only correctly describes phenomena in a specific
kinematic regime, such as Heavy-Quark Effective Theory
(HQET) [740-742] or Nonrelativistic QCD (NRQCD) [743,
744]. One can discretize the effective Lagrangian to obtain,
for example, Lattice HQET [470] or Lattice NRQCD ([745,
746], and then simulate the effective theory numerically. The
coefficients of the operators in the lattice-HQET and lattice-
NRQCD actions are free parameters that must be determined
by matching to the underlying theory (QCD) through the cho-
sen order in 1/my, or vi, where my, is the heavy-quark mass
and vy, is the heavy-quark velocity in the heavy-light meson
rest frame.

Another approach is to interpret a relativistic quark action
such as those described in the previous section in a man-
ner suitable for heavy quarks. One can extend the stan-
dard Symanzik improvement program, which allows one
to systematically remove lattice cutoff effects by adding
higher-dimension operators to the action, by allowing the
coefficients of the dimension 4 and higher operators to
depend explicitly upon the heavy-quark mass. Different pre-
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scriptions for tuning the parameters correspond to different
implementations: those in common use are often called the
Fermilab action [747], the relativistic heavy-quark action
(RHQ) [475], and the Tsukuba formulation [748]. In the Fer-
milab approach, HQET is used to match the lattice theory to
continuum QCD at the desired order in 1/my,.

More generally, effective theory can be used to estimate
the size of cutoff errors from the various lattice heavy-quark
actions. The power counting for the sizes of operators with
heavy quarks depends on the typical momenta of the heavy
quarks in the system. Bound-state dynamics differ consid-
erably between heavy-heavy and heavy-light systems. In
heavy-light systems, the heavy quark provides an approx-
imately static source for the attractive binding force, like the
proton in a hydrogen atom. The typical heavy-quark momen-
tum in the bound-state rest frame is |pp| ~ Aqcp, and
heavy-light operators scale as powers of (Aqgcp/my)". This
is often called “HQET power counting”, although it applies
to heavy-light operators in HQET, NRQCD, and even rel-
ativistic heavy-quark actions described below. Heavy-heavy
systems are similar to positronium or the deuteron, with the
typical heavy-quark momentum |p,| ~ asmy. Therefore
motion of the heavy quarks in the bound state rest frame can-
not be neglected. Heavy-heavy operators have complicated
power-counting rules in terms of vﬁ [746]; this is often called
“NRQCD power counting.”

Alternatively, one can simulate bottom or charm quarks
with the same action as up, down, and strange quarks pro-
vided that (1) the action is sufficiently improved, and (2)
the lattice spacing is sufficiently fine. These qualitative cri-
teria do not specify precisely how large a numerical value
of amy, can be allowed while obtaining a given precision
for physical quantities; this must be established empiri-
cally in numerical simulations. At present, both the HISQ
and twisted-mass Wilson actions discussed previously are
being used to simulate charm quarks. Simulations with HISQ
quarks have employed heavier-quark masses than those with
twisted-mass Wilson quarks because the action is more
highly improved, but neither action can be used to simulate at
the physical amy for current lattice spacings. Therefore cal-
culations of heavy-light decay constants with these actions
still rely on effective theory to reach the b-quark mass: the
ETM Collaboration interpolates between twisted-mass Wil-
son data generated near am, and the static point [182], while
the HPQCD Collaboration extrapolates HISQ data generated
below amy, up to the physical point using an HQET-inspired
series expansion in (1/mp)" [56].

Heavy-quark effective theory:

HQET was introduced by Eichten and Hill in Ref. [741]. It
provides the correct asymptotic description of QCD correla-
tion functions in the static limit my, /| pj| — oo. Subleading
effects are described by higher-dimensional operators whose
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Table 50 The most widely used discretizations of the quark action and
some of their properties. Note that in order to maintain the leading lattice
artefacts of the action in nonspectral observables (like operator matrix

elements) the corresponding nonspectral operators need to be improved
as well

Abbrev. Discretization Leading lattice artefacts ~ Chiral symmetry Remarks
Wilson Wilson O(a) Broken
tmWil Twisted-mass Wilson O(a?) at maximal twist  Broken Flavour-symmetry breaking:
(M)* = (Mg)* ~ O(a?)
tISW Sheikholeslami—Wohlert O(gza) Broken Tree-level impr., cgy = 1
n-HYP tISW  Sheikholeslami—Wohlert O(gza) Broken Tree-level impr., ¢y = 1, n-HYP-smeared
gauge links
Stout tISW Sheikholeslami—Wohlert O(gza) Broken Tree-level impr., csy = 1, stout-smeared
gauge links
HEX tISW Sheikholeslami—Wohlert O(gza) Broken Tree-level impr., ¢y = 1, HEX smeared
gauge links
mfSW Sheikholeslami—Wohlert O(gza) Broken Mean-field impr.
npSW Sheikholeslami-Wohlert ~ O(a?) Broken Nonperturbatively impr.
KS Staggered O(d?) U(1) x U(1) subgr. Rooting for Ny < 4
unbroken
Asqtad Staggered O(a?) U(1) x U(1) subgr. Asqtad smeared gauge links, rooting for
unbroken Ny <4
HISQ Staggered O(d?) U(1) x U(1) subgr. HISQ smeared gauge links, rooting for
unbroken Ny <4
DwW Domain Wall Asymptotically O(a?) Remnant breaking Exact chiral symmetry and O(a) impr. only
exponentially suppr. in the limit N — oo
oDW Optimal Domain Wall Asymptotically O(a?) Remnant breaking Exact chiral symmetry and O(a) impr. only
exponentially suppr. in the limit N — oo
M-DW Moebius Domain Wall Asymptotically O(a?) Remnant breaking Exact chiral symmetry and O(a) impr. only
exponentially suppr. in the limit N — oo
Overlap Neuberger O(a?) Exact

coupling constants are formally of O((1/mj)"). The HQET
expansion works well for heavy-light systems in which the
heavy-quark momentum is small compared to the mass.

The HQET Lagrangian density at the leading (static) order
in the rest frame of the heavy quark is given by

L (x) = Y, (x) Do Y (x), (282)
with

_ _ 1
Potn =i, TPy=Vp Pr=—2L (283)

A bare quark mass my- has to be added to the energy levels

ES?t computed with this Lagrangian to obtain the physical
ones. For example, the mass of the B meson in the static
approximation is given by

mp = E* + mp (284)

At tree-level mp: is simply the (static approximation of the)

b-quark mass, but in the quantized lattice formulation it has to
further compensate a divergence linear in the inverse lattice
spacing. Weak composite fields are also rewritten in terms of
the static fields, e.g.

Ag(0)*™™ = ZX (Y () voysyn(x)),

where the renormalization factor of the axial current in
the static theory Z3{* is scale-dependent. Recent lattice-
QCD calculations using static b quarks and dynamical light
quarks [182,464] perform the operator matching at one-
loop in mean-field improved lattice perturbation theory [749,
750]. Therefore the heavy-quark discretization, truncation,
and matching errors in these results are of (’)(azAéCD),
O(Aqcp/my), and (’)(oef, oezaAQCD).

In order to reduce heavy-quark truncation errors in B-
meson masses and matrix elements to the few-percent level,
state-of-the-art lattice-HQET computations now include cor-
rections of O(1/my). Adding the 1/mj, terms, the HQET
Lagrangian reads

(285)

LHQET (x) = £ (x) — @kinOkin (x) — Wspin Ospin (x),
(286)

Okin(¥) = ¥, )D*Y (x),  Ogpin (x) = ¥, (x)0 By (x).
(287)

At this order, two other parameters appear in the Lagrangian,
wkin and wgpin. The normalization is such that the tree-level
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values of the coefficients are wyin = wspin = 1/(2my). Sim-
ilarly the operators are formally expanded in inverse powers
of the heavy-quark mass. The time component of the axial
current, relevant for the computation of mesonic decay con-
stants is given by

2
AFET () = ZHQET (Af)ta‘(x) + Zc,‘()Ag)(x)) . (288)
i=1

) —1 <~
Ay (x) = WEVSVk(Vk = Vyrx), k=1,2,3 (289)

2 _
AY = =0 A0, A =V Wnystn),  (290)
and depends on two additional parameters cg) and cf).

A framework for nonperturbative HQET on the lattice
has been introduced in Refs. [470,472]. As pointed out in
Refs. [751,752], since s (m,) decreases logarithmically with
mpy, whereas corrections in the effective theory are power-like
in A/my, itis possible that the leading errors in a calculation
will be due to the perturbative matching of the action and the
currents at a given order (A /mj)! rather than to the missing
oA/ m h)l *1) terms. Thus, in order to keep matching errors
below the uncertainty due to truncating the HQET expansion,
the matching is performed nonperturbatively beyond leading
order in 1/my,. The asymptotic convergence of HQET in the
limit mj, — oo indeed holds only in that case.

The higher-dimensional interaction terms in the effective
Lagrangian are treated as space-time volume insertions into
static correlation functions. For correlators of some multi-
local fields @ and up to the 1/my, corrections to the operator,
this means

(Q) = (Q)star + @kina* Y_(Q0kin(x))star

+ wspina4 Z ¢ Qospin (X)) stat»

X

(291)

where (Q)gat denotes the static expectation value with
L£5%(x) 4+ £l (x). Nonperturbative renormalization of
these correlators guarantees the existence of a well-defined
continuum limit to any order in 1/mj,. The parameters of the
effective action and operators are then determined by match-
ing a suitable number of observables calculated in HQET (to
a given order in 1/my,) and in QCD in a small volume (typi-
cally with L >~ 0.5 fm), where the full relativistic dynamics of
the b-quark can be simulated and the parameters can be com-
puted with good accuracy. In Refs. [472,473] the Schrodinger
Functional (SF) setup has been adopted to define a set of
quantities, given by the small volume equivalent of decay
constants, pseudoscalar-vector splittings, effective masses
and ratio of correlation functions for different kinematics,
which can be used to implement the matching conditions. The
kinematical conditions are usually modified by changing the
periodicity in space of the fermions, i.e. by directly exploiting
a finite-volume effect. The new scale L, which is introduced
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in this way, is chosen such that higher orders in 1/m, L and in
Aqcp/my, are of about the same size. At the end of the match-
ing step the parameters are known at lattice spacings which
are of the order of 0.01 fm, significantly smaller than the
resolutions used for large volume, phenomenological, appli-
cations. For this reason a set of SF-step-scaling functions is
introduced in the effective theory to evolve the parameters to
larger lattice spacings. The whole procedure yields the non-
perturbative parameters with an accuracy which allows to
compute phenomenological quantities with a precision of a
few percent (see Refs. [459,753] for the case of the By decay
constants). Such an accuracy cannot be achieved by perform-
ing the nonperturbative matching in large volume against
experimental measurements, which in addition would reduce
the predictivity of the theory. For the lattice-HQET action
matched nonperturbatively through O(1/my,), discretization
and truncation errors are of O(aAéCD /mp, azAéCD) and
O((Agep/mn)?).

The noise-to-signal ratio of static-light correlation func-
tions grows exponentially in Euclidean time, o< e#*0 . The
rate ¢ is nonuniversal but diverges as 1/a as one approaches
the continuum limit. By changing the discretization of the
covariant derivative in the static action one may achieve an
exponential reduction of the noise to signal ratio. Such a
strategy led to the introduction of the Syfyp, , actions [486],
where the thin links in Dy are replaced b)’/ HYP-smeared
links [478]. These actions are now used in all lattice appli-
cations of HQET.

Nonrelativistic QCD:

Nonrelativistic QCD (NRQCD) [745,746] is an effective
theory that can be matched to full QCD order by order in
the heavy-quark velocity vi (for heavy-heavy systems) or in
Aqcp/my, (for heavy-light systems) and in powers of a.
Relativistic corrections appear as higher-dimensional opera-
tors in the Hamiltonian.

As an effective field theory, NRQCD is only useful with
an ultraviolet cutoff of order my, or less. On the lattice this
means that it can be used only for am; > 1, which means
that O(a") errors cannot be removed by taking a — 0 at
fixed my,. Instead heavy-quark discretization errors are sys-
tematically removed by adding additional operators to the lat-
tice Hamiltonian. Thus, while strictly speaking no continuum
limit exists at fixed my,, continuum physics can be obtained
at finite-lattice spacing to arbitrarily high precision provided
enough terms are included, and provided that the coefficients
of these terms are calculated with sufficient accuracy. Resid-
ual discretization errors can be parameterized as corrections
to the coefficients in the nonrelativistic expansion, as shown
in Eq. (294). Typically they are of the form (a|p;|)" mul-
tiplied by a function of amj, that is smooth over the lim-
ited range of heavy-quark masses (with am; > 1) used in
simulations, and can therefore can be represented by a low-
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order polynomial in amj, by Taylor’s theorem (see Ref. [754]
for further discussion). Power-counting estimates of these
effects can be compared to the observed lattice-spacing
dependence in simulations. Provided that these effects are
small, such comparisons can be used to estimate and correct
the residual discretization effects.

An important feature of the NRQCD approach is that the
same action can be applied to both heavy-heavy and heavy—
light systems. This allows, for instance, the bare b-quark
mass to be fixed via experimental input from Y so that simu-
lations carried out in the B or B systems have no adjustable
parameters left. Precision calculations of the B;-meson mass
(or of the mass splitting Mp, — M~ /2) can then be used to
test the reliability of the method before turning to quantities
one is trying to predict, such as decay constants fp and fp ,
semileptonic form factors or neutral B mixing parameters.

Given the same lattice-NRQCD heavy-quark action, sim-
ulation results will not be as accurate for charm quarks
as for bottom (1/m, < 1/m., and v, < v, in heavy-
heavy systems). For charm, however, a more serious con-
cern is the restriction that amy must be greater than one.
This limits lattice-NRQCD simulations at the physical am,
to relatively coarse lattice spacings for which light-quark
and gluon discretization errors could be large. Thus recent
lattice-NRQCD simulations have focussed on bottom quarks
because am; > 1 in the range of typical lattice spacings
between =~ 0.06 and 0.15 fm.

In most simulations with NRQCD b-quarks during the
past decade one has worked with an NRQCD action that
includes tree-level relativistic corrections through O( v2) and
discretization corrections through 0@,

- + alH aHy\"
SNRQCD = a4 Z {\Ijt “I’t - ll/t (1 - 2 ) (1 - 2)
X 4 n

t
¥ GHO " aSH
xUl(t—a)(1-== l—— ) Wi,
2n t—a 2 t—a

where the subscripts “t” and “¢# — a” denote that the heavy-
quark, gauge, E, and B-fields are on time slices 7 or t — a,
respectively. Hy is the nonrelativistic kinetic energy operator,

A®
Hy=——-"

) 293
2 (293)

and § H includes relativistic and finite-lattice-spacing correc-
tions,

—q%a-(@xﬁ—ﬁx@)
8m,

2A4 (2)y2

. A A

—C4i0'-B+C5a——C a( )

2myp,

o 294
24my, 6 16nm% (294)

my, is the bare heavy-quark mass, A the lattice Laplacian,
V the symmetric lattice derivative and A® the lattice dis-
cretization of the continuum ) _, D?' V is the improved sym-
metric lattice derivative and the E and B fields have been
improved beyond the usual clover leaf construction. The sta-
bility parameter n is discussed in Ref. [746]. In most cases the
c¢;i’s have been set equal to their tree-level values ¢; = 1. With
this implementation of the NRQCD action, errors in heavy—
light-meson masses and splittings are of O(asAqcp/nn),
O(as(Aqen/mn)?), O((Aqen/mi)?), and O(@sa® Ajep)s
with coefficients that are functions of amj,. One-loop correc-
tions to many of the coefficients in Eq. (294) have now been
calculated, and they are starting to be included in simulations
[755-757].

Most of the operator matchings involving heavy-light
currents or four-fermion operators with NRQCD b-quarks
and AsqTad or HISQ light quarks have been carried out at
one-loop order in lattice perturbation theory. In calculations
published to date of electroweak matrix elements, heavy—
light currents with massless light quarks have been matched
through  O(ay, Agep/mp, as/(amy), as Aqep/my), and
four-fermion operators through O(es, AQcp/mn, s /(amy)).
NRQCD/HISQ currents with massive HISQ quarks are also
of interest, e.g. for the bottom-charm currents in B —
D™ v semileptonic decays and the relevant matching
calculations have been performed at one-loop order in
Ref. [758]. Taking all the above into account, the most signif-
icant systematic error in electroweak matrix elements pub-
lished to date with NRQCD b-quarks is the O(af) perturba-
tive matching uncertainty. Work is therefore under way to use
current-current correlator methods combined with very high
order continuum perturbation theory to do current matchings
nonperturbatively [759].

Relativistic heavy quarks:

An approach for relativistic heavy-quark lattice formulations
was first introduced by El-Khadra, Kronfeld, and Macken-
zie in Ref. [747]. Here they showed that, for a general
lattice action with massive quarks and non-Abelian gauge
fields, discretization errors can be factorized into the form
f(mpa)(a|pr|)", and that the function f (mya) is bounded to
be of O(1) or less for all values of the quark mass m,. There-
fore cutoff effects are of O(aAqcp)” and O((a|py|)"), even
for amj, 2 1, and can be controlled using a Symanzik-like
procedure. As in the standard Symanzik improvement pro-
gram, cutoff effects are systematically removed by introduc-
ing higher-dimension operators to the lattice action and suit-
ably tuning their coefficients. In the relativistic heavy-quark
approach, however, the operator coefficients are allowed to
depend explicitly on the quark mass. By including lattice
operators through dimension n and adjusting their coeffi-
cients ¢, ; (impa) correctly, one enforces that matrix elements
in the lattice theory are equal to the analogous matrix ele-
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ments in continuum QCD through (a|py|)", such that resid-
ual heavy-quark discretization errors are of O(a|py|)* 1.

The relativistic heavy-quark approach can be used to com-
pute the matrix elements of states containing heavy quarks
for which the heavy-quark spatial momentum |pj| is small
compared to the lattice spacing. Thus it is suitable to describe
bottom and charm quarks in both heavy-light and heavy-
heavy systems. Calculations of bottomonium and charmo-
nium spectra serve as nontrivial tests of the method and its
accuracy.

At fixed lattice spacing, relativistic heavy-quark formula-
tions recover the massless limit when (amj) < 1, recover
the static limit when (amj) > 1, and smoothly interpolate
between the two; thus they can be used for any value of
the quark mass, and, in particular, for both charm and bot-
tom. Discretization errors for relativistic heavy-quark formu-
lations are generically of the form aé‘ f(amp)(a|pp|)", where
k reflects the order of the perturbative matching for operators
of O((a|py)™). For each n, such errors are removed com-
pletely if the operator matching is nonperturbative. When
(amp) ~ 1, this gives rise to nontrivial lattice-spacing
dependence in physical quantities, and it is prudent to com-
pare estimates based on power counting with a direct study
of scaling behaviour using a range of lattice spacings. At
fixed quark mass, relativistic heavy-quark actions possess
a smooth continuum limit without power divergences. Of
course, as mj;, — oo at fixed lattice spacing, the power diver-
gences of the static limit are recovered (see, e.g. Ref. [760]).

The relativistic heavy-quark formulations in use all begin
with the anisotropic Sheikholeslami—Wohlert (“clover”)
action [761]:

- . = a
St = a* 39y (mo+ Do +¢7 - D — 5(D%?

x,x’

- g;(ﬁ)Z + Z %CSWUMVFMV> ¥(x), (295)
L,V Yx

where D, is the lattice covariant derivative and F),, is the
lattice field-strength tensor. Here we show the form of the
action given in Ref. [475]. The introduction of a space-
time anisotropy, parameterized by ¢ in Eq. (295), is con-
venient for heavy-quark systems because the characteristic
heavy-quark four-momenta do not respect space-time axis
exchange (p; < my in the bound-state rest frame). Fur-
ther, the Sheikoleslami—Wohlert action respects the contin-
uum heavy-quark spin and flavour symmetries, so HQET
can be used to interpret and estimate lattice discretization
effects [760,762,763]. We discuss three different prescrip-
tions for tuning the parameters of the action in common use
below. In particular, we focus on aspects of the action and
operator improvement and matching relevant for evaluating
the quality of the calculations discussed in the main text.
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The meson energy-momentum dispersion relation plays

an important role in relativistic heavy-quark formulations:

9]
E(p) = My + 52—+ O,
2M>

where M and M, are known as the rest and kinetic masses,
respectively. Because the lattice breaks Lorentz invariance,
there are corrections proportional to powers of the momen-
tum. Further, the lattice rest masses and kinetic masses are not
equal (M1 # M>), and only become equal in the continuum
limit.

The Fermilab interpretation [747] is suitable for calcula-
tions of mass splittings and matrix elements of systems with
heavy quarks. The Fermilab action is based on the hopping-
parameter form of the Wilson action, in which «j parame-
terizes the heavy-quark mass. In practice, «j, is tuned such
that the kinetic meson mass equals the experimentally mea-
sured heavy-strange meson mass (m g, for bottom and m p,
for charm). In principle, one could also tune the anisotropy
parameter such that M| = M>. This is not necessary, how-
ever, to obtain mass splittings and matrix elements, which
are not affected by M| [762]. Therefore in the Fermilab
action the anisotropy parameter is set equal to unity. The
clover coefficient in the Fermilab action is fixed to the value
csw = 1 /uf’) from mean-field improved lattice perturbation
theory [618]. With this prescription, discretization effects are
of O(asa|pp, (a|pr])?). Calculations of electroweak matrix
elements also require improving the lattice current and four-
fermion operators to the same order, and matching them to
the continuum. Calculations with the Fermilab action remove
tree-level O(a) errors in electroweak operators by rotating
the heavy-quark field used in the matrix element and set-
ting the rotation coefficient to its tadpole-improved tree-level
value (see e.g. Egs. (7.8) and (7.10) of Ref. [747]). Finally,
electroweak operators are typically renormalized using a
mostly nonperturbative approach in which the flavour-
conserving light-light and heavy-heavy current renormal-
ization factors Zl‘ﬁ and Z}",h are computed nonperturba-
tively [477]. The flavour-conserving factors account for most
of the heavy-light current renormalization. The remaining
correction is expected to be close to unity due to the cancel-
lation of most of the radiative corrections including tadpole
graphs [760]; therefore it can be reliably computed at one-
loop in mean-field improved lattice perturbation theory with
truncation errors at the percent to few-percent level.

The relativistic heavy-quark (RHQ) formulation devel-
oped by Li, Lin, and Christ builds upon the Fermilab
approach, but tunes all the parameters of the action in
Eq. (295) nonperturbatively [475]. In practice, the three
parameters {moa, csw, ¢} are fixed to reproduce the exper-
imentally measured By meson mass and hyperfine splitting
(mpr — mp,), and to make the kinetic and rest masses of
the lattice By meson equal [476]. This is done by computing
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the heavy-strange meson mass, hyperfine splitting, and ratio
M1 /M, for several sets of bare parameters {moa, csw, ¢}
and interpolating linearly to the physical B point. By fix-
ing the Bs-meson hyperfine splitting, one loses a potential
experimental prediction with respect to the Fermilab formu-
lation. However, by requiring that M; = M>, one gains
the ability to use the meson rest masses, which are gen-
erally more precise than the kinetic masses, in the RHQ
approach. The nonperturbative parameter-tuning procedure
eliminates O(a) errors from the RHQ action, such that dis-
cretization errors are of O((a|py|)?). Calculations of B-
meson decay constants and semileptonic form factors with
the RHQ action are in progress [764,765], as is the corre-
sponding one-loop mean-field improved lattice perturbation
theory [766]. For these works, cutoff effects in the elec-
troweak vector and axial-vector currents will be removed
through O(w;a), such that the remaining discretization errors
are of O(a2a|pn|, (a|px])?). Matching the lattice operators
to the continuum will be done following the mostly nonper-
turbative approach described above.

The Tsukuba heavy-quark action is also based on the
Sheikholeslami—Wohlert action in Eq. (295), but allows for
further anisotropies and hence has additional parameters:
specifically the clover coefficients in the spatial (cg) and tem-
poral (cE) directions differ, as do the anisotropy coefficients
of the D and D? operators [748]. In practice, the contribu-
tion to the clover coefficient in the massless limit is computed
nonperturbatively [767], while the mass-dependent contribu-
tions, which differ for cp and cg, are calculated at one-loop
in mean-field improved lattice perturbation theory [768].
The hopping parameter is fixed nonperturbatively to repro-
duce the experimentally measured spin-averaged 1S char-
monium mass [422]. One of the anisotropy parameters (r; in
Ref. [422]) is also set to its one-loop perturbative value, while
the other (v in Ref. [422]) is fixed nonperturbatively to obtain
the continuum dispersion relation for the spin-averaged char-
monium 1. states (such that M; = M>). For the renormaliza-
tion and improvement coefficients of weak current operators,
the contributions in the chiral limit are obtained nonperturba-
tively [95,769], while the mass-dependent contributions are
estimated using one-loop lattice perturbation theory [770].
With these choices, lattice cutoff effects from the action and
operators are of O(a2al|p|, (a|pn])?).

Light-quark actions combined with HQET:

The heavy-quark formulations discussed in the previous sec-
tions use effective field theory to avoid the occurrence of
discretization errors of the form (amy)". In this section we
describe methods that use improved actions that were origi-
nally designed for light-quark systems for B physics calcula-
tions. Such actions unavoidably contain discretization errors
that grow as a power of the heavy-quark mass. In order to
use them for heavy-quark physics, they must be improved to

at least O(amy,)?. However, since amp, > 1 at the smallest
lattice spacings available in current simulations, these meth-
ods also require input from HQET to guide the simulation
results to the physical b-quark mass.

The ETM Collaboration has developed two methods,
the “ratio method” [462] and the “interpolation method”
[771,772]. They use these methods together with simulations
with twisted-mass Wilson fermions, which have discretiza-
tion errors of O (amj,)?. In the interpolation method &, and
D¢ (or Opg/Dyye) are calculated for a range of heavy-quark
masses in the charm region and above, while roughly keep-

ing amy, < 0.5. The relativistic results are combined with
a separate calculation of the decay constants in the static
limit, and then interpolated to the physical b quark mass.
In ETM’s implementation of this method, the heavy Wilson
decay constants are matched to HQET using NLO in con-
tinuum perturbation theory. The static-limit result is renor-
malized using one-loop mean-field improved lattice pertur-
bation theory, while for the relativistic data PCAC is used to
calculate absolutely normalized matrix elements. Both, the
relativistic and static-limit data are then run to the common
reference scale u;, = 4.5 GeV at NLO in continuum pertur-
bation theory. In the ratio method, one constructs physical
quantities P (my) from the relativistic data that have a well-
defined static limit (P (mj;) — const. for m;, — o00) and
evaluates them at the heavy-quark masses used in the simu-
lations. Ratios of these quantities are then formed at a fixed
ratio of heavy-quark masses, z = P(my)/P(my/A) (Where
l<ir~ 1.3), which ensures that z is equal to unity in the
static limit. Hence, a separate static-limit calculation is not
needed with this method. In ETM’s implementation of the
ratio method for the B-meson decay constant, P (mj,) is con-
structed from the decay constants and the heavy-quark pole
massas P(mp) = fpe(mp)- (mz‘)le)l/z. The corresponding z-
ratio therefore also includes ratios of perturbative matching
factors for the pole mass to MS conversion. For the inter-
polation to the physical b-quark mass, ratios of perturbative
matching factors converting the data from QCD to HQET are
also included. The QCD-to-HQET matching factors improve
the approach to the static limit by removing the leading loga-
rithmic corrections. In ETM’s implementation of this method
(ETM 11 and 12) both conversion factors are evaluated at
NLO in continuum perturbation theory. The ratios are then
simply fit to a polynomial in 1/my and interpolated to the
physical b-quark mass. The ratios constructed from fp,¢ (fs)
are called z (z;). In order to obtain the B-meson-decay con-
stants, the ratios are combined with relativistic decay constant
data evaluated at the smallest reference mass.

The HPQCD Collaboration has introduced a method in
Ref. [56] which we shall refer to as the “heavy HISQ”
method. The first key ingredient is the use of the HISQ action
for the heavy and light valence quarks, which has leading
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Table 51 Discretizations of the quark action most widely used for heavy ¢ and b quarks and some of their properties

Abbrev. Discretization Leading lattice artefacts and truncation Remarks
errors for heavy-light mesons

tmWil Twisted-mass Wilson O((am h)z) PCAC relation for axial-vector current

HISQ Staggered @ (a slamp)?* (v /c), (amy, Y (v / c)2) PCAC relation for axial-vector current; Ward
identity for vector current

Static Static effective action O(aZAéCD, Aqcp/mp, ozsz, aquQCD) Implementations use APE, HYP1, and HYP2
smearing

HQET Heavy-Quark Effective Theory (’)(aAéCD Jmy, azAéCD, (Aqcp/mp)?)  Nonperturbative matching through O(1/my,)

NRQCD Nonrelativistic QCD O(a sAqep/my, as(Aqep/ mp)?, Tree-level relativistic corrections through O(vﬁ) and

(Agep/m 3, O{XaZAéCD) discretization corrections through O(a?)

Fermilab Sheikholeslami—Wohlert O(aXaAQCD, (aAQCD)Z) Hopping parameter tuned nonperturbatively; clover
coefficient computed at tree-level in
mean-field-improved lattice perturbation theory

RHQ Sheikholeslami—Wohlert O(aszaAQCD, (aAQCD)Z) Hopping parameter, anisotropy and clover
coefficient tuned nonperturbatively by fixing the
B,-meson hyperfine splitting

Tsukuba Sheikholeslami—Wohlert O(a?aAqep. (aAqep)?) NP clover coefficient at ma = 0 plus

mass-dependent corrections calculated at one-loop
in lattice perturbation theory; v calculated NP from
dispersion relation; r; calculated at one-loop in
lattice perturbation theory

discretization errors of O (ozx(v/c) (amp)?, (v/c)z(amh)4).
With the same action for the heavy and light valence quarks
it is possible to use PCAC to avoid renormalization uncer-
tainties. Another key ingredient is the availability of gauge
ensembles over a large range of lattice spacings, in this case
in the form of the library of Ny = 2 + 1 asqtad ensem-
bles made public by the MILC Collaboration which includes
lattice spacings as small as a &~ 0.045 fm. Since the HISQ
action is so highly improved and with lattice spacings as small
as 0.045 fm, HPQCD is able to use a large range of heavy-
quark masses, from below the charm region to almost up to

the physical b quark mass with am, < 0.85. They then fit
their data in a combined continuum and HQET fit (i.e. using
a fit function that is motivated by HQET) to a polynomial
in 1/mpy (the heavy pseudo scalar meson mass of a meson
containing a heavy (h) quark).

In Table 51 we list the discretizations of the quark action
most widely used for heavy ¢ and b quarks together with
the abbreviations used in the summary tables. We also sum-
marize the main properties of these actions and the leading
lattice discretization errors for calculations of heavy-light
meson matrix quantities with them. Note that in order to
maintain the leading lattice artefacts of the actions as given
in the table in nonspectral observables (like operator matrix
elements) the corresponding nonspectral operators need to
be improved as well.
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A.2 Setting the scale

In simulations of lattice QCD quantities such as hadron
masses and decay constants are obtained in “lattice units”
i.e. as dimensionless numbers. In order to convert them into
physical units they must be expressed in terms of some exper-
imentally known, dimensionful reference quantity Q. This
procedure is called “setting the scale”. It amounts to com-
puting the nonperturbative relation between the bare gauge
coupling go (which is an input parameter in any lattice simu-
lation) and the lattice spacing a expressed in physical units.
To this end one chooses a value for gp and computes the
value of the reference quantity in a simulation: This yields
the dimensionless combination, (a Q)|g,, at the chosen value
of go. The calibration of the lattice spacing is then achieved
via

0 |exp [MeV]
(aQ)lg

where Q|exp denotes the experimentally known value of the
reference quantity. Common choices for Q are the mass of
the nucleon, the €2 baryon or the decay constants of the pion
and the kaon. Vector mesons, such as the p or K *-meson, are
unstable and therefore their masses are not very well suited
for setting the scale, despite the fact that they have been used
over many years for that purpose.

a ' [MeV] = , (297)
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Another widely used quantity to set the scale is the
hadronic radius rg, which can be determined from the force
between static quarks via the relation [136]

F(ro)rg = 1.65. (298)

If the force is derived from potential models describing heavy
quarkonia, the above relation determines the value of rg
as ro ~ 0.5fm. A variant of this procedure is obtained
[565] by using the definition F (rl)rl2 = 1.00, which yields

1 ~ 0.32fm. It is important to realize that both ry and r|
are not directly accessible in experiment, so that their values
derived from phenomenological potentials are necessarily
model-dependent. Inspite of the inherent ambiguity when-
ever hadronic radii are used to calibrate the lattice spacing,
they are very useful quantities for performing scaling tests
and continuum extrapolations of lattice data. Furthermore,
they can be easily computed with good statistical accuracy
in lattice simulations.

A.3 Matching and running

The lattice formulation of QCD amounts to introducing a
particular regularization scheme. Thus, in order to be useful
for phenomenology, hadronic matrix elements computed in
lattice simulations must be related to some continuum ref-
erence scheme, such as the MS-scheme of dimensional reg-
ularization. The matching to the continuum scheme usually
involves running to some reference scale using the renormal-
ization group.

In principle, the matching factors which relate lattice
matrix elements to the MS-scheme, can be computed in per-
turbation theory formulated in terms of the bare coupling. It
has been known for a long time, though, that the perturbative
expansion is not under good control. Several techniques have
been developed which allow for a nonperturbative matching
between lattice regularization and continuum schemes, and
they are briefly introduced here.

Regularization-independent Momentum Subtraction:

In the Regularization-independent Momentum Subtraction
(“RI/MOM” or “RI”) scheme [384] a nonperturbative renor-
malization condition is formulated in terms of Green func-
tions involving quark states in a fixed gauge (usually Landau
gauge) at nonzero virtuality. In this way one relates operators
in lattice regularization nonperturbatively to the RI scheme.
In a second step one matches the operator in the RI scheme to
its counterpart in the MS-scheme. The advantage of this pro-
cedure is that the latter relation involves perturbation theory
formulated in the continuum theory. The uncontrolled use of
lattice perturbation theory can thus be avoided. A technical
complication is associated with the accessible momentum
scales (i.e. virtualities), which must be large enough (typ-
ically several GeV) in order for the perturbative relation to

MS to be reliable. The momentum scales in simulations must
stay well below the cutoff scale (i.e. 27t over the lattice spac-
ing), since otherwise large lattice artefacts are incurred. Thus,
the applicability of the RI scheme traditionally relies on the
existence of a “window”” of momentum scales, which satisfy

AqQcp < p<2ma” (299)

However, solutions for mitigating this limitation, which
involve continuum limit, nonperturbative running to higher
scales in the RI/MOM scheme, have recently been proposed
and implemented [7,8,405,773].

Schrodinger functional.:

Another example of a nonperturbative matching procedure is
provided by the Schrodinger functional (SF) scheme [153].
It is based on the formulation of QCD in a finite volume. If
all quark masses are set to zero the box length remains the
only scale in the theory, such that observables like the cou-
pling constant run with the box size L. The great advantage
is that the RG running of scale-dependent quantities can be
computed nonperturbatively using recursive finite-size scal-
ing techniques. It is thus possible to run nonperturbatively up
to scales of, say, 100 GeV, where one is sure that the perturba-
tive relation between the SF and MS-schemes is controlled.

Perturbation theory:

The third matching procedure is based on perturbation the-
ory in which higher order are effectively resummed [618].
Although this procedure is easier to implement, it is hard to
estimate the uncertainty associated with it.

Mostly nonperturbative renormalization:
Some calculations of heavy-light and heavy-heavy matrix
elements adopt a mostly nonperturbative matching approach.
Let us consider a weak decay process mediated by a cur-
rent with quark flavours 7 and g, where & is the initial
heavy quark (either bottom or charm) and ¢ can be a light
(¢ = u, d), strange, or charm quark. The matrix elements of
lattice current Jj, are matched to the corresponding contin-
uum matrix elements with continuum current Jj4 by calcu-
lating the renormalization factor Z ;,, . The mostly nonpertur-
bative renormalization method takes advantage of rewriting
the current renormalization factor as the following product:

Zys Z 7

hh

Zth = Plng (300)

The flavour-conserving renormalization factors Z+ and
Zv4 can be obtained nonperturbatively from standard
heavy—hght and light-light meson charge normalization con-
ditions. Z v and Z vz, account for the bulk of the renor-
malization. "The remalnlng correction py,, is expected to
be close to unity because most of the radiative correc-
tions, including self-energy corrections and contributions
from tadpole graphs, cancel in the ratio [760,763]. The one-
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Table 52 The most widely used matching and running techniques

Abbrev. Description

RI Regularization-independent momentum
subtraction scheme

SF Schrodinger functional scheme

PT1¢ Matching/running computed in perturbation
theory at one loop

PT2¢ Matching/running computed in perturbation
theory at two loops

mNPR Mostly nonperturbative renormalization

loop coefficients of p;,, have been calculated for heavy—
light and heavy-heavy currents for Fermilab heavy and both
(improved) Wilson light [760,763] and asqtad light [774]
quarks. In all cases the one-loop coefficients are found to be
very small, yielding sub-percent to few percent level correc-
tions.

In Table 52 we list the abbreviations used in the compila-
tion of results together with a short description.

A.4 Chiral extrapolation

As mentioned in the introduction, Symanzik’s framework
can be combined with Chiral Perturbation Theory. The well-
known terms occurring in the chiral effective Lagrangian are
then supplemented by contributions proportional to powers
of the lattice spacing a. The additional terms are constrained
by the symmetries of the lattice action and therefore depend
on the specific choice of the discretization. The resulting
effective theory can be used to analyse the a-dependence of
the various quantities of interest — provided the quark masses
and the momenta considered are in the range where the trun-
cated chiral perturbation series yields an adequate approxi-
mation. Understanding the dependence on the lattice spacing
is of central importance for a controlled extrapolation to the
continuum limit.

For staggered fermions, this program has first been car-
ried out for a single staggered flavour (a single staggered
field) [688] at O(a?). In the following, this effective the-
ory is denoted by S PT. It was later generalized to an arbi-
trary number of flavours [329,330], and to next-to-leading
order [689]. The corresponding theory is commonly called
Rooted Staggered chiral perturbation theory and is denoted
by RS x PT.

For Wilson fermions, the effective theory has been devel-
oped in [327,328,775] and is called W x PT, while the theory
for Wilson twisted-mass fermions [84,776,777] is termed
tmW x PT.

Another important approach is to consider theories in
which the valence- and sea-quark masses are chosen to be
different. These theories are called partially quenched. The
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acronym for the corresponding chiral effective theory is
PQxPT [778-781].

Finally, one can also consider theories where the fermion
discretizations used for the sea and the valence quarks are dif-
ferent. The effective chiral theories for these “mixed action”
theories are referred to as MA x PT [274-277,782-784].

Finite-Volume Regimes of QCD:

Once QCD with Ny nondegenerate flavours is regulated both
in the UV and in the IR, there are 3 + Ny scales in play:
The scale Agcp that reflects “dimensional transmutation”
(alternatively, one could use the pion decay constant or the
nucleon mass, in the chiral limit), the inverse lattice spacing
1/a, the inverse box size 1/L, as well as Ny meson masses
(or functions of meson masses) that are sensitive to the Ny
quark masses, e.g. M},, 2M12< — M% and the spin-averaged
masses of ' S states of quarkonia.

Ultimately, we are interested in results with the two reg-
ulators removed, i.e. physical quantities for which the limits
a — 0and L — oo have been carried out. In both cases there
is an effective field theory (EFT) which guides the extrapo-
lation. For the @ — 0 limit, this is a version of the Symanzik
EFT which depends, in its details, on the lattice action that
is used, as outlined in Sect. A.1. The finite-volume effects
are dominated by the lightest particles, the pions. Therefore,
a chiral EFT, also known as yPT, is appropriate to parame-
terize the finite-volume effects, i.e. the deviation of masses
and other observables, such as matrix elements, in a finite
volume from their infinite-volume, physical values. Most
simulations of phenomenological interest are carried out in
boxes of size L > 1/My, that is, in boxes whose diame-
ter is large compared to the Compton wavelength that the
pion would have, at the given quark mass, in infinite volume.
In this situation the finite-volume corrections are small, and
in many cases the ratio Mnaq(L)/Mnaq or f(L)/f, where
f denotes some generic matrix element, can be calculated
in xPT, such that the leading finite-volume effects can be
taken out analytically. In the terminology of xPT this set-
ting is referred to as the p-regime, as the typical contributing
momenta p ~ My > 1/L. A peculiar situation occurs if
the condition L > 1/M; is violated (while LAgcp > 1
still holds), in other words if the quark mass is taken so light
that the Compton wavelength that the pion would have (at the
givenmg ) ininfinite volume, is as large or even larger than the
actual box size. Then the pion zero-momentum mode dom-
inates and needs to be treated separately. While this setup is
unlikely to be useful for standard phenomenological compu-
tations, the low-energy constants of xPT can still be calcu-
lated, by matching to a re-ordered version of the chiral series,
and following the details of the reordering such an extreme
regime is called the €- or §-regime, respectively. Accordingly,
further particulars of these regimes are discussed in Sect. 5.1
of this report.
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A.5 Summary of simulated lattice actions

In the following tables 53, 54, 55, 56 and 57 we summarize
the gauge and quark actions used in the various calculations
with Ny =2,2 4 1 and 2 + 1 + 1 quark flavours. The cal-
culations with Ny = 0 quark flavours mentioned in Sect. 9
all used the Wilson gauge action and are not listed. Abbre-
viations are explained in Sects. A.1.1, A.1.2 and A.1.3, and
summarized in Tables 49, 50 and 51.

Table 53 Summary of simulated lattice actions with Ny = 2 quark flavours

Collaboration Refs. Ny Gauge action Quark action
ALPHA 01A, 04, 05, 12, 13A [12,135,239,588,589] 2 Wilson npSW
Aoki 94 [621] 2 Wilson KS
Bernardoni 10 [345] 2 Wilson npSW @
Bernardoni 11 [343] 2 Wilson npSW
Brandt 13 [37] 2 Wilson npSW
Boucaud 01B [644] 2 Wilson Wilson
CERN-TOV 06 [358] 2 Wilson Wilson/npSW
CERN 08 [302] 2 Wilson npSW
CP-PACS 01 [134] 2 Iwasaki mfSW
Davies 94 [622] 2 Wilson KS
Diirr 11 [132] 2 Wilson npSW
Engel 14 [38] 2 Wilson npSW
ETM 07, 07A, 08, 09, 09A-D, 10B, 10D, [11,25,32,33,36,41,83,133,215, 2 tISym tmWil

10F, 11C, 12, 13, 13A 332,342,346,462,605,654]
ETM 10A, 12D [46,401] 2 tISym tmWilP
ETMC 14D, 15A [160,333] 2 Iwasaki tmWil with npSW
Giilpers 13, 15 [355,356] 2 Wilson npSW
Hasenfratz 08 [347] 2 tadSym n-HYP tISW
JLQCD 08 [409] 2 Iwasaki overlap
JLQCD 02, 05 [141,218] 2 Wilson npSW
JLQCD/TWQCD 07, 08A, 10 [138,338,348] 2 Iwasaki overlap
QCDSF 07, 13 [216,353] 2 Wilson npSW
QCDSF/UKQCD 04, 06, 06A, 07 [137,139,241,363] 2 Wilson npSW
RBC 04, 06, 07 [105,217,400] 2 DBW2 DW
RBC/UKQCD 07 [214] 2 Wilson npSW
RMI123 11, 13 [16,167] 2 tISym tmWil
Sesam 99 [623] 2 Wilson Wilson
Sternbeck 10, 12 [652,653] 2 Wilson npSW
SPQcdR 05 [140] 2 Wilson Wilson
TWQCD 11, 11A [249,344] 2 Wilson optimal DW
UKQCD 04 [214,410] 2 Wilson npSW
Wingate 95 [624] 2 Wilson KS

# The calculation uses overlap fermions in the valence quark sector
Y The calculation uses Osterwalder—Seiler fermions [427] in the valence quark sector
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Table 54 Summary of simulated lattice actions with Ny =2 + 1 or Ny = 3 quark flavours

Collaboration Refs. Ny Gauge action Quark action
Aubin 08, 09 [236,406] 2+1 tadSym Asqtad®
Blum 10 [103] 2+1 Iwasaki DW
BMW 10A-C, 11, 13 [7,8,35,43,115] 241 tISym 2-level HEX tISW
BMW 10 [30] 241 tISym 6-level stout tISW
Boyle 14 [372] 241 Iwasaki, Iwasaki + DSDR ~ DW
CP-PACS/JILQCD 07 [146] 241 Iwasaki npSW
FNAL/MILC 12, 121 [23,60] 241 tadSym Asqtad
HPQCD 05, 05A, 08A, 13A [26,147,616,617] 241 tadSym Asqtad
HPQCD 10 [9] 2+1 tadSym Asgtad®
HPQCD/UKQCD 06 [408] 2+1 tadSym Asqtad
HPQCD/UKQCD 07 [28] 241 tadSym Asgtad®
HPQCD/MILC/UKQCD 04 [148] 241 tadSym Asqtad
JLQCD 09, 10 [337,613] 2+1 Iwasaki Overlap
JLQCD 11, 12, 14, 15A [211,212,359,360] 2+1 Iwasaki (fixed topology) Overlap
JLQCD 15B [174] 2+1 Iwasaki M-DW
JLQCD/TWQCD 08B, 09A [235,341] 241 Iwasaki Overlap
JLQCD/TWQCD 10 [338] 2+ 1,3 Iwasaki Overlap
Laiho 11 [44] 241 tadSym Asqtad®
LHP 04 [362] 2+1 tadSym Asqtad®
Maltman 08 [63] 241 tadSym Asqtad
MILC 04, 07, 09, 09A, 10, 10A [13,29,89,107,148,785] 2+1 tadSym Asqtad
NPLQCD 06 [238] 2+1 tadSym Asqtad®
PACS-CS 08, 08A, 09, 09A, 10, 11A, 12 [62,93-95,237,361] 2+1 Iwasaki npSW
QCDSF/UKQCD 15 [166] 2+1 tISym npSW
RBC/UKQCD 07, 08, 08A, 10, 10A-B, [31,144,145,210,213,339,405, 2+1 Iwasaki, Iwasaki + DSDR DWW

11,12, 13 407,786]
RBC/UKQCD 12E [412] 241 Iwasaki DW
RBC/UKQCD 14B, 15A, 15E [10,24,335] 2+1 Iwasaki, Iwasaki + DSDR DWW, M-DW
Sternbeck 12 [652] 2+1 tISym npSW
SWME 10, 11, 11A, 13, 13A, 14A, 14C, [45,278,385,402—-404,417,787] 241 tadSym Asqtad®

15A
TWQCD 08 [340] 2+1 Iwasaki DW

4 The calculation uses domain-wall fermions in the valence-quark sector
Y The calculation uses HISQ staggered fermions in the valence-quark sector
¢ The calculation uses HYP-smeared improved staggered fermions in the valence-quark sector

Table 55 Summary of simulated lattice actions with Ny = 4 or Ny = 2 + 1 + 1 quark flavours

Collaboration Refs. Ny Gauge action Quark action
ALPHA 10A [586] 4 Wilson npSW
Bazavov 12 [604] 24+ 141 tISym HISQ

ETM 10, 10E, 11, 11D, 12C, 13, 13A, 13D [33,39,233,332,352,649-651] 2+1+1 Iwasaki tmWil

ETM 14A, 14B, 15, 15C [42,176,180,208] 24+1+1 Iwasaki tmWil*
FNAL/MILC 12B, 13, 13C, 13E, 14A [14,22,209,420,421] 24+1+1 tadSym HISQ
HPQCD 14A, 15B [5,336] 2+1+1 tadSym HISQ
MILC 13A [231] 2+1+1 tadSym HISQ

Perez 10 [587] 4 Wilson npSW

4 The calculation uses Osterwalder—Seiler fermions [427] in the valence-quark sector
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Table 56 Summary of lattice simulations Ny = 2 sea-quark flavours and with b and ¢ valence quarks

Collaboration Refs. Ny Gauge action Quark actions

Sea Light Heavy

valence
ALPHA 11, 12A, 13, 14, 14B [57,458,459,461,512] 2 Plaquette npSW npSW HQET
ALPHA 13C [177] 2 Plaquette npSW npSW npSW
Atoui 13 [537] 2 tISym tmWil tmWil tmWil
ETM 09, 09D, 11B, 12A, 12B, 13B, 13C [20,32,58,431,460,462,485] 2 tISym tmWil tmWil tmWil
ETM 11A [182] 2 tISym tmWil tmWil tmWil, static
TWQCD 14 [424] 2 Plaquette oDW oDW oDW
Table 57 Summary of lattice simulations with Ny =2+ 1 or Ny = 2 + 1 + 1 sea-quark flavours and b and ¢ valence quarks
Collaboration Refs. Ny Gauge action Quark actions
Sea Light Heavy
valence
xQCD 14 [17] 241 Iwasaki DW Overlap  Overlap
FNAL/MILC 04, 04A, 05, 08, 08A, 10, 11, [48,60,423,437,441,483,535,536, 2+1 tadSym Asqtad Asqtad  Fermilab
11A, 12, 13B 538,788]
FNAL/MILC 14, 15C [539,540] 2+1 tadSym Asqtad Asqtad®  Fermilab®
FNAL/MILC 15 [504] 2+1 tadSym Asqtad Asqtad ~ Fermilab
HPQCD 06, 06A, 08B, 09, 13B [59,152,181,484,503] 2+1 tadSym Asqtad Asqtad  NRQCD
HPQCD 12 [55] 2+1 tadSym Asqtad HISQ NRQCD
HPQCD 15 [541] 2+1 tadSym Asqtad HISQ®  NRQCDP
HPQCD/UKQCD 07, HPQCD 10A, 10B, 11, [28,47,49-51,56,434] 241 tadSym Asqtad HISQ HISQ
11A, 124, 13C

PACS-CS 11 [422] 241 Iwasaki npSW  npSW Tsukuba
RBC/UKQCD 10C, 14A [54,464] 241 Iwasaki DW DW Static
RBC/UKQCD 13A, 14, 15 [53,457,505] 2+1 Iwasaki DW DW RHQ
ETM 13E, 13F, 14E [27,230,456] 24+1+1 Iwasaki tmWil  tmWil tmWil
FNAL/MILC 12B, 13, 14A [14,420,421] 24+1+1 tadSym HISQ HISQ HISQ
HPQCD 13 [52] 24+1+1 tadSym HISQ HISQ NRQCD

# Asqtad for u, d and s quark; Fermilab for b and ¢ quark
b HISQ for u, d, s and ¢ quark; NRQCD for b quark

Appendix B: Notes
B.1 Notes to Sect. 3 on quark masses

See Tables 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71,72,73,74,75,76, 77.

Table 58 Continuum extrapolations/estimation of lattice artefacts in determinations of m,,4, m, and, in some cases m, and my, with Ny = 2+1+1

quark flavours

Collaboration Refs. Ny a [fm] Description

HPQCD 14A [5] 24141 0.15, 0.12, 0.09, 0.06 Scale set through the Wilson flow parameter w

FNAL/MILC 14A [14] 24141 0.06, 0.09, 0.12, 0.15 HISQ action for both valence and sea quarks. Absolute scale though f;
ETM 14 [4] 24+1+1 0.062, 0.082, 0.089 Scale set through f;;. Automatic O(a) improvement, flavour

symmetry breaking: (M%S)2 — (M;S)2 ~ O(a?). Discretization and
volume effects due to the 7°—7* mass splitting are taken into

account through x PT for twisted-mass fermions
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Table 59 Continuum extrapolations/estimation of lattice artefacts in determinations of m,4, m and, in some cases m,, and my, with Ny =2 + 1

quark flavours

Collaboration Refs. Ny a [fm] Description

QCDSF/UKQCD 15 [166] 241 0.07 Scale set through the gradient
flow parameter wq

RBC/UKQCD 14B [10] 2+1 0.063, 0.084, 0.114, 0.144 Scale set through Mg

RBC/UKQCD 12 [31] 2+1 0.085,0.113, 0.144 Scale set through Mg

PACS-CS 12 [143] 1+14+1 0.09 Reweighting of PACS-CS 08
N F= 2+1QCD
configurations with e.m. and
my #my

Laiho 11 [44] 241 0.06, 0.09, 0.15 MILC staggered ensembles [13],
scale set using | determined
by HPQCD with Y splittings,
pseudoscalar decay constants,
through ry [250]

PACS-CS 10 [95] 241 0.09 cf. PACS-CS 08

MILC 10A [13] 241 cf. MILC 09, 09A

BMW 10A, 10B [7,8] 241 0.054, 0.065, 0.077, 0.093, 0.116 Scale set via M, Mg, Mg

RBC/UKQCD 10A [144] 2+1 0.114, 0.087 Scale set through Mg

Blum 10 [103] 241 0.11 Relies on RBC/UKQCD 08 scale
setting

PACS-CS 09 [94] 2+1 0.09 Scale setting via Mg

HPQCD 09A, 10 [9,18] 241 0.045, 0.06, 0.09, 0.12, 0.15 Scale set through r and Y and
continuum extrapolation based
on RS PT. See MILC 09 for
details

MILC 09A, 09 [6,89] 241 0.045, 0.06, 0.09 Scale set through r1 and Y and
continuum extrapolation based
on RSy PT

PACS-CS 08 [93] 241 0.09 Scale set through Mq.
Nonperturbatively
O(a)-improved

RBC/UKQCD 08 [145] 241 0.11 Scale set through Mg. Automatic
O(a)-improvement due to
approximate chiral symmetry.
(AQCDa)2 ~ 4% systematic
error due to lattice artefacts
added

CP-PACS/JLQCD 07 [146] 241 0.07, 0.10, 0.12 Scale set through Mk or M.
Nonperturbatively
O(a)-improved

HPQCD 05 [147] 241 0.09, 0.12 Scale set through the T — Y’
mass difference

HPQCD/MILC/UKQCD 04, MILC 04 [107,148] 241 0.09, 0.12 Scale set through r and Y and

continuum extrapolation based
on RSy PT
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Table 60 Continuum extrapolations/estimation of lattice artefacts in determinations of m,¢, m and, in some cases m,, and my, with Ny = 2 quark

flavours

Collaboration Refs. Ny a [fm] Description

ETM 14D [160] 2 0.094 Scale set through Fy, ro, o and wg. Twisted
Wilson fermions plus clover term.
Automatic O(a) improvement

RM123 13 [16] 2 0.098, 0.085, 0.067, 0.054 cf. ETM 10B

ALPHA 12 [12] 2 0.076, 0.066, 0.049 Scale set through Fx

RM123 11 [167] 2 0.098, 0.085, 0.067, 0.054 cf. ETM 10B

Diirr 11 [132] 2 0.076, 0.072, 0.060 Scale for light-quark masses set through m,.

ETM 10B [11] 2 0.098, 0.085, 0.067, 0.054 Scale set through F

JLQCD/TWQCD 08A [138] 2 0.12 Scale set through rg

RBC 07 [105] 2 0.12 Scale set through M,

ETM 07 [133] 2 0.09 Scale set through F,

QCDSF/UKQCD 06 [139] 2 0.065-0.09 Scale set through rg

SPQcdR 05 [140] 2 0.06, 0.08 Scale set through Mg+

ALPHA 05 [135] 2 0.07-0.12 Scale set through ry

QCDSF/UKQCD 04 [137] 2 0.07-0.12 Scale set through ry

JLQCD 02 [141] 2 0.09 Scale set through M,

CP-PACS 01 [134] 2 0.11,0.16,0.22 Scale set through M,

Table 61 Chiral-extrapolation/minimum pion mass in determinations of m,4, m, and, in some cases, m, and my, with Ny = 2 4+ 1 + 1 quark

flavours

Collaboration Refs. Ny Mz min [MeV] Description

HPQCD 14A [5] 2+ 141 128, 5 (173rMs) Sea quark masses linearly extrapolated/interpolated to
physical values. mg determined from physical mg/m, and
me

FNAL/MILC 14A [14] 24141 12855 (143rMms) Linear interpolation to physical point. The lightest RMS
mass is from the a = 0.06 fm ensemble and the lightest
Nambu—Goldstone mass is from the @ = 0.09 fm
ensemble

ETM 14 [4] 24+ 141 180,,0(220,+) Chiral extrapolation performed through SU (2) xPT or

polynomial fit

Table 62 Chiral-extrapolation/minimum pion mass in determinations of m,q, my and, in some cases m,, and m,, with Ny = 2 + 1 quark flavours

Collaboration Refs. Ny Mz min [MeV] Description

QCDSF/UKQCD 15 [166] 2+1 205 (val.) Expansion around the symmetric point
my = mg = my

RBC/UKQCD 14B [10] 241 139 NLO PQ SU(2) xPT as well as analytic ansitze

RBC/UKQCD 12 [31] 241 170 Combined fit to Iwasaki and Iwasaki + DSDR gauge
action ensembles

PACS-CS 12 [143] 1+1+4+1 cf. PACS-CS 08

Laiho 11 [44] 2+1 210 (val.) 280 (sea-RMS) NLO SU (3), mixed-action x PT [276], with
N2LO-N*LO analytic terms

PACS-CS 10 [95] 241 cf. PACS-CS 08

MILC 10A [13] 241 NLO SU (2) SxPT. cf. also MILC 09A, 09

BMW 10A, 10B [7,8] 2+1 135 Interpolation to the physical point

RBC/UKQCD 10A [144] 241 290 NLO PQ SU(2) xPT as well as analytic ansitze

Blum 10 [103,145] 2+1 242 (valence), 330 (sea) Extrapolation done on the basis of PQxPT formulae

with virtual photons
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Table 62 continued

Collaboration Refs. Ny Mz min [MeV] Description

PACS-CS 09 [94] 2+1 135 Physical point reached by reweighting
technique, no chiral extrapolation
needed

HPQCD 09A, 10 [9,18] 241 cf. MILC 09

MILC 09A, 09 [6,89] 241 177,224 NLO SU(3) RSxPT, continuum xPT at
NNLO and NNNLO and NNNNLO
analytic terms. The lightest
Nambu-Goldstone mass is 177 MeV
(09A) and 224 MeV (09) (at
a = 0.09 fm) and the lightest RMS mass
is 258 MeV (at a = 0.06 fm)

PACS-CS 08 [93] 241 156 NLO SU(2) xPT and SU(3)
(Wilson) x PT

RBC/UKQCD 08 [145] 241 242 (valence), 330 (sea) SU3) PQxPT and heavy kaon NLO
SU(2) PQyPT fits

CP-PACS/JLQCD 07 [146] 241 620 NLO Wilson xPT fits to meson masses

HPQCD 05 [147] 241 240 PQ RSy PT fits

HPQCD/MILC/UKQCD 04, MILC 04 [107,148] 241 240 PQ RS PT fits

Table 63 Chiral-extrapolation/minimum pion mass in determinations of 1,4, m and, in some cases m,, and my, with Ny = 2 quark flavours

Collaboration Refs. Ny M5 min [MeV] Description

ETM 14D [160] 2 140 Charged/neutral pion-mass breaking,
M]%,,m — Mio ~ O(a?), estimated to be 220 MeV

RM123 13 [16] 2 270 Fits based on NLO xPT and Symanzik expansion up
to O(a?). O(a) e.m. effects included

ALPHA 12 [12] 2 270 NLO SU(2) and SU (3) xPT and O(a?) on LO LEC

RM123 11 [167] 2 270 Fits based on NLO xPT and Symanzik expansion up
to O(a?)

Diirr 11 [132] 2 285 m./m; determined by quadratic or cubic
extrapolation in M

ETM 10B [11] 2 270 Fits based on NLO xPT and Symanzik expansion up
to O(a?)

JLQCD/TWQCD 08A [138] 2 290 NLO xPT fits

RBC 07 [105] 2 440 NLO fit including O(«) effects

ETM 07 [133] 2 300 Polynomial and PQx PT fits

QCDSF/UKQCD 06 [139] 2 520 (valence), 620 (sea) NLO (PQ)xPT fits

SPQcdR 05 [140] 2 600 Polynomial fit

ALPHA 05 [135] 2 560 LO xPT fit

QCDSF/UKQCD 04 [137] 2 520 (valence), 620 (sea) NLO (PQ)xPT fits

JLQCD 02 [141] 2 560 Polynomial and x PT fits

CP-PACS 01 [134] 2 430 Polynomial fits

Table 64 Finite-volume effects in determinations of m,q, m; and, in some cases m,, and my, with Ny =2 + 1 + 1 quark flavours

Collaboration Refs. Ny L [fm] My minL Description

HPQCD 14A [5] 24+ 141 2.5-5.8 3.7

FNAL/MILC 14A [14] 24+1+1 2.8-5.8 3.9rMs(3.77.5) Includes error estimate from NNLO Sy PT

ETM 14 [4] 24141 2.0-3.0 270 (3.3,+) FV effect for the pion is corrected through resummed NNLO

x PT for twisted-mass fermions, which takes into account the
effects due to the 7%

+ mass splitting
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Table 65 Finite-volume effects in determinations of m,4, m and, in some cases m,, and my, with Ny = 2 + 1 quark flavours

Collaboration Refs. Ny L [fm] My minL Description

QCDSF/UKQCD 15 [166] 2+1 1.7,2.2,3.4 Effective field theory used to extrapolate to
infinite volume

RBC/UKQCD 14B [10] 241 2.0,2.7,4.6,54 3.8 Uses FV chiral perturbation theory to
estimate the error, which is deemed
negligible and omitted

RBC/UKQCD 12 [31] 241 2.7,4.6 >4.0 Uses FV chiral perturbation theory to
estimate the error

PACS-CS 12 [143] I1+1+1 cf. PACS-CS 08

Laiho 11 [44] 2+1 2.5,29,3.0,3.6, 4.1 (val.) Data corrected using NLO SU(3) xPT

3.8,4.8 4.1 (sea) finite-V formulae

PACS-CS 10 [95] 2+1 cf. PACS-CS 08

MILC 10A [13] 2+1 cf. MILC 09A, 09

BMW 10A, 10B [7,8] 241 >5.0 >4.0 FV corrections below 5 per mil on the largest
lattices

RBC/UKQCD 10A [144] 241 2.7 >4.0

Blum 10 [103] 241 1.8,2.7 - Simulations done with quenched photons;
large finite-volume effects analytically
corrected for, but not related to M, L

PACS-CS 09 [94] 241 2.9 2.0 Only one volume

HPQCD 09A, 10 [9,18] 241 cf. MILC 09

MILC 09A, 09 [6,89] 241 2.5,2.9,34,3.6, 4.1,3.8

3.8,5.8

PACS-CS 08 [93] 241 29 2.3 Correction for FV from xPT using [82]

RBC/UKQCD 08 [145] 241 1.8,2.7 4.6 Various volumes for comparison and
correction for FV from xPT [82,257,258]

CP-PACS/JLQCD 07 [146] 241 2.0 6.0 Estimate based on the comparison to a
L = 1.6 fm volume assuming powerlike
dependence on L

HPQCD 05 [147] 241 24,29 35

HPQCD/MILC/UKQCD 04, MILC 04 [107,148] 2+1 24,29 35 NLO SxPT

Table 66 Finite-volume effects in determinations of 1,4, m and, in some cases m,, and mg, with Ny = 2 quark flavours

Collaboration Refs. Ny L [fm] My minL Description

ETM 14D [160] 2 22,45 3.2

RMI123 13 [16] 2 >2.0 3.5 One volume L = 1.7 fm at m; = 495, a = 0.054 fm

ALPHA 12 [12] 2 2.1-3.2 4.2 Roughly 2 distinct volumes; no analysis of FV effects

RMI23 11 [167] 2 >2.0 3.5 One volume L = 1.7 fm at m; = 495, a = 0.054 fm

Diirr 11 [132] 2 1.22-2.30 2.8 A number of volumes in determination of m./my, but all but
one have L < 2 fm

ETM 10B [11] 2 22.0 35 One volume L = 1.7 fm at m; = 495, a = 0.054 fm

JLQCD/TWQCD 08A [138] 2 1.9 2.8 Corrections for FV based on NLO xPT

RBC 07 [105] 2 1.9 4.3 Estimate of FV effect based on a model

ETM 07 [133] 2 2.1 32 NLO PQxPT

QCDSF/UKQCD 06 [139] 2 1.4-19 4.7

SPQcdR 05 [140] 2 1.0-1.5 4.3 Comparison between 1.0 and 1.5 fm

ALPHA 05 [135] 2 2.6 7.4

QCDSF/UKQCD 04 [137] 2 1.7-2.0 4.7

JLQCD 02 [141] 2 1.8 5.1 Numerical study with three volumes

CP-PACS 01 [134] 2 2.0-2.6 5.7
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Table 67 Renormalization in

determinations of m 4, m, and,
in some cases m,, and my, with
Ny =2+ 1+ 1 quark flavours

Collaboration Refs. Ny Description

HPQCD 14A [5] 24141 Renormalization not required through the use
of the ratio m./m;

FNAL/MILC 14A [14] 2+1+1 Renormalization not required for m/m,q

ETM 14 [4] 2+1+1 Nonperturbative renormalization (RI/MOM)

Table 68 Renormalization in determinations of m,, m, and, in some cases m,, and my, with Ny =2 + 1 quark flavours

Collaboration Refs. Ny Description
QCDSF/UKQCD 15 [166] 2+1 Nonperturbative renormalization (RI/MOM)
RBC/UKQCD 14B [10] 2+1 Nonperturbative renormalization (RI/SMOM)
RBC/UKQCD 12 [31] 241 Nonperturbative renormalization (RI/SMOM)
PACS-CS 12 [143] I+1+4+1 cf. PACS-CS 10
Laiho 11 [44] 241 Z 4 from AWl and Z4/Zg — 1 from one-loop, tadpole-improved,
perturbation theory
PACS-CS 10 [95] 2+1 Nonperturbative renormalization and running; Schrodinger
functional method
MILC 10A [13] 241 cf. MILC 09A, 09
BMW 10A, 10B [7,8] 2+1 Nonperturbative renormalization (tree-level improved RI-MOM),
nonperturbative running
RBC/UKQCD 10A [144] 2+1 Nonperturbative renormalization (R/SMOM)
Blum 10 [103] 241 Relies on nonperturbative renormalization factors calculated by
RBC/UKQCD 08; no QED renormalization
PACS-CS 09 [94] 2+1 Nonperturbative renormalization; Schrodinger functional method
HPQCD 09A, 10 [9,18] 2+1 Lattice calculation of mg/m.: mg derived from a perturbative
determination of m,
MILC 09A, 09 [6,89] 2+1 Two-loop perturbative renormalization
PACS-CS 08 [93] 2+1 One-loop perturbative renormalization
RBC/UKQCD 08 [145] 241 Nonperturbative renormalization, 3-loop perturbative matching
CP-PACS/JILQCD 07 [146] 241 One-loop perturbative renormalization, tadpole improved
HPQCD 05 [147] 241 Two-loop perturbative renormalization
HPQCD/MILC/UKQCD 04, MILC 04 [107,148] 241 One-loop perturbative renormalization
g:tl;lr:n?zatiizog;n;l:f:r ;E d. Collaboration Refs. Ny Description
ijr\;fso;n; :?;e;("é ;v?)r:i Sm d» With ETM 14D [160] 2 Renormalization not required for my /m,q
RM123 13 [16] 2 Nonperturbative renormalization
ALPHA 12 [12] 2 Nonperturbative renormalization
RMI123 11 [167] 2 Nonperturbative renormalization
Diirr 11 [132] 2 Lattice calculation of mg/m.: mg derived from
a perturbative determination of m,
ETM 10B [11] 2 Nonperturbative renormalization
JLQCD/TWQCD 08A [138] 2 Nonperturbative renormalization
RBC 07 [105] 2 Nonperturbative renormalization
ETM 07 [133] 2 Nonperturbative renormalization
QCDSF/UKQCD 06 [139] 2 Nonperturbative renormalization
SPQcdR 05 [140] 2 Nonperturbative renormalization
ALPHA 05 [135] 2 Nonperturbative renormalization
QCDSF/UKQCD 04 [137] 2 Nonperturbative renormalization
JLQCD 02 [141] 2 One-loop perturbative renormalization
CP-PACS 01 [134] 2 One-loop perturbative renormalization
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Table 70 Continuum extrapolations/estimation of lattice artefacts in the determinations of m,

Collaboration Refs. Ny a [fm] Description
HPQCD 14A [5] 24+1+1 0.06, 0.09, 0.12, 0.15 Scale set through the Wilson flow parameter w
ETM 14 4] 24+ 141 0.062, 0.082, 0.089 Scale set through F,
ETM 14A [176] 24+1+1 0.062, 0.082, 0.089 Scale set through the nucleon mass My
JLQCD 15B [174] 241 0.044, 0.055, 0.083 Mobius domain wall fermions
xQCD 14 [17] 241 0.087,0.11 Overlap valence fermions on domain-wall sea quarks
from [144]. The lattice scale is set together with
the strange- and charm-quark masses using the
experimental values of the Dy, D} and J/y meson
masses
HPQCD 10 [9] 241 0.044, 0.059, 0.085, 0.12, 0.15 Scale set through the static-quark potential
parameter r
HPQCD 08B [152] 241 0.06, 0.09, 0.12, 0.15 Scale set through the static-quark potential
parameter r|
ALPHA 13B [177] 2 0.048, 0.065 Scale set through Fg
ETM 11F [175] 2 cf. ETM 10B
ETM 10B [11] 2 0.054, 0.067, 0.085, 0.098 Scale set through F,
Iigllreanln gggﬁz;r;pgll:mn/ Collaboration Refs. Ny My min [MeV] Description
determinations of m, HPQCD 14A 5] 24141 12875 (173gus)
ETM 14 [4] 24141 1800 (220,+)
ETM 14A [176] 24141 210 cf. ETM 14
JLQCD 15B [174] 241
xQCD 14 [17] 241 290
HPQCD 10 [9] 241 260
HPQCD 08B [152] 241
ALPHA 13B [177] 2 190
ETM 11F [175] 2 cf. ETM 10B
ETM 10B [11] 2 270
;1;13:)}:: Z;ef;?i::;gﬁ;r;fenifems Collaboration Refs. Ny L [fm] My minL Description
HPQCD 14A [5] 24141 2.5-5.8 3.7
ETM 14 [4] 24141 2.0-3.0 27,0 (3.3,%)
ETM 14A [176] 24141 2.0-3.0 27,0 (3.3,%)
JLQCD 15B [174] 241 2.7
xQCD 14 [17] 241 2.8 4.1
HPQCD 10 [9] 2+1 2.3-34 3.8
HPQCD 08B [152] 2+1
ALPHA 13B [177] 2 42 4.0
ETM 11F [175] 2 cf. ETM 10B
ETM 10B [11] 2 >2.0 3.5
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Table 73 Renormalization in the determinations of m,

Collaboration Refs. Ny Description

HPQCD 14A [5] 24141 Renormalization not required

ETM 14 4] 24+ 141 Nonperturbative renormalization (RI/MOM)

ETM 14A [176] 24+1+1 Nonperturbative renormalization (RI/MOM)

JLQCD 15B [174] 241 Renormalization not required

xQCD 14 [17] 241 Nonperturbative renormalization (RI/MOM)

HPQCD 10 [9] 241 Renormalization not required

HPQCD 08B [152] 241 Renormalization not required

ALPHA 13B [177] 2 Nonperturbative renormalization (RI/MOM) plus one-loop PT
estimate for the improvement b-coefficients

ETM 11F [175] 2 Renormalization not required

ETM 10B [11] 2 Nonperturbative renormalization (RI/MOM)

Table 74 Continuum extrapolations/estimation of lattice artefacts in the determinations of m,,

Collaboration Refs. Ny a [fm] Description
HPQCD 14B [19] 24+1+1 0.09, 0.12,0.15 Scale set through the Y/ — Y mass splitting
ETM 14B [180] 24+1+1 0.062, 0.082, 0.089 Scale set through F
HPQCD 14A [5] 24+1+1 0.06, 0.09, 0.12, 0.15 Scale set through the Wilson flow parameter wq
HPQCD 13B [181] 2+1 0.084, 0.12 Scale set through the static-quark potential parameter r|
HPQCD 10 9] 2+1 0.044, 0.059, 0.084, 0.12, 0.15 Scale set through the static-quark potential parameter r|
ETM 13B [20] 2 0.054, 0.067, 0.085, 0.098 Scale set through the static-quark potential parameter r¢
ALPHA 13C [21] 2 0.048, 0.065, 0.075 Scale set through Fg
ETM 11A [182] 2 0.054, 0.067, 0.085, 0.098 Scale set through F;
:::K:;an pciggai:::r;pg:uon/ Collaboration Refs. Ny Mz min [MeV]
determinations of 1, HPQCD 14B [19] 24141 306, 128
ETM 14B [180] 24141 210
HPQCD 14A [5] 24141 12855 (173rMs)
HPQCD 13B [181] 241 345
HPQCD 10 [9] 2+1 260
ETM 13B [20] 2 280
ALPHA 13C [21] 2 190
ETM 11A [182] 2 280
;?3:: thefriﬁgzt_i‘g;lsglfersfeas Collaboration Refs. Ny L [fm] My minL
HPQCD 14B [19] 2+1+1 24-7.8 3.0-3.8
ETM 14B [180] 24+1+1 1.9-2.8 3.0-5.8
HPQCD 14A [5] 24+1+1 2.5-5.8 3.7
HPQCD 13B [181] 241 24,34 4.1
HPQCD 10 [9] 2+1 23-34 3.8
ETM 13B [20] 2 >2.0 35
ALPHA 13C [21] 2 2.3-3.6 4.1
ETM 11A [182] 2 >2.0 35
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Table 77 Lattice
renormalization in the
determinations of my

Collaboration Refs. Ny Description

HPQCD 14B [19] 24+ 141 Renormalization not required

ETM 14B [180] 24+ 141 Nonperturbative renormalization (RI/MOM)
HPQCD 14A [5] 24141 Renormalization not required

HPQCD 13B [181] 241 Renormalization not required

HPQCD 10 [9] 241 Renormalization not required

ETM 13B [20] 2 Nonperturbative renormalization (RI/MOM)
ALPHA 13C [21] 2 Nonperturbatively matched and renormalized HQET
ETM 11A [182] 2 Renormalization not required

B.2 Notes to Sect. 4 on |V, 4] and | Vy;]|

See Tables 78, 79, 80, 81, 82, 83, 84, 85, 86, 87 and 88.

Table 78 Continuum extrapolations/estimation of lattice artefacts in the determinations of f; (0)

Collaboration Refs. Ny a [fm] Description

ETM 15C [208] 24+ 141 0.062, 0.082, 0.089 Scale set through f. Automatic O(a) improvement

FNAL/MILC 13E [22] 24+ 141 0.06, 0.09, 0.12, 0.15 HISQ action for both sea and valence quarks. Relative scale
through ry, physical scale from pseudoscalar decay
constants calculated with Asqtad fermions. The ensemble
with a >~ 0.06 fm is used only for cross-checking
discretization effects

FNAL/MILC 13C [209] 24+ 141 0.09, 0.12, 0.15 Relative scale through rq, physical scale from f; calculated
by MILCO9A at Ny =2+ 1

RBC/UKQCD 15A [24] 241 0.08, 0.11 Scale set through €2 mass

FNAL/MILC 121 [23] 241 0.09, 0.12 Relative scale r, physical scale determined from a mixture
of fr, fk, radial excitation of Y and mp, — %m,,r

RBC/UKQCD 13 [210] 241 0.09, 0.11, 0.14 Scale set through €2 mass

JLQCD 12 [211] 241 0.112 Scale set through €2 mass

JLQCD 11 [212] 241 0.112 Scale set through €2 mass

RBC/UKQCD 07,10 [213,214] 2+1 0.114(2) Scale fixed through €2 baryon mass. Add (AQCDa)2 ~ 4%
systematic error for lattice artefacts. Fifth dimension with
extension L = 16, therefore small residual chiral
symmetry breaking and approximate O(a)-improvement

ETM 10D [215] 2 0.05, 0.07, 0.09, 0.10 Scale set through f;;. Automatic O(a) impr., flavour
symmetry breaking: (M%¢)? — (M3)? ~ O(a?)

ETM 09A [25] 2 0.07, 0.09, 0.10 Scale set through f;;. Automatic O(a) impr., flavour
symmetry breaking: (M(,)Ds)2 - (Mﬁs)2 ~ O(a?). Three
lattice spacings only for pion mass 470 MeV

QCDSF 07 [216] 2 0.075 Scale set with ro. Nonperturbatively O(a)-improved Wilson
fermions, not clear whether currents improved

RBC 06 [217] 2 0.12 Scale set through M. Automatic O(a)-improvement due to
approximate chiral symmetry of the action

JLQCD 05 [218] 2 0.0887 Scale set through M,,. Nonperturbatively O(a)-improved

Wilson fermions
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Table 79 Chiral-extrapolation/minimum pion mass in determinations
of f1(0). The subscripts RMS and 7, 5 in the case of staggered fermions
indicate the root-mean-square mass and the Nambu—Goldstone boson

mass, respectively. In the case of twisted-mass fermions 7° and 7+
indicate the neutral and charged pion mass where applicable

Collaboration

Refs.

Ny

M 77, min [MeV]

Description

ETM 15C

FNAL/MILC 13E

FNAL/MILC 13C

RBC/UKQCD 15A

FNAL/MILC 121

RBC/UKQCD 13

JLQCD 12

JLQCD 11

RBC/UKQCD 07,10

ETM 10D

ETM 09A

QCDSF 07
RBC 06

JLQCD 05

[208]

[22]

[209]

[24]

[23]

[210]

[211]

[212]

[213,214]

[215]

[25]

[216]
[217]

[218]

2+1+1

2+1+1

2+1+1

2+1

2+1

241

2+1

2+1

2+1

180,,0(220,,+)

173rms (1285,5)

173rms (1285 5)

140

378rms (2637,5)

170
290
290
330

210,0(260,,+)

210,,0(260,=)

591
490

550

Chiral extrapolation performed through
SU@2) or SU3) xPT

NLO SU (3) PQ staggered xPT with
continuum x PT at NNLO. Lightest
Nambu-Goldstone mass is 128 MeV
and lightest RMS mass is 173 MeV for
the same gauge ensemble with
a =~ 0.09 fm

NLO SU (3) PQ staggered xPT with
continuum x PT at NNLO. Lightest
Nambu—Goldstone mass is 128 MeV
and lightest RMS mass is 173 MeV for
the same gauge ensemble with
a >~ 0.09 fm

NLO SU (3) xPT with phenomenological
ansatz for higher orders or polynomial
models

NLO SU (3) PQ staggered xPT with
either phenomenological NNLO ansatz
or NNLO xPT. Lightest
Nambu—Goldstone mass is 263 MeV
with a = 0.12 fm and lightest RMS
mass is 378 MeV with a = 0.09 fm

NLO SU (3) xPT with phenomenological
ansatz for higher orders

NLO SU (3) xPT with phenomenological
ansatz for higher orders

NLO SU (3) xPT with phenomenological
ansatz for higher orders

NLO SU (3) xPT with phenomenological
ansatz for higher orders

NLO heavy kaon SU (2) xPT and NLO
SU(3) xPT and phenomenological
ansatz for higher orders. Average of

J+(0)-fit and joint fy (0)-fx /fr-fit

NLO heavy kaon SU(2) xPT and NLO
SU (3) xPT and phenomenological
ansatz for higher orders

Only one value for the pion mass

NLO SU (3) xPT and phenomenological
ansatz for higher orders

NLO SU (3) xPT and phenomenological
ansatz for higher orders
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Table 80 Finite-volume effects in determinations of f5 (0). The sub-
scripts RMS and 7, 5 in the case of staggered fermions indicate the root-

mean-square mass and the Nambu—Goldstone boson mass, respectively.

In the case of twisted-mass fermions 7° and 7 indicate the neutral
and charged pion mass where applicable

Collaboration Refs. Ny L [fm] My minL Description

ETM 15C [208] 24+ 141 2.0-3.0 2.7,003.3,+) FSE observed only in the slopes of the
vector and scalar form factors

FNAL/MILC 13E [22] 241+1 2.9-5.8 4.9rms (3.655) The values correspond to
My rMs = 173 MeV and
My s = 128 MeV, respectively

FNAL/MILC 13C [209] 241+1 2.9-5.8 4.9rms (3.655) The values correspond to
My rMs = 173 MeV and
My s = 128 MeV, respectively

RBC/UKQCD 15A [24] 2+1 2.6,5.2 39

FNAL/MILC 121 [23] 241 2.4-3.4 6.2rMs (3.87.5) The values correspond to
My rvs = 378 MeV and
My s =263 MeV, respectively

RBC/UKQCD 13 [210] 241 2.7,4.6 39

JLQCD 12 [211] 241 1.8,2.7 4.1

JLQCD 11 [212] 2+1 1.8,2.7 4.1

RBC/UKQCD 07,10 [213,214] 241 1.8,2.7 4.7 Two volumes for all but the lightest pion
mass

ETM 10D [215] 2.1-2.8 3.0,0(3.7,+)

ETM 09A [25] 2.1,2.8 3.0,003.7,+) Two volumes at M,; = 300 MeV and
x PT-motivated estimate of the error due
to FSE

QCDSF 07 [216] 1.9 54

RBC 06 [217] 1.9 4.7

JLQCD 05 [218] 1.8 4.9

Table 81 Continuum extrapolations/estimation of lattice artefacts in determinations of fx /f for Ny =2+ 1 + 1 simulations

Collaboration

Refs.

Ny

a [fm]

Description

ETM 14E

FNAL/MILC 14A

HPQCD 13A

MILC 13A
ETM 13F

ETM 10E

MILC 11

[27]

[14]

[26]

[231]
[230]

[233]

[232]

2+1+1

2+1+1

2+1+1

2+1+1
2+1+1

2+1+1

2+1+1

0.062, 0.082, 0.089

0.06, 0.09, 0.12, 0.15

0.09, 0.12,0.15

0.06, 0.09, 0.12, 0.15
0.062, 0.082, 0.089

0.061, 0.078

0.09, 0.12

Scale set through f;;. Automatic O(a)
improvement, flavour symmetry
breaking: (M9)> — (M7)? ~ O(@a?).
Discretization and volume effects due to
the 79— mass splitting are taken into
account through x PT for twisted-mass
fermions

HISQ action for both valence and sea
quarks. Absolute scale though fr

Relative scale through Wilson flow and
absolute scale through f;

Absolute scale though f

Scale set through f;;. Automatic O(a)
improvement, flavour symmetry
breaking: (M9)> — (M7)? ~ O(@a?).
Discretization and volume effects due to
the 70— * mass splitting are taken into
account through x PT for twisted-mass
fermions

Scale set through f;; /m . Two lattice
spacings but a-dependence ignored in
all fits. Finer lattice spacing from [352]

Relative scale through fps/mps = fixed,
absolute scale though f

@ Springer



112 Page 162 of 228

Eur. Phys. J. C (2017) 77:112

Table 82 Continuum extrapolations/estimation of lattice artefacts in determinations of fx /f; for Ny = 2 + 1 simulations

Collaboration Refs. Ny a [fm] Description

RBC/UKQCD 14B [10] 2+1 0.063, 0.085, 0.114 Scale set through mgq

RBC/UKQCD 12 [31] 2+1 0.09,0.11,0.14 Scale set through mgq

Laiho 11 [44] 2+1 0.06, 0.09, 0.125 Scale set through r; and Y and continuum
extrapolation based on MA x PT

JLQCD/TWQCD 10 [234] 2+1 0.112 Scale set through Mq

RBC/UKQCD 10A [144] 2+1 0.087,0.114 Scale set through Mq

MILC 10 [29] 2+1 0.045, 0.06, 0.09 3 lattice spacings, continuum extrapolation by
means of RSy PT

BMW 10 [30] 241 0.07,0.08,0.12 Scale set through Mq_z. Perturbative
O(a)-improvement

JLQCD/TWQCD 09A [138] 2+1 0.1184(3)(21) Scale set through F;. Automatic
O(a)-improvement due to chiral symmetry
of action

PACS-CS 09 [94] 2+1 0.0900(4) Scale set through Mq

MILC 09A [6] 241 0.045, 0.06, 0.09 Scale set through 7; and Y and continuum
extrapolation based on RS xPT

MILC 09 [89] 241 0.045, 0.06, 0.09, 0.12 Scale set through r; and Y and continuum
extrapolation based on RSy PT

Aubin 08 [236] 241 0.09, 0.12 Scale set through 7; and Y and continuum
extrapolation based on MA x PT

PACS-CS 08, 08A [93,237] 2+1 0.0907(13) Scale set through Mg. Nonperturbatively
O(a)-improved

HPQCD/UKQCD 07 [28] 241 0.09, 0.12, 0.15 Scale set through 7; and Y and continuum
extrapolation on continuum- x PT motivated
ansatz. Taste breaking of sea quarks ignored

RBC/UKQCD 08 [145] 241 0.114(2) Scale set through Mgq. Automatic
O(a)-improvement due to approximate
chiral symmetry. (AQCDa)2 ~ 4%
systematic error due to lattice artefacts
added

NPLQCD 06 [238] 241 0.125 Scale set through ro and F7 . Taste breaking
of sea quarks ignored

MILC 04 [107] 241 0.09, 0.12 Scale set through r; and Y and continuum

extrapolation based on RS x PT

Table 83 Continuum extrapolations/estimation of lattice artefacts in determinations of fx /f; for Ny = 2 simulations

Collaboration Refs. Ny a [fm] Description

ETM 14D [160] 2 0.094 Scale set through Fy, ro, o and wg. Twisted
Wilson fermions plus clover term. Automatic
O(a) improvement

ALPHA 13A [239] 2 0.05, 0.065, 0.075 Scale set through F;. O(a)-improved Wilson
action

BGR 11 [240] 2 0.135 Scale set through ro = 0.48 fm. Chirally
improved Dirac operator

ETM 10D [215] 2 0.05, 0.07, 0.09, 0.10 Scale set through F;;. Automatic O(a) impr.,
flavour symmetry breaking:
(M9)? — (M3g)* ~ O(a?)

ETM 09 [32] 2 0.07, 0.09, 0.10 Scale set through F;. Automatic O(a) impr.,
flavour symmetry breaking:
(Mp)* — (Mj5)* ~ Oa?)

QCDSF/UKQCD 07 [241] 2 0.06, 0.07 Scale set through F;. Nonperturbative

O(a)-improvement
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Table 84 Chiral-extrapolation/minimum pion mass in determinations
of fx/fx for Ny = 2 + 1+ 1 simulations. The subscripts RMS and

mass fermions 7 and 7 ¥ indicate the neutral and charged pion mass
and, where applicable, “val” and “sea” indicate valence- and sea-pion

7,5 in the case of staggered fermions indicate the root-mean-square masses

mass and the Nambu—Goldstone boson mass. In the case of twisted-

Collaboration Refs. Ny My min [MeV] Description

ETM 14E [27] 24141 180,,0(220,+) Chiral extrapolation performed through SU (2) xPT or
polynomial fit

FNAL/MILC 14A [14] 24+ 141 143rMms (1281 5) Linear interpolation to physical point. The lightest RMS
mass is from the a = 0.06 fm ensemble and the lightest
Nambu-Goldstone mass is from the a = 0.09 fm
ensemble

HPQCD 13A [26] 24141 173rMms (1281 5) NLO xPT supplemented by model for NNLO. Both the
lightest RMS and the lightest Nambu—Goldstone mass are
from the a = 0.09 fm ensemble

MILC 13A [231] 2+1+1 143rMms (1281 5) Linear interpolation to physical point. The lightest RMS
mass is from the a = 0.06 fm ensemble and the lightest
Nambu-Goldstone mass is from the a = 0.09 fm
ensemble

ETM 13F [230] 24+ 141 180,0(220,+) Chiral extrapolation performed through SU(2) xPT or
polynomial fit

ETM 10E [233] 24141 215,0(265,+)

MILC 11 [232] 2+1+1 173rms (1285 5) Quoted result from polynomial interpolation to the physical

point. The lightest RMS mass is from the a = 0.06 fm
ensemble and lightest the Nambu—Goldstone mass is from
the a = 0.09 fm ensemble

Table 85 Chiral-extrapolation/minimum pion mass in determinations
of fx/fx for Ny =241 simulations. The subscripts RMS and 7, 5 in
the case of staggered fermions indicate the root-mean-square mass and

the Nambu—Goldstone boson mass. In the case of twisted-mass fermions
7% and 7 * indicate the neutral and charged pion mass and where appli-
cable, “val” and “sea” indicate valence- and sea-pion masses

Collaboration Refs. Ny M5 min [MeV] Description

RBC/UKQCD 14B [10] 241 139 NLO PQ SU(2) xPT as well as analytic ansitze

RBC/UKQCD 12 [31] 2+1 171gea, 143ya1 NLO PQ SU(2) xPT as well as analytic ansitze

Laiho 11 [44] 241 250rMms (220,.5) NLO MAxPT

JLQCD/TWQCD 10 [234] 241 290 NNLO xPT

RBC/UKQCD 10A [144] 241 290 Results are based on heavy kaon NLO SU (2) PQxPT

MILC 10 [29] 241 258rms (17755) Lightest Nambu—Goldstone mass is 177 MeV (at 0.09 fm)
and lightest RMS mass is 258 MeV (at 0.06 fm). NLO
rSxPT and NNLO xPT

BMW 10 [30] 2+1 190 Comparison of various fit-ansétze: SU(3) xPT, heavy kaon
SU(2) xPT, polynomial

JLQCD/TWQCD 09A [138] 241 290 NNLO SU(3) xPT

PACS-CS 09 [94] 241 156 NNLO xPT

MILC 09A [6] 241 258rMs (1771,5) NLO SU (3) RSxPT, continuum xPT at NNLO and up to
NNNNLO analytic terms. Heavy kaon SU (2) RSy PT
with NNLO continuum chiral logs on a sub-set of the
lattices. The lightest Nambu—Goldstone mass is 177 MeV
(ata = 0.09 fm) and the lightest RMS mass is 258 MeV
(ata = 0.06 fm)

MILC 09 [89] 241 258rMs (2241 5) NLO SU(3) RSxPT with continuum x PT NNLO and

NNNLO analytic terms added. According to [6] the
lightest sea Nambu—Goldstone mass is 224 MeV and the
lightest RMS mass is 258 MeV (at a = 0.06 fm)
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Table 85 continued

Collaboration Refs. Ny Mz min [MeV] Description

Aubin 08 [236] 2+1 329rMms (246, 5) NLO MA x PT. According to [6] the lightest sea
Nambu-Goldstone mass is 246 MeV (at a = 0.09 fm) and
the lightest RMS mass is 329 MeV (at @ = 0.09 fm)

PACS-CS 08, 08A [93,237] 241 156 NLO SU(2) xPT and SU(3) (Wilson) x PT

HPQCD/UKQCD 07 [28] 2+1 375rMs (263.5) NLO SU (3) chiral perturbation theory with NNLO and
NNNLO analytic terms. The lightest RMS mass is from
the a = 0.09 fm ensemble and the lightest
Nambu—Goldstone mass is from the a = 0.12 fm
ensemble

RBC/UKQCD 08 [145] 2+1 330sea, 242yal While SU (3) PQxPT fits were studied, final results are
based on heavy kaon NLO SU (2) PQxPT

NPLQCD 06 [238] 241 300 NLO SU(3) xPT and some NNLO terms. The sea RMS
mass for the employed lattices is heavier

MILC 04 [107] 2+1 400rMs (2605 .5) PQ RS PT fits. The lightest sea Nambu—Goldstone mass is

260 MeV (at a = 0.12 fm) and the lightest RMS mass is
400 MeV (at a = 0.09 fm)

Table 86 Chiral-extrapolation/minimum pion mass in determinations
of fx/fx for Ny = 2 simulations. The subscripts RMS and 7, 5 in the
case of staggered fermions indicate the root-mean-square mass and the

Nambu-Goldstone boson mass. In the case of twisted-mass fermions
70 and 7* indicate the neutral and charged pion mass and where appli-
cable, “val” and “sea” indicate valence- and sea-pion masses

Collaboration Refs. Ny Mz min [MeV] Description

ETM 14D [160] 2 140 Charged/neutral pion-mass breaking,
M2, — M2, ~ O(a*), estimated to be ~20 MeV

ALPHA 13A [239] 2 190 NLO SU (3) xPT and phenomenological ansatz for higher
orders

BGR 11 [240] 2 250 NLO SU(2) xPT. Strange quark mass fixed by reproducing
the €2 mass

ETM 10D [215] 2 210,,0(260,+) NLO SU(3) xPT and phenomenological ansatz for higher
orders. Joint f (0)- fx / fr-fit

ETM 09 [32] 2 210,0(260,,;+) NLO heavy meson SU (2) xPT and NLO SU(3) xPT

QCDSF/UKQCD 07 [241] 2 300 Linear extrapolation of lattice data

Table 87 Finite-volume effects in determinations of fx /f; for Ny =
2+414-1. The subscripts RMS and 7, 5 in the case of staggered fermions
indicate the root-mean-square mass and the Nambu—Goldstone boson

mass. In the case of twisted-mass fermions 70 and 7* indicate the
neutral and charged pion mass and where applicable, “val” and “sea”
indicate valence- and sea-pion masses

Collaboration Refs. Ny L [fm] Mz minL Description

ETM 14E [27] 24+1+1 2.0-3.0 2.7,;0(3.3,+) FSE for the pion is corrected through resummed NNLO
x PT for twisted-mass fermions, which takes into account
the effects due to the 70— * mass splitting

FNAL/MILC 14A [14] 24+1+1 2.8-5.8 3.9rMs(3.7x5)

HPQCD 13A [26] 24+1+1 2.5-5.8 4.9rms (3.77,5)

MILC 13A [231] 24+1+1 2.8-5.8 39rmMs (3. 7x5)

ETM 13F [230] 24+1+1 2.0-3.0 2.7;0(3.3,%) FSE for the pion is corrected through resummed NNLO
x PT for twisted-mass fermions, which takes into account
the effects due to the 70— * mass splitting

ETM 10E [233] 24141 1.9-2.9 3.1,0(3.9,+) Simulation parameters from [352,789]

MILC 11 [232] 24+1+1 5.6,5.7 4.9rMs (3.7,5)
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Table 88 Finite-volume effects in determinations of fx /f; for Ny =
2+ 1and Ny = 2. The subscripts RMS and 7, 5 in the case of stag-
gered fermions indicate the root-mean-square mass and the Nambu—

Goldstone boson mass. In the case of twisted-mass fermions
7% indicate the neutral and charged pion mass and where applicable,
“val” and “sea” indicate valence- and sea-pion masses

0 and

Collaboration Refs. Ny L [fm] My minL Description

RBC/UKQCD 14B [10] 241 2.0,2.7,4.6,5.4 3.8

RBC/UKQCD 12 [31] 2+1 2.7,4.6 3.3 For partially quenched
M, =143 MeV, M, L =3.3
and for unitary M,; = 171 MeV,
ML =4.0

Laiho 11 [44] 241 2.54.0 4.9rMms (4.37.5)

JLQCD/TWQCD 10 [234] 241 1.8,2.7 4.0

RBC/UKQCD 10A [144] 241 2.7 4.0 M, L = 4.0 for lightest sea-quark
mass and M, L = 3.1 for lightest
partially quenched quark mass

MILC 10 [29] 241 2.5-3.8 7.0rMs (4.07.5) L > 2.9 fm for the lighter masses

BMW 10 [30] 241 2.0-5.3 4.0 Various volumes for comparison
and correction for FSE from xPT
using [82]

JLQCD/TWQCD 09A [138] 241 1.9 2.8 Estimate of FSE using x PT
[82,790]

PACS-CS 09 [94] 2+1 2.9 2.28 After reweighting to the physical
point Mz minL = 1.97

MILC 09A [6] 241 2.5-5.8 7.0rms (417 5)

MILC 09 [89] 2+1 2.4-5.8 7.0rms (4.87.5) Various volumes for comparison
and correction for FSEs from
(RS)xPT [82]

Aubin 08 [236] 2+1 2.4-3.6 4.0 Correction for FSE from MA xPT

PACS-CS 08, 08A [93,237] 241 29 2.3 Correction for FSE from xPT
using [82]

HPQCD/UKQCD 07 [28] 241 24-29 4.1rms (3.87,5) Correction for FSE from xPT
using [82]

RBC/UKQCD 08 [145] 2+1 1.8,2.7 4.65ea, 3.4, val Various volumes for comparison
and correction for FSE from y PT
[82,257,258]

NPLQCD 06 [238] 241 2.5 3.8 Correction for FSE from Sy PT
[329,330]

MILC 04 [107] 241 24,3.0 4.8rMms (3.87,5) NLO SxPT

ETM 14D [160] 2 2.2,4.5 32

ALPHA 13A [239] 2 2.1,2.4,3.1 4.0

BGR 11 [240] 2 2.1,2.2 2.7

ETM 10D [215] 2 2.1-2.8 3.0,0(3.7,+)

ETM 09 [32] 2 2.0-2.7 3.0,0(3.7,%) Correction for FSE from xPT
[82,257,258]

QCDSF/UKQCD 07 [241] 2 1.4,...,2.6 4.2 Correction for FSE from xPT
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B.3 Notes to Sect. 5 on low-energy constants

See Tables 89, 90, 91, 92, 93, 94, 95 and 96.

Table 89 Continuum extrapolations/estimation of lattice artefacts in Ny =2 + 1 + 1 and 2 + 1 determinations of the Low-Energy Constants

Collaboration Refs. Ny a [fm] Description
HPQCD 13A, 15B [26,336] 2+14+1 0.09-0.15 Configurations are shared with MILC
ETM 11, 13 [33,352] 241+1 0.0607-0.0863 Three lattice spacings fixed through F /M
ETM 10 [39] 24141 0.078, 0.086 Fixed through Fr /My
JLQCD I5A [359] 2+1 0.112 Fixed through €2 baryon mass
RBC/UKQCD 14B, [10,335] 2+1 a1l =1.730-3.148 Fixed through m, mg, and mg
15E
Boyle 14 [372] 241 a~!'=137,231 Shared with RBC/UKQCD 12
BMW 13 [35] 241 0.054-0.093 Scale set through €2 baryon mass
RBC/UKQCD 12 [31] 241 0.086,0.114 and Scale set through mgq
0.144 for MR™"
Borsanyi 12 [34] 241 0.097-0.284 Scale fixed through Fy /M
NPLQCD 11 [40] 2+1 0.09, 0.125 Configurations are shared with MILC 09 [89]
MILC 09, 09A, 10, [6,13,29,89] 241 0.045-0.18 Three lattice spacings, continuum
10A extrapolation by means of RS xPT
JLQCD(/TWQCD) [337,338,341,360] 2+1,3 0.11 One lattice spacing, fixed through mg
08B, 09, 10A, 14
RBC/UKQCD 09, [144,373] 241 0.1106(27), Two lattice spacings. Data combined in
10A 0.0888(12) global chiral-continuum fits
TWQCD 08 [340] 2+1 0.122(3) Scale fixed through m,, ro
PACS-CS 08, 11A [93,361] 2+1 0.0907 One lattice spacing
RBC/UKQCD 08A, [145,339] 2+1 0.114 One lattice spacing, attempt to estimate cutoff
08 effects via formal argument
NPLQCD 06 [238] 241 0.125 One lattice spacing, continuum x PT used
LHP 04 [362] 241 ~0.12 Only one lattice spacing, mixed discretization

approach

Table 90 Continuum extrapolations/estimation of lattice artefacts in Ny = 2 determinations of the low-energy constants

Collaboration Refs. Ny a [fm] Description
ETMC 15A [333] 0.0914(3)(15) Weighted average using my, fr, fx,my
Giilpers 15 [355] 0.050, 0.063, 0.079 Scale fixed through mgq
Engel 14 [38] 0.0483(4), 0.0652(6), Scale fixed through Fg
0.0749(8)
Giilpers 13 [356] 2 0.063 Scale fixed through mg
Brandt 13 [37] 2 0.05-0.08 Configurations are shared with CLS
QCDSF 13 [353] 2 0.06-0.076 Scale fixed through ro = 0.50(1) fm
Bernardoni 11 [343] 2 0.0649(10) Configurations are shared with CLS
TWQCD 11A, 11 [249,344] 2 0.1034(1)(2) Scale fixed through rq
Bernardoni 10 [345] 2 0.0784(10) Scale fixed through Mg . Nonperturbative
O(a) improvement. No estimate of
systematic error
ETM 09B [346] 2 0.063, 0.073 Automatic O(a) impr. rop = 0.49 fm used
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Table 90 continued

Collaboration Refs. Ny a[fm] Description

ETM 09C, 12, 13 [33,36,342] 2 0.051-0.1 Automatic O(a) impr. Scale fixed through
F . four lattice spacings, continuum
extrapolation

ETM 08 [41] 2 0.07-0.09 Automatic O(a) impr. Two lattice spacings.

JLQCD/TWQCD 07, 07A,
08A, 09, 10A JLQCD
08A

[138,338,348,349,357,374]

2 0.11843)21)

Scale fixed through F;

Automatic O(a) impr., exact chiral
symmetry. Scale fixed through rg

CERN 08 [302] 2 0.0784(10) Scale fixed through Mg . Nonperturbative
O(a) improvement
Hasenfratz 08 [347] 2 0.1153(5) Tree level O(a) improvement. Scale fixed
through rp. Estimate of lattice artefacts via
WxPT [791]
CERN-TOV 06 [358] 2 0.0717(15), 0.0521(7), Scale fixed through Mg . The lattice with
0.0784(10) a = 0.0784(10) is obtained with
nonperturbative O(a) improvement
QCDSF/UKQCD 06A [363] 2 0.07-0.115 Five lattice spacings. Nonperturbative O(a)
improvement. Scale fixed through rg
Ti.lb.l e 91 C.hlral—exniapolatlon/ Collaboration Refs. Ny My min [MeV] Description
minimum pion mass in ’
Ny =2+ 1+ ldeterminations  ypocp 158 [336] 24141 175 Simulated at physical point
of the low-energy constants .
HPQCD 13A [26] 24+ 141 175 NLO chiral fit
ETM 13 [33] 241+1 270 Linear fit in the quark mass
ETM 11 [352] 24+ 141 270 NLO SU(2) chiral fit
ETM 10 [39] 24+ 141 270 SU (2) NLO and NNLO fits

Table 92 Chiral-extrapolation/minimum pion mass in 2 + 1 determinations of the low-energy constants

Collaboration Refs. Ny Mz min [MeV] Description

RBC/UKQCD 15E [335] 2+1 117.3(4.4) GMOR for ¥, NNLO PQ SU(2) xPT

JLQCD 15A [359] 2+1 290 Dynamical overlap, NNLO SU(3)

RBC/UKQCD 14B [10] 2+1 139.2 GMOR for %, global cont./chiral fit

JLQCD 14 [360] 2+1 99 € Expansion

Boyle 14 [372] 241 171 Combines latt/pheno

BMW 13 [35] 2+1 120 NLO and NNLO SU (2) fits tested with x and &
expansion

RBC/UKQCD 12 [31] 241 293 plus run at 171, 246 NLO SU(2) xPT incl. finite-V and some discr.
effects

Borsanyi 12 [34] 2+1 135 NNLO SU (2) chiral fit

NPLQCD 11 [40] 2+1 235 NNLO SU (2) mixed action xPT

PACS-CS 11A [361] 2+1 296 Additional test runs at physical point

JLQCD/TWQCD 09, 10A [338] 241,3 100(e-reg.), 290(p-reg.) Ny =2+ 1runs both in €- and p-regime; Ny =3
runs only in p-regime. NLO xPT fit of the spectral
density interpolating the two regimes

RBC/UKQCD 09, 10A [144,373] 2+ 1 290-420 Valence pions mass is 225-420 MeV. NLO SU (2)
xPT fit

MILC 09, 09A, 10, 10A [6,13,29,89] 2+1 258 Lightest Nambu—Goldstone mass is 224 MeV and

lightest RMS mass is 258 MeV (at 0.06 fm)
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Table 92 continued

Collaboration Refs. Ny My min [MeV] Description

TWQCD 08 [340] 2+1 Mmyqg = myg /4, mg ~ phys Quark condensate extracted from topological
susceptibility, LO chiral fit

PACS-CS 08 [93] 2+1 156 Simulation at physical point

RBC/UKQCD 08 [145] 241 330 Lightest velence pion mass is 242 MeV

RBC/UKQCD 08A [339] 2+1 330 Computed at one pion mass

NPLQCD 06 [238] 241 460 Value refers to lightest RMS mass at a = 0.125 fm
as quoted in [6]

LHP 04 [362] 241 318 Vector meson dominance fit

Table 93 Chiral-extrapolation/minimum pion mass in Ny = 2 determinations of the Low-Energy Constants

Collaboration Refs. Ny Mz min [MeV] Description

ETMC 15A [333] 2 134 Simulation at physical point

Giilpers 15 [355] 2 193 NLO SU (2) fit

Engel 14 [38] 2 193 NLO SU (2) fit, Dirac op. and GMOR for ¥

Giilpers 13 [356] 2 280 NLO xPT fit

Brandt 13 [37] 2 280 Configurations are shared with CLS

QCDSF 13 [353] 2 130 Fit with x PT + analytic

ETM 12, 13 [33,342] 2 260 Confs shared with ETM 09C

Bernardoni 11 [343] 2 312 Overlap valence + O(a) improved Wilson sea,
mixed regime y PT

TWQCD 11 [249] 2 230 NLO SU(2) xPT fit

TWQCD 11A [344] 2 220 NLO xPT

Bernardoni 10 [345] 2 297, 3717, 426 NLO SU(2) fit of xtop

JLQCD/TWQCD 10A [338] 2 V2mmins /F = 120 Data both in the p and e-regime. NLO chiral fit of

(e-reg.), 290 (p-reg.) the spectral density interpolating the two regimes

JLQCD/TWQCD 09 [357] 2 290 LECs extracted from NNLO chiral fit of vector and
scalar radii (rz)f,‘s

ETM 09B [346] V2mpmin X/ F =85 NLO SU (2) e-regime fit

ETM 09C [36] 280 NNLO SU(2) fit

ETM 08 [41] 260 From pion form factor using NNLO xPT and exp.
value of (rz)’sr

JLQCD/TWQCD 08A [138] 2 290 NNLO SU(2) fit

JLQCD 08A [374]

CERN 08 [302] 2 Mg min = 13 MeV NLO SU (2) fit for the mode number

Hasenfratz 08 [347] 2 2mgin % /F = 220 NLO SU(2) e-regime fit

JLQCD/TWQCD 07 [348] 2 V2mmin% /F = 120 NLO SU(2) e-regime fit

JLQCD/TWQCD 07A [349] 2 Myg = mg /6 — my % from x;, LO chiral fit

CERN-TOV 06 [358] 2 403, 381, 377 NLO SU(2) fit

QCDSF/UKQCD 06A [363] 2 400 Several fit functions to extrapolate the pion form

factor
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Table 94 Finite-volume effects in Ny =2+ 1+ 1 and 2 + 1 determinations of the low-energy constants

Collaboration Refs. Ny L [fm] My minL Description

HPQCD 15B [336] 2+1+1 4.8

HPQCD 13A [26] 24141 4.8-5.5 33 3 Volumes are compared

ETM 13 [33] 24141 1.9-2.8 3.0 4 Volumes compared

ETM 10, 11 [39,352] 24141 1.9-2.8 3.0 FSE estimate using [82]. M,+L = 4,but M oL ~ 2

RBC/UKQCD 15E [335] 241 3.78 1 Volume

JLQCD I5A [359] 2+1 3.88 1 Volume

RBC/UKQCD 14B [10] 241 5.476 1 Volume

JLQCD 14 [360] 241 1.8 €-Regime

Boyle 14 [372] 241 4.6 1 Volume

BMW 13 [35] 241 2.1 3.0 3 Volumes are compared

RBC/UKQCD 12 [31] 241 2.7-4.6 >4 FSE seem to be very small

Borsanyi 12 [34] 241 39 33 Expected to be less than 1%

NPLQCD 11 [40] 241 2.5-3.5 3.6 Expected to be less than 1%

MILC 09, 09A, 10, 10A [6,13,29,89] 2+1 2.52 3.54.11 L > 2.9 fm for lighter masses

JLQCD/TWQCD 09, 10A [338] 2+1,3 1.9,2.7 2 Volumes are compared for a fixed quark mass

RBC/UKQCD 09, 10A [144,373] 2+1 2.7 ~4 FSE estimated using x PT

TWQCD 08 [340] 241 1.95 - No estimate of FSE

PACS-CS 08, 11A [93,361] 2+1 2.9 2.3 FSE is the main concern of the authors. Additional
test runs on 644

RBC/UKQCD 08 [145] 241 2.74 4.6 FSE by means of xPT

RBC/UKQCD 08A [339] 241 2.74 4.6 FSE estimated to be <1%

NPLQCD 06 [238] 241 2.5 3.7 Value refers to lightest valence pion mass

LHP 04 [362] 241 ~2.4 3.97 Value refers to domain-wall valence pion mass

Table 95 Finite-volume effects in Ny = 2 determinations of the low-energy constants

Collaboration Refs. Ny L [fm] My minL Description

ETMC 15A [333] 2 4.39 2 Volumes

Giilpers 15 [355] 2 4.09 3 Volumes, CLS confs

Engel 14 [38] 2 42 3 Volumes, CLS confs

Giilpers 13 [356] 2 4-6 4.3 Configs. shared with CLS

Brandt 13 [37] 2 ~5 4 Configs. shared with CLS

QCDSF 13 [353] 2 1.8-24 2.7 NLO xPT is used for FSE

Bernardoni 11 [343] 2 1.56 2.5 Mixed regime x PT for FSE used

TWQCD 11 [249] 2 1.65 1.92 SU(2) xPT is used for FSE

TWQCD 11A [344] 2 1.65 1.8 No estimate of FSE

Bernardoni 10 [345] 2 1.88 2.8 FSE included in the NLO chiral fit

JLQCD/TWQCD 10A [338] 2 1.8-1.9 FSE estimated from different topological sectors

JLQCD/TWQCD 09 [357] 2 1.89 2.9 FSE by NLO xPT, additional FSE for fixing
topology [792]

ETM 09B [346] 2 1.3,1.5 e-Regime Topology: not fixed. 2 volumes

ETM 09C, 12, 13 [33,36,342] 2 2.0-2.5 3.2-4.4 Several volumes. Finite-volume effects estimated
through [82]

ETM 08 [41] 2 2.1,2.8 34,37 Only data with M, L 2 4 are considered

JLQCD/TWQCD 08A [138] 2 1.89 2.9 FSE estimates through [82]. Additional FSE for

fixing topology [792]
JLQCD 08A [374]
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Table 95 continued

Collaboration Refs. Ny L [fm] My minL Description

CERN 08 [302] 2 1.88,2.51 - Two volumes compared
Hasenfratz 08 [347] 2 1.84,2.77 e-Regime Topology: not fixed, 2 volumes
JLQCD/TWQCD 07 [348] 2 1.78 e-Regime Topology: fixed tov = 0
JLQCD/TWQCD 07A [349] 2 1.92 - Topology fixed to v = 0 [792]
CERN-TOV 06 [358] 2 1.72,1.67, 1.88 3.5,32,3.6 No estimate for FSE
QCDSF/UKQCD 06A [363] 2 1.4-2.0 3.8 NLO xPT estimate for FSE [793]

Table 96 Renormalization in determinations of the low-energy constants

Collaboration Refs. Ny Description

HPQCD 15B [336] 24141 -

HPQCD 13A [26] 24141 -

ETM 10, 11, 13 [33,39,352] 24141 Nonperturbative

RBC/UKQCD 15E [335] 241 RI-SMOM

JLQCD 15A [359] 2+1 RI-MOM

RBC/UKQCD 14B [10] 241 RI-SMOM

JLQCD 14 [360] 2+1 -

Boyle 14 [372] 241 -

BMW 13 [35] 241 Nonperturbative

RBC/UKQCD 12 [31] 241 Nonperturbative (RI/SMOM)

Borsanyi 12 [34] 2+1 Indirectly nonperturbative through [7] for ; no
renormalization needed for F, since only Fy /F
computed and scale set through Fi

NPLQCD 11 [40] 241 Not needed (no result for )

JLQCD/TWQCD 10A [338] 2+1,3 Nonperturbative

MILC 09, 09A, 10, 10A [6,13,29,89] 2+1 2 Loop

RBC/UKQCD 10A [144] 241 Nonperturbative

JLQCD 09 [337] 2+1 Nonperturbative

TWQCD 08 [340] 241 Nonperturbative

PACS-CS 08 [93] 2+1 1 Loop

RBC/UKQCD 08, 08A [145,339] 2+1 Nonperturbative

NPLQCD 06 [238] 2+1 -

LHP 04 [362] 2+1 -

All collaborations 2 Nonperturbative
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B.4 Notes to Sect. 6 on Kaon mixing

B.4.1 Kaon B-parameter By

See Tables 97, 98, 99, 100 and 101.

Table 97 Continuum extrapolations/estimation of lattice artefacts in determinations of Bg

Collaboration

Refs.

Ny

a [fm]

Description

ETM 15

SWME 15A

RBC/UKQCD 14B

SWME 14

SWME 13A

SWME 13

RBC/UKQCD 12A

Laiho 11

SWME 11, 11A

BMW 11

RBC/UKQCD 10B

SWME 10

[42]

[45]

[10]

[385]

[402]

[403]

[31]

[44]

[404,787]

[43]

[405]

[278]

2+1+1

2+1

2+1

2+1

2+1

2+1

2+1

2+1

2+1

2+1

2+1

2+1

0.09, 0.08, 0.06

0.12, 0.09, 0.06, 0.045

0.111, 0.083, 0.063, 0.114, 0.084

0.082, 0.059, 0.044

0.09, 0.06, 0.045

0.12, 0.09, 0.06, 0.045

0.146, 0.114, 0.087

0.12, 0.09, 0.06

0.12, 0.09, 0.06, 0.045

0.093, 0.077, 0.065, 0.054

0.114, 0.087

0.12, 0.09, 0.06

Combined chiral and continuum extrapolation.
Systematic error of 2.0% is obtained from the
distribution of results over analyses which differ by
O(a?) effects

The three finest lattice spacings are used for the
combined chiral and continuum extrapolation.
Residual combined discretization, sea-quark
extrapolation and oy matching error of 4.4% from
difference between linear fit in a2, me, and a fit
where oy dependence is added

The three first lattice spacings use different action
from the last two ones. Combined continuum and
chiral fits

Residual combined discretization and sea-quark
extrapolation error of 0.9% from difference
between linear fit in a2, me, and a constrained
nine-parameter extrapolation

Residual combined discretization, sea-quark
extrapolation and o, matching error of 4.4% from
difference between linear fit in a2, me, and a fit
where o dependence is added

Continuum extrapolation with the coarsest lattice
spacing omitted; residual combined discretization
and sea-quark extrapolation error of 1.1% from
difference between linear fit in a2, mge, and a
constrained nine-parameter extrapolation

Coarsest lattice spacing uses different action.
Combined continuum and chiral fits

Combined continuum and chiral extrapolation based
on SU (3) mixed-action partially quenched x PT

Continuum extrapolation with the coarsest lattice
spacing omitted; residual discretization error of
1.9% from difference between fit to a constant and
a constrained five-parameter extrapolation

Combined continuum and chiral extrapolation;
discretization error of 0.1% from comparison of
O(asa) and O(a?) extrapolations

Two lattice spacings. Combined chiral and
continuum fits

Continuum extrapolation of results obtained at four
lattice spacings; residual discretization error of
0.21% from difference to result at smallest lattice
spacing

@ Springer



112 Page 172 of 228

Eur. Phys. J. C (2017) 77:112

Table 97 continued

Collaboration Refs. Ny a [fm] Description

Aubin 09 [406] 241 0.12,0.09 Two lattice spacings; quote 0.3% discretization error,
estimated from various a2-terms in fit function

RBC/UKQCD 07A, 08 [145,407] 241 0.114(2) Single lattice spacing; quote 4% discretization error,
estimated from the difference between computed
and experimental values of f5

HPQCD/UKQCD 06 [408] 241 0.12 Single lattice spacing; 3% discretization error quoted
without providing details

ETM 12D [46] 2 0.1, 0.09, 0.07, 0.05 Four lattice spacings; systematic quoted obtained
from the difference between the finest lattice
spacing and the continuum limit and comparing
results using two evaluations of the RCs that differ
by O(a?) effects

ETM 10A [401] 2 0.1, 0.09, 0.07 Three lattice spacings; 1.2% error quoted

JLQCD 08 [409] 2 0.118(1) Single lattice spacing; no error quoted

RBC 04 [400] 2 0.117(4) Single lattice spacing; no error quoted

UKQCD 04 [410] 2 0.10 Single lattice spacing; no error quoted

Table 98 Chiral-extrapolation/minimum pion mass in determinations of Bx

Collaboration Refs. Ny My min [MeV] Description

ETM 15 [42] 2+ 141 245,239,211 Each M min entry corresponds to a different lattice spacing.
Simultaneous chiral and continuum extrapolations, based on
polynomial and xPT at NLO, are carried out leads to
systematic error of 0.8%

SWME 15A [45] 2+1 222/372,206/174, 195/222, 206/316 Valence/sea RMS M min entries correspond to the four lattice

RBC/UKQCD 14B [10] 2+ 1

SWME 14 [385] 2+1
SWME 13A [402] 2+ 1
SWME 13 [403] 2+1

RBC/UKQCD 12A [31] 241

spacings (the last three are used for the chiral-continuum
extrapolation). Chiral extrapolations based on SU (2)
staggered x PT at NNLO (with some coefficients fixed by
Bayesian priors), and also including one analytic NNNLO
term. Residual error of 0.05% from changing the Bayesian
priors and fit method

337,302, 371, 139, 139

M min entries correspond to the five lattice spacings.

Combined chiral and continuum extrapolation, using
M; < 260 MeV and M, < 370 MeV

206/174, 195/222, 207/316

Valence/sea RMS M min entries correspond to the three lattice

spacings. Chiral extrapolations based on SU (2) staggered
xPT at NNLO (with some coefficients fixed by Bayesian
priors), and also including one analytic NNNLO term.
Residual error of 0.1% error from doubling the widths of
Bayesian priors

207/243, 196/262, 207/316

Valence/sea RMS M min entries correspond to the three lattice

spacings. Chiral extrapolations based on SU (2) staggered
xPT at NNLO (with some coefficients fixed by Bayesian
priors), and also including one analytic NNNLO term.
Residual error of 0.1% from doubling the widths of Bayesian

priors

442/445, 299/273, 237/256, 222/334

Valence/sea RMS M min entries correspond to the four lattice

spacings. Chiral extrapolations based on SU (2) staggered
xPT at NNLO (with some coefficients fixed by Bayesian
priors), and also including one analytic NNNLO term.
Residual error of 0.33% error from doubling the widths of
Bayesian priors

140/170, 240/330, 220/290

Valence/sea M, min entries correspond to the three lattice

spacings. Combined chiral and continuum extrapolation,
using M, < 350 MeV
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Table 98 continued

Collaboration

Refs.

Mn,min [MeV]

Description

Laiho 11

SWME 11, 11A

BMW 11

RBC/UKQCD 10B

SWME 10

Aubin 09

RBC/UKQCD 07A, 08

HPQCD/UKQCD 06

ETM 12D

ETM 10A

JLQCD 08

RBC 04

UKQCD 04

[44]

[404,787]

[43]

[405]

[278]

[406]

[145,407]

[408]

[46]

[401]

[409]

[400]

[410]

2+1

2+1

2+1

2+1

2+1

2+1

2+1

2+1

210/280

442/445, 299/325,
237/340, 222/334

219, 182, 120, 131

240/330, 220/290

442/445, 299/325,
237/340

240/370

330

360

400, 280, 300, 280

400, 280, 300

290

490

780

M min entries correspond to the smallest valence/sea-quark
masses. Chiral and continuum fits based on NLO mixed
action x PT, including a subset of NNLO terms. Systematic
error estimated from spread arising from variations in the fit
function

Valence/sea RMS M min entries correspond to the four lattice
spacings. Chiral extrapolations based on SU (2) staggered
xPT at NNLO (with some coefficients fixed by Bayesian
priors), and also including one analytic NNNLO term.
Residual error of 0.33% error from doubling the widths of
Bayesian priors

M min entries correspond to the four lattice spacings used in
the final result. Combined fit to the chiral and continuum
behaviour. Systematics investigated by applying cuts to the
maximum pion mass used in fits. Uncertainty of 0.1%
assigned to chiral fit

Valence/sea My min entries correspond to the two lattice
spacings. Combined chiral and continuum extrapolations

Valence/sea My min entries correspond to the three lattice
spacings. Chiral extrapolations based on SU (2) staggered
xPT at NLO, including some analytic NNLO terms. SU (3)
staggered x PT as cross-check. Combined 1.1% error from
various different variations in the fit procedure

M7 min entries correspond to the smallest valence/sea-quark
masses. Chiral and continuum fits based on NLO mixed
action xPT at NLO, including a subset of NNLO terms.
Systematic error estimated from spread arising from
variations in the fit function

Fits based on SU (2) PQxPT at NLO. Effect of neglecting
higher orders estimated at 6% via difference between fits
based on LO and NLO expressions

3% Uncertainty from chiral extrapolation quoted, without
giving further details

Each M5 min entry corresponds to a different lattice spacing.
Simultaneous chiral and continuum extrapolations, based on
polynomial and y PT at NLO, are carried out. Systematic
error from several sources, including lattice calibration, quark
mass calibration, chiral and continuum extrapolation etc.,
estimated at 3.0%

Each M min entry corresponds to a different lattice spacing.
Simultaneous chiral and continuum extrapolations, based on
xPT at NLO, are carried out. Systematic error from several
sources, including lattice calibration, quark mass calibration,
chiral and continuum extrapolation etc., estimated at 3.1%

Fits based on NLO PQx PT. Range of validity investigated. Fit
error included in statistical uncertainty

Fits based on NLO PQxPT. Fit error included in statistical
uncertainty

Fits to continuum chiral behaviour at fixed sea-quark mass.
Separate extrapolation in sea quark mass. Fit error included in
overall uncertainty
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Table 99 Finite-volume effects in determinations of Bk . If partially quenched fits are used, the quoted M min L is for lightest valence (RMS) pion

Collaboration

Refs.

Ny

L [fm]

MmminL

Description

ETM 15

SWME 15A

RBC/UKQCD 14B

SWME 14

SWME 13A

SWME 13

RBC/UKQCD 12A

Laiho 11

SWME 11, 11A

BMW 11

RBC/UKQCD 10B

SWME 10

Aubin 09

[42]

[45]

(10]

[385]

[402]

[403]

(31]

[44]

[404,787]

[43]

[405]

[278]

[406]

2+1+1

241

2+1

241

2+1

241

2+1

2+1

2+1

241

2+1

2+1

2+1

2.1-2.8,2.6,3.0

24-34,25-58,

29-39,29

2.7,2.7,2.0,5.5,5.3

2.8-5.4,2.8-38,2.8

24-34,2.8-3.8,2.8

2.4-3.3,24-5.5,

2.8-3.8,2.8

4.6,2.7,2.8

2.4,3.4,3.8

2.4/3.3,2.4,2.8,2.8

6.0,4.9,42,3.5

2.7,2.8

2.4/3.3,2.4,2.8

24,34

3.5,32,32

>38

>338

5.6,3.7,2.9

3.5,3.3,29

>32

>32

>35

>32

>3.8,3.0

>3.1

>34

35

Each L entry corresponds to a different lattice
spacing, with two volumes at the coarsest
lattice spacing; results from these two
volumes at M ~ 280 MeV are compatible

L entries correspond to the four lattice
spacings, with several volumes in most
cases. Finite-volume effects estimated using
NLO SU(2) SxPT

L entries correspond to the five lattice
spacings. Finite-volume effects estimated
using NLO x PT; negligible with
comparison to the statistical error

L entries correspond to the three lattice
spacings, with several volumes in most
cases. Finite-volume effects estimated using
NLO xPT

L entries correspond to the three lattice
spacings, with several volumes in most
cases. Finite-volume effects estimated using
NLO xPT

L entries correspond to the four lattice
spacings, with several volumes in most
cases. Finite-volume effects estimated using
NLO xPT

L entries correspond to the three lattice
spacings. Finite-volume effects estimated
using NLO xPT

L entries correspond to the three lattice
spacings. Finite-volume effects estimated
using NLO xPT

L entries correspond to the four lattice
spacings, with two volumes at the coarsest
lattice. Finite-volume effects estimated
using NLO xPT

L entries correspond to the four lattice
spacings, and are the largest of several
volumes at each a. My minL ~ 3.0 for the
ensemble at a ~ 0.08 fm. Finite-volume
effects estimated in xPT and by combined
fit to multiple volumes

L entries correspond to the three lattice
spacings. Finite-volume effects estimated
using NLO xPT

L entries correspond to the three lattice
spacings, with two volumes for the coarsest
spacing. Finite-volume error of 0.9%
estimated from difference obtained these
two volumes

L entries correspond to the two lattice
spacings. Keep m L = 3.5; no
comparison of results from different
volumes; 0.6% error estimated from mixed
action x PT correction
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Table 99 continued

Collaboration

Refs.

L [fm]

Mn,minL

Description

RBC/UKQCD 07A, 08

HPQCD/UKQCD 06
ETM 12D

ETM 10A

JLQCD 08

RBC 04
UKQCD 04

[145,407]

[408]

[46]

[401]

[409]

[400]
[410]

2+1

2+1

1.83/2.74

2.46

2.12.2/29,2.2,2.6

2.1,22/29,2.2

1.89

1.87
1.6

4.60

4.49

5,3.3/4.3,3.3,3.5

5,3.3/4.3,3.3

2.75

4.64
6.51

Each L entry corresponds to a different
volume at the same lattice spacing; 1% error
from difference in results on two volumes

Single volume; no error quoted

Each L entry corresponds to a different lattice
spacing, with two volumes at the second
less coarse lattice spacing. Results from
these two volumes at M, ~ 300 MeV are
compatible

Each L entry corresponds to a different lattice
spacing, with two volumes at the
intermediate lattice spacing. Results from
these two volumes at M; ~ 300 MeV are
compatible

Single volume; data points with myy < mgea
excluded; 5% error quoted as upper bound
of PQxPT estimate of the effect

Single volume; no error quoted

Single volume; no error quoted

Table 100 Running and matching in determinations of Bx for Ny =2+ 1+ land Ny =2+ 1

Collaboration

Refs.

Ny

Ren.

Running match.

Description

ETM 15

SWME 15A

RBC/UKQCD 14B

SWME 14

SWME 13A

SWME 13

RBC/UKQCD 12A

Laiho 11

SWME 11, 11A

[42]

[45]

(10]

[385]

[402]

[403]

(31]

[44]

[404,787]

2+1+1

2+1

2+1

2+1

2+1

2+1

2+1

2+1

2+1

RI PT1¢

PT1¢ PT1¢

RI PT1¢

PT1¢ PT1¢

PT1¢ PT1¢

PT1¢ PT1¢

RI PT1¢

RI PT1¢

PT1¢ PT1¢

Uncertainty from RI renormalization estimated at
2%. Additional error of 0.6% for the conversion to

MS

Uncertainty from neglecting higher orders estimated
at 4.4% by identifying the unknown two-loop
coefficient with result at the smallest lattice spacing

Two different RI-SMOM schemes used to estimate
2% systematic error in conversion to MS

Uncertainty from neglecting higher orders estimated
at 4.4% by identifying the unknown two-loop
coefficient with result at the smallest lattice spacing

Uncertainty from neglecting higher orders estimated
at 4.4% (in combination with systematic
uncertainty from CL and chiral extrapolation fit)
by identifying the unknown two-loop coefficient
with result at the smallest lattice spacing

Uncertainty from neglecting higher orders estimated
at 4.4% by identifying the unknown two-loop
coefficient with result at the smallest lattice spacing

Two different RI-SMOM schemes used to estimate
2% systematic error in conversion to MS

Total uncertainty in matching and running of 3%.
Perturbative truncation error in the conversion to
MS, RGI schemes is dominant uncertainty

Uncertainty from neglecting higher orders estimated
at 4.4% by identifying the unknown two-loop
coefficient with result at the smallest lattice spacing
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Table 100 continued

Collaboration Refs.

Ren.

Running match.

Description

BMW 11 [43]

RBC/UKQCD 10B [405]

SWME 10 [278]

Aubin 09 [406]

RBC/UKQCD 07A, 08 [145,407]

HPQCD/UKQCD 06 [408]

2+1

2+1

2+1

2+1

2+1

2+1

RI

RI

PT1¢

RI

RI

PT1¢

PT1¢

PT1¢

PT1¢

PT1¢

PT1¢

PT1¢

Uncertainty of 0.05% in the determination
of the renormalization factor included.
1% error estimated due to truncation of
perturbative matching to MS and RGI
schemes at NLO

Variety of different RI-MOM schemes
including non-exceptional momenta.
Residual uncertainty of 2% uncertainty
in running and matching

Uncertainty from neglecting higher orders
estimated at 5.5% by identifying the
unknown two-loop coefficient with
result at the smallest lattice spacing

Total uncertainty in matching and running
of 3.3%, estimated from a number of
sources, including a chiral-extrapolation
fit ansatz for n.p. determination, strange
sea-quark mass dependence, residual
chiral symmetry breaking, perturbative
matching and running

Uncertainty from n.p. determination of
ren. factor included in statistical error;
2% systematic error from perturbative
matching to MS estimated via size of
correction itself

Uncertainty due to neglecting two-loop
order in perturbative matching and
running estimated by multiplying result

by o?

Table 101 Running and matching in determinations of Bk for Ny = 2

Collaboration Refs. Ny Ren. Running match. Description

ETM 12D [46] 2 RI PT1¢ Uncertainty from RI renormalization estimated at
2.5%

ETM 10A [401] 2 RI PT1¢ Uncertainty from RI renormalization estimated at
2.5%

JLQCD 08 [409] 2 RI PT1¢ Uncertainty from n.p. determination of ren. factor
included in statistical error; 2.3‘770systematic error
from perturbative matching to MS estimated via
size of correction itself

RBC 04 [400] 2 RI PT1¢ Uncertainty from n.p. determination of ren. factor
included

UKQCD 04 [410] 2 PT1¢ PT1¢ No error quoted
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B.4.2 Kaon BSM B-parameters

See Tables 102, 103, 104 and 105.

Table 102 Continuum extrapolations/estimation of lattice artefacts in determinations of the BSM B; parameters

Collaboration Refs. Ny a [fm] Description

ETM 15 [42] 241+1 0.09, 0.08, 0.06 Combined chiral and continuum extrapolation.
Systematic errors to B; from about 4 to 6% are
obtained from the distribution of results over
analyses which differ by O(a?) effects

SWME 15A [45] 241 0.12, 0.09, 0.06, 0.045 The three finest lattice spacings are used for the
combined chiral and continuum extrapolation.
Residual combined discretization, sea-quark
extrapolation and ¢y matching error from about 4.4
to 9.6% is reported for B; and is obtained from the
difference between linear fit in a2, mse, and a fit
where «; dependence is added

SWME 14C [417] 241 0.082, 0.059, 0.044 Residual combined discretization and sea-quark
extrapolation error of 1-8% from difference
between linear fit in a2, mge, and a constrained
19-parameter extrapolation

SWME 13A [402] 241 0.09, 0.06, 0.045 Residual combined discretization, sea-quark
extrapolation and o, matching error for B; varies
from 4.5 to —5.7%, from difference between linear
fit in a2, mgea and a fit where oy dependence is
added

RBC/UKQCD 12E [412] 241 0.087 Computation at only one value of the lattice spacing.
Estimate for the systematic discretization error of
about 1.5% based on the corresponding estimate
from the Bx computation

ETM 12D [46] 2 0.1, 0.09, 0.07, 0.05 Four lattice spacings; estimates of systematic
uncertainties obtained from the half difference of
the distance between the finest lattice spacing and
the continuum limit

Table 103 Chiral-extrapolation/minimum pion mass in determinations of the BSM B; parameters

Collaboration Refs. Ny My min [MeV] Description

ETM 15 [42] 2+ 141 245,239,211 Each M min entry corresponds to a different lattice spacing.
Simultaneous chiral and continuum extrapolations, based on
polynomial and x PT at NLO, are carried out leads to systematic
errors of 1.1—2.6% depending on the bag parameter

SWME 15A [45] 241 222/372,206/174, Valence/sea RMS M;; nmin entries correspond to the four lattice
195/222,206/316 spacings (the last three are used for the chiral-continuum
extrapolation). Chiral extrapolations based on SU (2) staggered
xPT at NNLO (with some coefficients fixed by Bayesian priors),
and also including one analytic NNNLO term. Residual error of
0.4-1.2% depending on the bag parameter from changing the
Bayesian priors and fit method
SWME 14C [417] 241 206/174, 195/222, Valence/sea RMS M min entries correspond to the three lattice
207/316 spacings. Chiral extrapolations performed via B;-ratios that do not
show SU (2) NLO xPT contribution and assuming various terms
up to NNLO (with some coefficients fixed by Bayesian priors)
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Table 103 continued

Collaboration Refs. Ny My min [MeV] Description
SWME 13A [402] 2+1 207/243, 196/262, Valence/sea RMS My nmin entries correspond to the
207/316 three lattice spacings. Chiral extrapolations

performed via B;-ratios that do not show SU (2)
NLO xPT contribution and assuming various
terms up to NNLO (with some coefficients fixed by
Bayesian priors). Residual error in the valence of
about 0.1% from doubling the widths of Bayesian
priors. In the sea a combined error with the
matching procedure of 4.4-5.6% is reported

RBC/UKQCD 12E [412] 2+1 290/290 Chiral extrapolations based on polynomial and x PT
fits at NLO are carried out. Central values are
obtained from polynomial fits. Mild dependence on
the quark mass. Systematic uncertainties are
estimated to about 4% for all B;’s

ETM 12D [46] 2 400, 270, 300, 270 Each M min entry corresponds to a different lattice
spacing. Simultaneous chiral and continuum
extrapolations, based on polynomial and xPT at
NLO, are carried out

Table 104 Finite-volume effects in determinations of the BSM B; parameters. If partially quenched fits are used, the quoted M min L is for lightest
valence (RMS) pion

Collaboration Refs. Ny L [fm] My minL Description

ETM 15 [42] 2+1+1 2.1-28,2.6,3.0 3.5,3.2,32 Each L entry corresponds to a different lattice
spacing, with two volumes at the coarsest
lattice spacing; results from these two
volumes at M, ~ 280 MeV are compatible

SWME 15A [45] 241 2.4-34,25-58,2.9-39,29 >3.8 L entries correspond to the four lattice
spacings, with several volumes in most
cases. Finite-volume effects estimated using
NLO SU(2) SxPT

SWME 14C [417] 241 2.8-54,2.8-3.8,2.8 5.6,3.7,2.9 L entries correspond to the three lattice
spacings, with several volumes in most

cases. Finite-volume effects estimated using
NLO xPT

SWME 13A [402] 2+1 2.4-34,2.8-3.3,2.8 3.5,3.3,29 L entries correspond to the three lattice
spacings, with several volumes in most
cases. Finite-volume effects estimated using
NLO xPT

RBC/UKQCD 12E  [412] 2+1 2.8 =4.0 The L value corresponds to the unique lattice
spacing. Finite-volume effects, estimated
using NLO x PT are small, as it has also
been found in the Bx computation, and they
have thus been neglected in the final error
budget analysis

ETM 12D [46] 2 2.1,2.2/29,22,2.6 5,3.3/4.3,3.3,3.5 Each L entry corresponds to a different lattice
spacing, with two volumes at the second
less coarse lattice spacing. Results from
these two volumes at M, ~ 300 MeV are
compatible
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Table 105 Running and matching in determinations of the BSM B; parameters

Collaboration Refs. Ny Ren.  Running match.

Description

ETM 15 [42] 2+141 RI PT1¢

SWME 15A [45] 2+1 PT1¢ PTI¢

SWME 14C [4171 241 PT1¢ PTI¢

SWME 13A [402] 241 PT1¢ PTI¢

RBC/UKQCD 12E  [412] 2+1 RI PT1¢

ETM 12D [46] 2 RI PT1¢

Uncertainty from RI renormalization combined with discretization
effects estimates are reported to be from about 4 to 6%. Additional
error from 1.8 to 3.9% (depending on the bag parameter) for the
conversion to MS at the scale of 3 GeV

Uncertainty from neglecting higher orders estimated from about 4.4 to
9.6% (depending on the bag parameter) by identifying the unknown
two-loop coefficient with result at the smallest lattice spacing

Uncertainty from neglecting higher orders estimated at 4.4% by
identifying the unknown two-loop coefficient with result at the
smallest lattice spacing

Uncertainty from neglecting higher orders estimated at 4.4% (in
combination with systematic uncertainty from CL and
chiral-extrapolation fit) by identifying the unknown two-loop
coefficient with result at the smallest lattice spacing

Computation in RI-MOM scheme. Systematic error from the
conversion to MS is estimated by taking the half of the difference
between the LO and the NLO result

Uncertainty from RI renormalization estimated at 2.5%

B.5 Notes to Sect. 7 on D-meson-decay constants and form factors

In the following, we summarize the characteristics (lattice actions, pion masses, lattice spacings, etc.) of the recent Ny =
2+ 1+1, Ny =2+ 1and Ny = 2 runs. We also provide brief descriptions of how systematic errors are estimated by the
various authors. We focus on calculations with either preliminary or published quantitative results.

B.5.1 D) -meson-decay constants

See Tables 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117 and 118.

Table 106 Chiral-extrapolation/minimum pion massin Ny = 2+1+1
determinations of the D and D,-meson-decay constants. For actions
with multiple species of pions, masses quoted are the RMS pion masses

(where available). The different M min entries correspond to the dif-
ferent lattice spacings

Collaboration Refs. Ny

Mﬂ,min [MGV]

Description

FNAL/MILC 14A [14] 2+1+1

ETM 13F,
ETM 14E

[27,230] 24141

FNAL/MILC 12B,
FNAL/MILC 13

[420,421] 24+1+1

311,241, 173, 143

245,239,211

310, 245, 179, 145

The lightest pions (not RMS) are around 130 MeV.
Analyses are performed either by interpolating to
the physical point or by using HMrAS x PT
formulae to include heavier masses and
non-unitary points. The latter procedure gives
more accurate, and final, results

Sfp,/mp; in ETM 13F and fp /mp, in ETM 14E
are extrapolated using both a quadratic and a linear
fit in m; plus O(a?) terms. Then the double ratio
(fp,/fp)/(fx/f=) is fitted in continuum HM x PT,
as no lattice-spacing dependence is visible within
statistical errors

Chiral and continuum extrapolations are performed
simultaneously. Central values are produced using
a fit function quadratic in 2 and linear in the
sea-quark mass. In FNAL/MILC 13 terms of
O(a*) are included
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Table 107 Chiral-extrapolation/minimum pion mass in Ny = 2 + 1 (where available). The different My min entries correspond to the dif-
determinations of the D- and Ds-meson-decay constants. For actions ferent lattice spacings
with multiple species of pions, masses quoted are the RMS pion masses

Collaboration Refs. Ny My min [MeV] Description

xQCD 14 [17] 241 334,296 Chiral and continuum extrapolations are performed
simultaneously using linear fits in m; (and
quadratic or including partially quenched chiral
logs, in order to assess the systematic error) plus
terms up to O(a?) and O(a4m§)

HPQCD 12A [47] 241 460, 329 Chiral and continuum extrapolations are performed
simultaneously using PQHM x PT augmented by a
dependent terms: cq (ame)? + c1(ame)?

FNAL/MILC 11 [48] 241 570, 440, 320 Chiral and continuum extrapolations are performed
simultaneously using HM x PT for rooted staggered
quarks. Effects of hyperfine and flavour splittings
are also included

PACS-CS 11 [422] 2+1 152 Simulations are reweighted in the light- and
strange-quark masses to the physical point
HPQCD 10A [49] 241 542, 460, 329, 258, 334 Chiral and continuum extrapolations are performed

simultaneously. Polynomials up to
(mq,sem — Mg, phys
Mg, phys

kept

HPQCD/UKQCD 07 [28] 241 542, 460, 329 Combined chiral and continuum extrapolations using
HMx PT at NLO augmented by second and
tlzird-order polynomial terms in m, and terms up to
a

FNAL/MILC 05 [423] 241 >440, 440, 400 Chiral extrapolations are first performed at each
lattice spacing using NLO HM x PT for rooted
staggered quarks. Lattice artefacts are then
extrapolated linearly in a?

2
) for g = s, and up to (am.)® are

Table 108 Chiral-extrapolation/minimum pion mass in Ny = 2 deter- (where available). The different My min entries correspond to the dif-
minations of the D- and Ds-meson-decay constants. For actions with ferent lattice spacings
multiple species of pions, masses quoted are the RMS pion masses

Collaboration Refs. Ny Mz min [MeV] Description

TWQCD 14 [424] 2 260 Comparison of NLO HM x PT fits for fD(s) and for
Dy /D, in order to asses systematic error

ALPHA 13B [177] 2 190, 270 Linear fits (in m2 and in a?) and partially quenched

HMy PT functional forms, including terms linear
in a2, are used in the combined chiral/continuum
extrapolation

ETM 09 ETM 11A ETM 13B [20,32,182] 2 410, 270, 310, 270 M min refers to the charged pions. NLO SU(2)
HMy PT supplemented by terms linear in a? and in
mpa? is used in the combined chiral/continuum
extrapolation. To estimate the systematic due to
chiral extrapolation, once fp, ,/mp, and
fp,/mp,/(fpy/mp) and once fp,/mp,/fx and
fo, /M, [fk % fr/(fpy/mp) are fitted. In
ETM 13 the double ratio (fp,/fp)/(fx/fx) is
fitted in HMxPT
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Table 109 Finite-volume effects in Ny = 2+ 1+ 1 determinations of spacings. For actions with multiple species of pions, the RMS masses
the D- and Dg-meson-decay constants. Each L-entry corresponds to a are used (where available)
different lattice spacing, with multiple spatial volumes at some lattice

Collaboration Refs. Ny L [fm] M min L Description
FNAL/MILC 14A [14] 24+ 141 2.38-4.83,2.90-5.82, 7.6,7,49,39 3values of L (2.9, 3.9 and 4.9 fm) at
2.95-5.62, 2.94-5.44 my =220 MeV and a = 0.12 fm
ETM 13F ETM 14E [27,230] 24+1+1 2.13/2.84, 1.96/2.61, 3.5,3.2,3.2 The comparison of two different volumes at
2.97 the two largest lattice spacings indicates that
FV effects are below the statistical errors
FNAL/MILC 12B [420,421] 24+1+1 2.4/4.8, 2.88/5.76, 7.6,7,4.9,3.9  FV errors estimated in x PT at NLO and, in
FNAL/MILC 13 2.88/5.76, 2.88/5.76 FNAL/MILC 12B, by analyzing otherwise

identical ensembles with three different
spatial sizes at a = 0.12 fm and
my/mg = 0.1

Table 110 Finite-volume effects in Ny = 2 + 1 determinations of spacings. For actions with multiple species of pions, the RMS masses
the D- and Ds-meson-decay constants. Each L-entry corresponds to a are used (where available)
different lattice spacing, with multiple spatial volumes at some lattice

Collaboration Refs. Ny L [fm] My minL Description

xQCD 14 [17] 241 2.7,2.7 4.6,4.1 No explicit discussion of
FV effects

HPQCD 12A [47] 241 2.4/2.8,2.4/3.4 6.7,4.2 FV errors estimated by

comparing finite- and
infinite-volume x PT

FNAL/MILC 11 [48] 241 2.4,2.4/2.88, 6.9,64,58 FV errors estimated using
2.52/3.6 finite-volume y PT
PACS-CS 11 [422] 241 2.88 2.2 (before No discussion of FV effects
reweighting)
HPQCD 10A [49] 241 2.4,2.4/2.88/3.36, 6.6,6.7,4.2,3.8,4.8 FV errors estimated using
2.52,2.88,2.82 finite- vs. infinite-volume
xPT
HPQCD/UKQCD 07 [28] 241 2.4,2.4/2.88,2.52 6.6,6.7,4.2 FV errors estimated using
finite- vs infinite-volume
xPT
FNAL/MILC 05 [423] 241 2.8,29,2.5 >6,6.4, 5 FV errors estimated to be

1.5% or less from xPT

Table 111 Finite-volume effects in Ny = 2 determinations of the D- For actions with multiple species of pions, the RMS masses are used
and D;-meson-decay constants. Each L-entry corresponds to a different (where available)
lattice spacing, with multiple spatial volumes at some lattice spacings.

Collaboration Refs. Ny L [fm] My minL Description
TWQCD 14 [424] 2 1.5 1.92 No explicit discussion of FV effects
ALPHA 13B [177] 2 2.1/3.1/4.2,2.3/3.1 4,42 No explicit discussion of FV effects, but m, L > 4
always
ETM 09 ETM 11A [20,32,182] 2 2.4,2.0/2.7,2.1,2.6 5,3.7,3.3,3.5 FV errors are found to be negligible by comparing
ETM 13B results at m,; L = 3.3 and m, L = 4.3 for
my >~ 310 MeV
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Table 112 Lattice spacings and description of actions used in Ny = 2 + 1 + 1 determinations of the D- and D;-meson-decay constants

Collaboration

Continuum extrapolation

Scale setting

FNAL/MILC 14A

ETM 13F ETM 14E

FNAL/MILC 12B
FNAL/MILC 13

Refs. Ny a [fm]

[14] 2+1+1 0.15,0.12,
0.09, 0.06

[27,230] 2+1+1 0.09,0.08,
0.06

[420,421] 2+1+1 0.15,0.12,
0.09, 0.06

Interpolations around the physical
light masses used to fix the ratio of
quark masses. Subsequent chiral and
continuum extrapolations for the
charm decay constants performed
simultaneously using different NLO
HMrASx PT fits

Chiral and continuum extrapolations
performed simultaneously by adding
an O(a?) term to the chiral fits

Chiral and continuum extrapolations
performed simultaneously. Central
values produced using a fit function
quadratic in a® and linear in the
sea-quark mass. In FNAL/MILC 13
terms of O(a*) are included

Relative scale through Fyy, the decay
constant at valence masses = 0.4 m;
and physical sea-quark masses.
Absolute scale set through fr; the
uncertainty is propagated into the
final error

Relative scale set through My, the
mass of a fictitious meson made of
valence quarks of mass romy = 0.22
and rom = 2.4. Absolute scale
through f

Absolute scale set through f5; the
uncertainty is propagated into the
final error

Table 113 Lattice spacings and description of actions used in Ny = 2 + 1 determinations of the D- and D;-meson-decay constants

Collaboration Refs. Ny a [fm] Continuum extrapolation Scale setting

xQCD 14 [1717 2+1 0.113,0.085 Chiral and continuum extrapolations Relative scale set through rg, fixed
performed in global fits including together with the charm- and
linear terms in m; and terms up to strange-quark masses using mp,,
O(a?) and O(a4mﬁ) mpx and m j/y as inputs

HPQCD 12A [47] 241 0.12,0.09 Chiral and continuum extrapolations Relative scale set through r;; absolute
performed simultaneously using scale from f;, fk and the Y
PQHM x PT augmented by a splitting. Uncertainties from both r;
dependent terms: and ry /a propagated
colame)? + ci(ame)*

FNAL/MILC 11 [48] 241 0.15,0.12,0.09 Chiral and continuum extrapolations Relative scale set through
performed simultaneously using r1 = 0.3117(22). The error in ry
one-loop HM x PT for rooted comes from the spread of different
staggered quarks. Effects of absolute scale determinations using
hyperfine and flavour splittings are Jfx» fk and the Y splitting
also included

PACS-CS 11 [422] 241 0.09 Cutoff effects from the heavy-quark Scale set through mq
action estimated by naive power
counting to be at the percent level

HPQCD 10A [49] 24+1 0.15,0.12,0.09, Chiral and continuum extrapolations See the discussion for HPQCD 12A

0.06, 0.044 performed simultaneously.

Polynomials up to am? are kept
(even powers only)

HPQCD/UKQCD 07 [28] 241 0.15,0.12,0.09 Combined chiral and continuum Scale set through r; obtained from the
extrapolations using HM y PT at Y spectrum using the
NLO augmented by second and non-relativistic QCD action for b
third-order polynomial terms in m, quarks. Uncertainty propagated
and terms up to a* among the systematics

FNAL/MILC 05 [423] 241 0.175,0.121,0.086  Most light-quark cutoff effects are Scale set through r; obtained from the

removed through NLO HM x PT for
rooted staggered quarks. Continuum
values are then obtained by
averaging the a ~ 0.12 and

a ~ 0.09 fm results

Y spectrum using the non-relativistic
QCD action for b quarks
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Table 114 Lattice spacings and description of actions used in Ny = 2 determinations of the D- and D;-meson-decay constants

Collaboration Refs. Ny a[fm] Continuum extrapolation Scale setting
TWQCD 14 [424] 2 0.061 Uncertainties associated to scale Scale set through the Wilson flow
setting and discretization effects and rg set to 0.49 fm

estimated by performing the
chiral fits once in physical and
once in lattice units (=2 MeV on
fp,)
ALPHA 13B [177] 2 0.065, 0.048 Linear fits (in m% and in ¢?) and Scale set through fx
partially quenched HM x PT
functional forms, including terms
linear in a2, are used in the
combined chiral/continuum
extrapolation

ETM 09 [20,32,182] 2 0.10, 0.085, 0.065, NLO SU(2) HMxPT Scale set through f
ETM 11A 0.054 supplemented by terms linear in
ETM 13B a? and in m pa? is used in the
combined chiral/continuum
extrapolation

Table 115 Operator renormalization in determinations of the D- and Dg-meson-decay constants

Collaboration Refs. Ny Ren. Description

FNAL/MILC 14A [14] 24+ 141 — The axial current is absolutely normalized
ETM 13F, 14E [27,230] 24141 — The axial current is absolutely normalized
FNAL/MILC 12B, 13 [420,421] 24141 — The axial current is absolutely normalized
xQCD 14 [17] 241 RI The decay constant is extracted from an

exact lattice Ward identity and from the
NP renormalized axial current

HPQCD 12A [47] 241 — The axial current is absolutely normalized

FNAL/MILC 11 [48] 2+1 mNPR Two-loop and higher-order perturbative
truncation errors estimated to be the full
size of the one-loop term

PACS-CS 11 [422] 2+1 PT1¢ 4+ NP Mass dependent part of the
renormalization constant of the axial
current computed at one-loop; the NP
contribution is added in the chiral limit

HPQCD 10A [49] 2+1 — The axial current is absolutely normalized

HPQCD/UKQCD 07 [28] 241 — The axial current is absolutely normalized

FNAL/MILC 05 [423] 2+1 mNPR Errors due to higher-order corrections in
the perturbative part are estimated to be
1.3%

TWQCD 14 [424] 2 — The decay constant is extracted from an
exact lattice Ward identity

ALPHA 13B [177] 2 SF NP renormalization and improvement of
the axial current (am terms included at
one-loop)

ETM 09, 11A, 13B [20,32,182] 2 — The axial current is absolutely normalized
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Table 116 Heavy-quark treatmentin Ny = 2 + 1 + 1 determinations of the D- and Dg-meson-decay constants

Collaboration Refs. Ny Action Description

FNAL/MILC 14A [14] 2+14+1 HISQ (on HISQ) 0.22 < am, < 0.84. Discretization errors estimated
to be &1 MeV using the spread of 108 different
chiral/continuum fits (for example by including or
not some NNLO discretization effects in
HMrASxPT)

ETM 13F, 14E [27,230] 2+1+1 tmWil 0.15 ~ am, <020

FNAL/MILC 12B FNAL/MILC 13 [420,421] 24+1+1 HISQ (on HISQ) 0.29 < am, < 0.7. Discretization errors estimated
using different fit ansétze to be ~1.5% for fp,,

Table 117 Heavy-quark treatment in Ny = 2 + 1 determinations of the D- and D;-meson-decay constants

Collaboration Refs. Ny Action Description

xQCD 14 [17] 241 Overlap on DW 0.29 < am. < 0.75. Heavy-quark discretization
errors estimated by including (am¢)? and am)*
terms in the chiral/continuum extrapolation

HPQCD I12A [47] 2+1 HISQ 0.41 < am. < 0.62. Heavy-quark discretization
errors estimated using different fit ansitze to be
~1.2%

FNAL/MILC 11 [48] 2+1 Fermilab Discretization errors from charm quark estimated

through a combination of Heavy Quark and
Symanzik Effective Theories to be around 3% for
Sb,,, and negligible for the ratio

PACS-CS 11 [422] 2+1 Tsukuba am, ~ 0.57. Heavy-quark discretization errors
estimated to be at the percent level by power
counting

HPQCD 10A [49] 241 HISQ 0.193 < am, < 0.825. Heavy-quark discretization
errors estimated by changing the fit-inputs to be
~0.4%

HPQCD/UKQCD 07 [28] 241 HISQ 0.43 < am. < 0.85. Heavy-quark discretization
errors estimated from the chiral/continuum fits to
be ~0.5%

FNAL/MILC 05 [423] 241 Fermilab Discretization errors from charm quark estimated via
heavy-quark power counting at 4.2% for fp,, and
0.5% for the ratio

Table 118 Heavy-quark treatment in Ny = 2 determinations of the D- and D;-meson-decay constants

Collaboration Refs. Ny Action Description

TWQCD 14 [424] 2 DW am. < 0.55. Optimal Domain Wall fermions [794]
preserving chiral symmetry

ALPHA 13B [177] 2 npSW am. < 0.28. Axial current nonperturbatively
improved (O(am) at one-loop)

ETM 09, 11A, 13B [20,32,182] 2 tmWil 0.16 < am, < 0.23. D(amin) ~ 5% in ETM 09
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B.5.2 D — mwtv and D — KX{v form factors

See Tables 119, 120, 121, 122 and 123.

Table 119 Continuum extrapolations/estimation of lattice artefacts in determinations of the D — m¢v and D — K {v form factors

Collaboration Refs. Ny a [fm] Continuum extrapolation Scale setting

HPQCD 10B, 11 [50,51] 2+1 0.09, 0.12 Modified z-expansion fit Relative scale ry/a set from the
combining the continuum and static-quark potential. Absolute
chiral extrapolations and the scale rq set from several
momentum transfer dependence. quantities including f, fx, and
Leading discretization errors T 25-1S8 splitting cf.
from (am.)" charm-mass effects HPQCD 09B [250]. Scale
(see Table 123). Subleading uncertainty estimated to be 0.7%
(aE)" discretization corrections inD — 7 and 0.2% in D - K

estimated to be 1.0% for both
D—mand D — K

FNAL/MILC 04 [441] 241 0.12 Discretization effects from Scale set through T 25-18
light-quark sector estimated to be splitting cf. HPQCD 03 [795].
4% by power counting. Error in a~! estimated to be
Discretization effects from 1.2%, but scale error in
final-state pion and kaon energies dimensionless form factor
estimated to be 5% negligible compared to other

uncertainties

ETM 11B [431] 2 0.068, 0.086, 0.102 Discretization errors estimated to Scale set through f5; cf.
be 5% for D — m and 3% for ETM 07A [83] and
D — K from comparison of ETM 09C [36]

results in the continuum limit to
those at the finest lattice spacing

Table 120 Chiral-extrapolation/minimum pion mass in determinations of the D — m¢v and D — K<{v form factors. For actions with multiple
species of pions, masses quoted are the RMS pion masses. The different M nmin entries correspond to the different lattice spacings

Collaboration Refs. Ny My min [MeV] Description

HPQCD 10B, 11 [50,51] 2+1 390, 390 Modified z-expansion fit combining the continuum
and chiral extrapolations and the momentum
transfer dependence. Contributions to error budget
from light valence and sea-quark mass dependence
estimated to be 2.0% for D — 7 and 1.0% for
D — K

FNAL/MILC 04 [441] 241 510 Fit to Sy PT, combined with the Becirevic—Kaidalov
ansatz for the momentum transfer dependence of
form factors. Error estimated to be 3% for D — m
and 2% for D — K by comparing fits with and
without one extra analytic term

ETM 11B [431] 2 270 SU(2) tmHM x PT plus Becirevic—Kaidalov ansatz
for fits to the momentum transfer dependence of
form factors. Fit uncertainty estimated to be 7% for
D — 7 and 5% for D — K by considering fits
with and without NNLO corrections of order
(’)(mi) and/or higher-order terms through E>, and
by excluding data with E = 1 GeV
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Table 121 Finite-volume effects in determinations of the D — w¢v and D — K{v form factors. Each L-entry corresponds to a different lattice
spacing, with multiple spatial volumes at some lattice spacings. For actions with multiple species of pions, the lightest pion masses are quoted

Collaboration Refs. Ny L [fm] My minL Description

HPQCD 10B, 11 [50,51] 241 2.4,2.4/2.9 >3.8 Finite-volume effects estimated to be 0.04% for
D — 7 and 0.01% for D — K by comparing the
“mnlog(m,zr)” term in infinite and finite volume

FNAL/MILC 04 [441] 2+1 2.4/2.9 >3.8 No explicit estimate of FV error, but expected to be
small for simulation masses and volumes
ETM 11B [431] 2 22,2.1/2.8,2.4 >3.7 Finite-volume uncertainty estimated to be at most

2% by considering fits with and without the
lightest pion-mass point at m, L ~ 3.7

Table 122 Operator renormalization in determinations of the D — w¢v and D — K{v form factors

Collaboration Refs. Ny Ren. Description

HPQCD 10B, 11 [50,51] 241 - Form factor extracted from absolutely normalized
scalar-current matrix element then using kinematic
constraint at zero momentum-transfer f (0) = fy(0)

FNAL/MILC 04 [441] 241 mNPR Size of two-loop correction to current renormalization
factor assumed to be negligible

ETM 11B [431] 2 - Form factors extracted from double ratios insensitive to
current normalization

Table 123 Heavy-quark treatment in determinations of the D — 7 £¢v and D — K ¢v form factors

Collaboration Refs. Ny Action Description

HPQCD 10B, 11 [50,51] 241 HISQ Bare charm-quark mass am. ~ 0.41-0.63. Errors of
(am¢)" estimated within modified z-expansion to
be 1.4% for D — K and 2.0% for D — .
Consistent with expected size of dominant
one-loop cutoff effects on the finest lattice spacing,
O(as(ame)*/c)) ~ 1.6%

FNAL/MILC 04 [441] 241 Fermilab Discretization errors from charm quark estimated via
heavy-quark power counting to be 7%
ETM 11B [431] 2 tmWil Bare charm-quark mass am. ~ 0.17-0.30. Expected

size of O((am¢)?) cutoff effects on the finest
lattice spacing consistent with quoted 5%
continuum-extrapolation uncertainty

B.6 Notes to Sect. 8 on B-meson-decay constants and mixing parameters
In the following, we summarize the characteristics (lattice actions, pion masses, lattice spacings, etc.) of the recent Ny =

2+1+1, Ny =2+ 1and Ny = 2 runs. We also provide brief descriptions of how systematic errors are estimated by the
various authors. We focus on calculations with either preliminary or published quantitative results.

B.6.1 B(s)-meson-decay constants

See Tables 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134 and 135.
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Table 124 Chiral-extrapolation/minimum pion mass in determinations
of the B- and B;-meson-decay constants for Ny = 2 + 1 + 1 simu-
lations. For actions with multiple species of pions, masses quoted are

the RMS pion masses (where available). The different My mi entries
correspond to the different lattice spacings

Collaboration Refs. Ny My min [MeV]

Description

ETM 13E [456] 24+1+1 245,239, 211

HPQCD 13 [52] 24+1+1 310,294, 173

M min refers to the charged pions. Linear and NLO (full QCD)
HM x PT supplemented by an a? term is used for the SU (3)
breaking ratios. The chiral fit error is estimated from the
difference between the NLO HM x PT and linear fits with half
the difference used as estimate of the systematic error. The
ratio zy is fit using just linear HM x PT supplemented by an a>
term

Two or three pion masses at each lattice spacing, one each with
a physical mass GB pion. NLO (full QCD) HM x PT
supplemented by generic a? and a* terms is used to
interpolate to the physical-pion mass

Table 125 Chiral-extrapolation/minimum pion mass in determinations
of the B- and By-meson-decay constants for Ny = 2 + 1 simulations.
For actions with multiple species of pions, masses quoted are the RMS

pion masses (where available). The different M min entries correspond
to the different lattice spacings

Collaboration Refs. Ny M min [MeV]

Description

RBC/UKQCD 14
RBC/UKQCD
13A

[53]
[457]

2+1 329, 289

RBC/UKQCD 14A [54] 2+1 327,289

HPQCD 12 [55] 2+1 390, 390

HPQCD 11A [56] 2+1

FNAL/MILC 11 [48] 2+1 570, 440, 320

RBC/UKQCD 10C 2+1 430

HPQCD 09 2+1 440, 400

570, 450, 390, 330, 330

Two or three light-quark masses per lattice spacing. In
RBC/UKQCD 14, three to four light valence-quark masses
that are heavier than the sea-quark masses are also employed
to have partially quenched points. NLO SU (2) HM x PT is
used. In RBC/UKQCD 14, the fit with only the unitary points
is the central analysis procedure, and the systematic errors in
the combined chiral-continuum extrapolation are estimated to
be from 3.1 to 5.9% in the decay constants and the SU (3)
breaking ratios

Two or three light-quark masses per lattice spacing. NLO
SU(2) HMxPT is used in the combined chiral-continuum
extrapolation. The systematic errors in this extrapolation are
estimated to be 3.54% for f, 1.98% for fp_, and 2.66% for
IB,/fB

Two or three pion masses at each lattice spacing. NLO (full
QCD) HMx PT supplemented by NNLO analytic terms and
generic a? and a* terms is used. The systematic error is
estimated by varying the fit Ansatz, in particular for the
NNLO analytic terms and the a>" terms

One light sea-quark mass only at each lattice spacing. The
sea-quark mass dependence is assumed to be negligible,
based on the calculation of fp, in Ref. [49], where the
sea-quark extrapolation error is estimated as 0.34%

Three to five sea-quark masses per lattice spacing, and 9—-12
valence light-quark masses per ensemble. NLO partially
quenched HMrS x PT including 1/m terms and supplemented
by NNLO analytic and aszaz terms is used. The systematic
error is estimated by varying the fit Ansatz, in particular the
NNLO analytic terms and the chiral scale

Three light-quark masses at one lattice spacing. NLO SU (2)
xPT is used. The systematic error is estimated from the
difference between NLO xPT and linear fits as ~7%

Four or two pion masses per lattice spacing. NLO (full QCD)
HMrS x PT supplemented by NNLO analytic terms and
asa?, a* terms is used. The chiral fit error is estimated by
varying the fit Ansatz, in particular, by adding or removing

NNLO and discretization terms

@ Springer



112 Page 188 of 228

Eur. Phys. J. C (2017) 77:112

Table 126 Chiral-extrapolation/minimum pion mass in determinations

masses (where available). The different My i entries correspond to
the different lattice spacings

of the B- and B;-meson-decay constants for Ny = 2 simulations. For
actions with multiple species of pions, masses quoted are the RMS pion

Collaboration

Refs. Nf My min [MeV]

Description

ALPHA 14
ALPHA 13
ALPHA 12A

ETM 13B, 13C
ETM 12B
ETM 11A

ALPHA 11

ETM 09D

[57] 2
[458]
[459]

280, 190, 270

[20,58] 2
[460]
[182]

410, 275, 300, 270

[461] 2 331, 268, 267

[462] 2 410, 275, 300

LO and NLO HMx PT supplemented by a term linear in a® are
used. In ALPHA 13 and ALPHA 12A, the final result is an
average between LO and NLO with half the difference used
as estimate of the systematic error. In ALPHA 14, the NLO fit
is used as the central analysis procedure, and the LO results
are used to estimate the systematic errors (0.9% MeV for fp,
1.1% for fp,and 1.6% for fp /fB)

My min refers to the charged pions. Linear and NLO (full QCD)
HMx PT supplemented by an a? term is used.The chiral fit
error is estimated from the difference between the NLO
HM x PT and linear fits with half the difference used as
estimate of the systematic error. For the static-limit
calculation in ETM 11A, ®3 is extrapolated assuming a
constant in light-quark mass. The ratio '/ ®3" is fit using
three different chiral fit forms (NLO HM x PT, linear, and
quadratic) to estimate the chiral fir error

Linear and NLO (full QCD) HM x PT supplemented by a term
linear in a? are used. The final result is an average between
linear and NLO fits with half the difference used as estimate
of the systematic error

M min refers to the charged pions. Linear and NLO (full QCD)

HMy PT is used. The final result given by the average of NLO
HMCHhiPT and linear Anséitze £ half the difference)

Table 127 Finite-volume effects in determinations of the B- and By-meson-decay constants. Each L-entry corresponds to a different lattice spacing,
with multiple spatial volumes at some lattice spacings

Collaboration Refs. Ny L [fm] My minL Description
ETM 13E [456] 241+1 2.84/2.13, 3.5,3.2,3.2 FV error estimated how?
2.61/1.96, 2.97
HPQCD 13 [52] 24+1+1 2.4/3.5/4.7, 74,8.6,4.9 The analysis uses finite-volume
2.9/3.8/5.8, xPT
2.8/5.6
RBC/UKQCD 14 [53] 241 2.64,2.75 44,4.0 In RBC/UKQCD 14, finite-volume
RBC/UKQCD [457] effects are estimated to be
13A negligible for fp , 0.4% for fpo,
0.5% for fp+ and the SU (3)
breaking ratios
RBC/UKQCD 14A [54] 241 2.74,2.76 4.5,4.0 Finite-volume effects are estimated
to be negligible for fp_, 0.82%
for fp, and 1% for fp /fB
HPQCD 12 [55] 241 2.4/2.9,2.5/3.6 5.7,7.1 FV error is taken from Ref. [28]
for HPQCD’s D meson analysis,
where it was estimated using
finite-volume y PT
HPQCD 11A [56] 2+1 2.4,24,2.5,29, 6.9,55,49,48,4.8 FV error is assumed to negligible
2.9
FNAL/MILC 11 [48] 241 2.4,2.4/2.9, 6.9,64,58 FV error is estimated using
2.5/3.6 finite-volume y PT
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Table 127 continued

Collaboration Refs. Ny L [fm] My minL Description

RBC/UKQCD [464] 2+1 1.8 3.9 FV error estimated using

10C finite-volume x PT to be 1% for
SU (3) breaking ratios

HPQCD 09 [59] 241 2.4/2.9,2.5 6.5,5.1 FV error is assumed to negligible

ALPHA 14 [57] 2 2.4/3.6, 52,4.1,4.2 No explicit estimate of FV errors,

ALPHA 13 [458] 2.1/3.1/4.2, but expected to be much smaller

ALPHA 12A [459] 2.3/3.1 than other uncertainties

ALPHA 11 [461]

ETM 13B, 13C [20,58] 2 2.4, 2.0/2.7, 2.1, 5.0,3.7,3.3,3.5 FV errors are found to be

ETM 12B [460] 1.7/2.6 negligible by comparing results

ETM 11A [182] atmyL =33andm,L =4.3

for my; >~ 310 MeV

Table 128 Continuum extrapolations/estimation of lattice artefacts in determinations of the B and By meson decay constants for Ny =241+ 1

simulations
Collaboration Refs. Ny a [fm] Continuum extrapolation Scale setting
ETM 13E [456] 241+1 0.89, 0.82, 0.62 Combined continuum and chiral Scale set from f. Scale setting
extrapolation, linear in a? uncertainty included in combined
statistical and systematic error
HPQCD 13 [52] 2+1+1 0.15,0.12, 0.09 Combined continuum and chiral Scale set from Y (2S-1S) splitting;

extrapolation. Continuum
extrapolation errors estimated to
be 0.7%

see Ref. [757]. Scale uncertainty
included in statistical error

Table 129 Continuum extrapolations/estimation of lattice artefacts in determinations of the B and By meson decay constants for Ny = 2 + 1

simulations

Collaboration Refs.

Ny a [fm]

Continuum extrapolation

Scale setting

RBC/UKQCD 14
RBC/UKQCD 13A

[53]
[457]

RBC/UKQCD 14A [54]

HPQCD 12 [55]

2+1 0.11, 0.086

2+1 0.11, 0.086

2+1 0.12, 0.09

Combined continuum and chiral
extrapolation with linear in a?
term. In RBC/UKQCD 14, the
systematic errors from this
procedure are estimated to be
from 3.1 to 5.9% in the decay
constants and the
SU (3)-breaking ratios

Chiral-continuum extrapolation
with linear in a? term is
employed, with the systematic
errors estimated to be from 1.98
to 3.54% in the decay constants

and fp /fp. Discretization errors

at O(aya) in the static-light
system are estimated to be 1% in
the decay constants, and 0.2% in

I8,/fB

Combined continuum and chiral
extrapolation. Continuum
extrapolation errors estimated to
be 0.9%

Scale set by the Q2 baryon mass. In
RBC/UKQCD 14, scale
uncertainty estimated to be 1.5%
in the decay constants, and 0.1%
in the SU (3)-breaking ratios

Scale set by the €2 baryon mass

Relative scale ry /a from the
static-quark potential. Absolute
scale r| from fy, fx, and
T (2S-18S) splitting. Scale
uncertainty estimated to be 1.1%
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Table 129 continued

Collaboration Refs. Ny a [fm] Continuum extrapolation Scale setting
HPQCD 11A [56] 241 0.15,0.12, 0.09, amg ~ 0.2-0.85. Combined Relative scale ry /a from the
0.06, 0.045 continuum and HQET fit. static-quark potential. Absolute

Continuum extrapolation error scale r| from f5, fx,and
estimated by varying the fit Y(2S-18S) splitting. Scale
ansatz and the included data uncertainty estimated to be
points to be 0.63%. 0.74%
Discretization errors appear to
decrease with increasing
heavy-meson mass

FNAL/MILC 11 [48] 2+1 0.15, 0.12, 0.09 Combined continuum and chiral Relative scale rj /a from the
extrapolation. Continuum static-quark potential. Absolute
extrapolation errors estimated to scale r| from fy, fx,and
be 1.3% T (2S-18S) splitting. Scale

uncertainty estimated to be
1 MeV

RBC/UKQCD 10C [464] 2+1 0.11 One lattice spacing with Scale set by the €2 baryon mass.
discretization errors estimated by Combined scale and mass tuning
power counting as 3% uncertainties on fp_/fp

estimated as 1%

HPQCD 09 [59] 2+1 0.12, 0.09 Combined continuum and chiral Relative scale rj /a from the
extrapolation. Continuum static-quark potential. Absolute
extrapolation errors estimated to scale r; from the Y(2S-1S)
be 3% splitting. Scale uncertainty

estimated to be 2.3%

Table 130 Continuum extrapolations/estimation of lattice artefacts in determinations of the B- and Bj-meson-decay constants for Ny = 2

simulations

Collaboration Refs. Ny a [fm] Continuum extrapolation Scale setting

ALPHA 14 [57] 0.075, 0.065, 0.048 Combined continuum and Relative scale set from rg.

ALPHA 13 [458] chiral extrapolation with Absolute scale set from fx.

ALPHA 12A [459] linear in a? term. Continuum Scale setting uncertainty

ALPHA 11 [461] extrapolation errors estimated included in combined

to be 5 MeV in ALPHA 11. statistical and extrapolation
The continuum extrapolation error

with a term linear in a also

investigated in ALPHA 14,

and within the statistical error

no discernable difference was

observed

ETM 13B, 13C, [20,58] 0.098, 0.085, 0.067, Combined continuum and Scale set from f;;. Scale setting

ETM 12B [460] 0.054 chiral extrapolation, with a uncertainty included in

ETM 11A [182] term linear in 2. ETM 12 combined statistical and

and 13 include a heavier systematic error
masses than ETM 11A.
Discretization error included
in combined statistical and
systematic error, estimated by
dropping the data at the
coarsest lattice spacing as
~0.5-1%
ETM 09D [462] 0.098, 0.085, 0.067 Combined continuum and Scale set from f;;. Scale setting

chiral extrapolation with a
term linear in a2

uncertainty included in
combined statistical and
systematic error
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Table 131 Description of the renormalization/matching procedure adopted in the determinations of the B- and Bs-meson-decay constants for
Ny =2+ 1+ 1 simulations

Collaboration Refs. Ny Ren. Description

ETM 13E [456] 24141 - PT1¢ The current used for the relativistic decay constants is
absolutely normalized. The ratio is constructed from the
relativistic decay constant data and the heavy-quark pole
masses. Ratios of pole-to-MS mass conversion factors are
included at NLO in continuum perturbation theory

HPQCD 13 [52] 24141 PT1¢ The NRQD eftective current is matched through O(1/m) and
renormalized using one-loop PT. Included are all terms
though O(ay), O(ay a), O(Agep/M), O(ag/aM),

O(ay Aqep/M). The dominant error is due unknown O(af)
contributions to the current renormalization. The perturbation
theory used in this work is the same as in HPQCD 09 and 12,
but is rearranged to match the mNPR method. Using the fact
that the heavy-heavy temporal vector current is normalized,
and that the light-light HISQ vector current receives a small
one-loop correction, the error is estimated as ~1.4%

Table 132 Description of the renormalization/matching procedure adopted in the determinations of the B- and Bg-meson-decay constants for
Ny =2+ 1 simulations

Collaboration Refs. Ny Ren. Description

RBC/UKQCD 14 [53] 241 mNPR In RBC/UKQCD 14, the error is dominated by the

RBC/UKQCD [457] perturbative aspect, and is estimated to be 1.7% for the

13A decay constants by taking the full size of the one-loop
correction for the fine lattice

RBC/UKQCD 14A [54] 241 PT1¢ A two-step matching procedure is employed, first from

QCD to HQET in the continuum at m;, then to HQET on
the lattice at ! with O( pa) and O(mga) errors
included. Both matching steps are accurate to one-loop,
and the running between m; and a~! is performed at
two-loop accordingly. The error is estimated using a
power-counting argument to be 6% for the decay constants

HPQCD 12/09 [55,59] 241 PT1¢ The NRQD effective current is matched through O(1/m)
and renormalized using one-loop PT. Included are all
terms though O(ay), O(as a), O(Aqgep/M), O(as/aM),
O(ag Agep/M). The dominant error is due unknown
O(a?) contributions to the current renormalization. The
authors take the perturbative error as ~ 29 asz, where pg
is the coefficient of the one-loop correction to the leading
term, which yields an error of ~4%

HPQCD 11A [56] 2+1 - This work uses PCAC together with an absolutely
normalized current

FNAL/MILC 11 [48] 241 mNPR The authors’ estimate of the perturbative errors is
comparable in size to the actual one-loop corrections

RBC/UKQCD 10C [464] 2+1 PT1¢ The static-light current is matched through O(«;a, o) and

renormalized using one-loop tadpole improved PT. For
massless light quarks, the renormalization factors cancel
in the ratio of decay constants
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Table 133 Description of the renormalization/matching procedure adopted in the determinations of the B- and Bs-meson-decay constants for

Ny = 2 simulations

Collaboration Refs. Ny Ren. Description

ALPHA 14 [57] 2 NPR The authors use the Schrodinger functional for the NP
matching

ALPHA 13 [458]

ALPHA 12A [459]

ALPHA 11 [461]

ETM 13B, 13C [20,58] 2 - PT1¢ The current used for the relativistic decay constants is

ETM 12B [460] absolutely normalized. Interpolation method: The

ETM 11A [182] static-limit current renormalization is calculated in

one-loop mean-field-improved perturbation theory, there
half the correction is used to estimate the error. Ratio
method: The ratio is constructed from the relativistic
decay constant data and the heavy-quark pole masses.
Ratios of pole-to-MS mass conversion factors are
included at NLO in continuum perturbation theory

Table 134 Heavy-quark treatment in Ny = 2 + 1 + 1 determinations of the B- and Bs-meson-decay constants

Collaboration

Refs. Ny Action

Description

ETM 13E

HPQCD 13

[456] 2+1+1 tmWil

[52] 24141 NRQCD

The estimate of the discretization effects is described in
the continuum table. The relativistic data are matched
to HQET using NLO continuum PT in an intermediate
step, and converted back to QCD at the end. The error
due to HQET matching (estimated by replacing the
NLO expressions with LO) is a very small
contribution to the systematic error due to the
heavy-quark mass dependence

The leading HQ truncation effects are of (’)(AéCD / mﬁ)

and (’)(ozfAQcD /myp), and the errors are at the
subpercentage level

Table 135 Heavy-quark treatmentin Ny = 2 + 1 and Ny = 2 determinations of the B- and By-meson-decay constants

Collaboration Refs. Ny Action Description

RBC/UKQCD 14 [53] 241 RHQ In RBC/UKQCD 14, the heavy-quark discretization errors

RBC/UKQCD [457] are estimated to be 1.7% in the decay constants, and 0.3%

13A in the SU (3) breaking ratios

RBC/UKQCD 14A [54] 241 Static Static-limit computation, with O(Aqcp/my) errors
estimated to be 10% for the decay constants, and 2.2% for
fB,/1B

HPQCD 12 [55] 241 NRQCD HQ truncation effects estimated as in HPQCD 09 to be 1.0%

HPQCD 11A [56] 241 HISQ The analysis uses a combined continuum and 1/m
extrapolation

FNAL/MILC 11 [48] 241 Fermilab HQ discretization effects are included in the combined

chiral and continuum fits, and they are estimated by
varying the fit Ansatz and excluding the data at the
coarsest lattice spacing to be ~2%, consistent with simple
power-counting estimates but larger than the residual
discretization errors observed in the data
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Table 135 continued

Collaboration Refs. Ny Action Description

RBC/UKQCD 10C [464] 2+1 Static Truncation effects of O(1/my,) on the SU (3) breaking
ratios are estimated by power counting to be 2%

HPQCD 09 [59] 241 NRQCD The leading HQ truncation effects are of O(a; Agcp/mp)
due to the tree-level coefficient of the o - B term. The
error is estimated by calculating the B* — B hyperfine
splitting and comparing with experiment as 1%

ALPHA 14 [57] 2 HQET NP improved through O(1/my,). Truncation errors of

ALPHA 13 [458] @] [(AQCD / mh)z] are not included

ALPHA 12A [459]

ALPHA 11 [461]

ETM 13B, 13C [20,58] 2 tmWil The estimate of the discretization effects is described in the

ETM 12B [460] continuum table. In both methods the relativistic data are

ETM 11A [182] matched to HQET using NLO continuum PT in an

intermediate step, and converted back to QCD at the end.
The error due to HQET matching (estimated by replacing

the NLO expressions with LO) is a very small
contribution to the systematic error due to the
heavy-quark mass dependence. The variation observed
from adding heavier masses to their data and/or including
1/m} terms is 0.4-1.3%

B.6.2 B(s)-meson mixing matrix elements

See Tables 136, 137, 138, 139, 140 and 141.

Table 136 Continuum extrapolations/estimation of lattice artefacts in determinations of the neutral B-meson mixing matrix elements for Ny = 2+1

simulations

Collaboration Refs. Ny a [fm] Continuum extrapolation Scale setting

RBC/UKQCD 14A  [54] 2+1 0.11,0.086 Combined continuum and chiral Scale is set using the 2~ mass as input
extrapolation with SU (2) NLO HMx PT [144]. The scale uncertainty is estimated
and linear in quark mass both with as 1.84, 1.86 and 0.05% for fp Bz,
O(a?) terms. The combined continuum f8,+/Bp, and £ respectively
and chiral extrapolation uncertainty is
estimated as 2.55, 2.13 and 3.08% for
f8~/Bg. fB,\/Bs, and & respectively

FNAL/MILC 12 [60] 2+1 0.12,0.09 Combined continuum and chiral Relative scale r /a is set via static-quark
extrapolation with NLO rHMS x PT, potential. Absolute scale
NNLO analytic and generic r1 = 0.3117(22) fm is determined [48]
(’)(ozfaz, a*) terms. Combined through averaging the f; input and the
statistical, chiral and light-quark estimate of HPQCD Collaboration
discretization error is estimated, by [250]. The scale uncertainty on & is
examining the variation with different fit estimated as 0.2%
Ansitze to be 3.7% on &

FNAL/MILC 11A [483] 241 0.12,0.09,0.06 Combined continuum and chiral See above. The error in r; yields a 3%

extrapolation with NLO rHMS x PT,
NNLO analytic and generic
O(oeszaz, a4) terms

uncertainty on f l% Bp
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Table 136 continued

Collaboration Refs. Ny a [fm] Continuum extrapolation Scale setting

RBC/UKQCD 10C  [464] 241 0.11 Only one lattice spacing is used. Scale is set using the 2~ mass as input [145].
Discretization error is estimated to be The error on & due to the combined scale
4% on & by power counting and light-quark mass uncertainties is

estimated as 1%

HPQCD 09 [59] 2+1 0.12,0.09 Combined continuum and chiral Relative scale ry /a is set via static-quark
extrapolation with NLO rHMS x PT and potential. Absolute scale r; = 0.321(5) fm
NNLO analytic terms. Light-quark is determined through Y mass [463]. The
discretization error is estimated as 3, 2 error on fp+/Bp due to the scale
and 0.3% for fp+/Bg, fp,/Bp, and & uncertainty is estimated as 2.3%
respectively

HPQCD 06A [484] 2+1 0.12 Only one lattice spacing is used. Scale is set using the Y 25 — 1§ splitting as

Light-quark discretization error on
fé_ Bp, is estimated as 4% by power

counting

input [463]. The error on f §BB due to the
scale uncertainty is estimated as 5%

Table 137 Continuum extrapolations/estimation of lattice artefacts in determinations of the neutral B-meson mixing matrix elements for Ny = 2

simulations
Collaboration ~ Refs. Ny a [fm] Continuum extrapolation Scale setting
ETM 13B [20] 2 0.098, 0.085,0.067, Combined chiral and continuum See below

0.054

ETM 12A, 12B [460,485] 2

0.098, 0.085, 0.067

extrapolation, with a term linear
in a?. Discretization error is
estimated by omitting the
coarsest lattice as 0.5, 1.7, 1.3
and 1.0 % for BB:, BB, BB;/BB
and & respectively. The
heavy-quark masses vary in the
range 0.13 < amy, < 0.85

Combined chiral and continuum
extrapolation, with a term linear
in a2. Discretization error
included in combined statistical,
chiral and continuum

extrapolation error and estimated

as 4.5%. The heavy-quark
masses vary in the range
0.25 <amy <0.6

Relative scale ro/a set from the static-quark
potential. Absolute scale set from f. Scale setting
uncertainty included in combined statistical and
systematic error

Table 138 Chiral-extrapolation/minimum pion mass in determinations
of the neutral B-meson mixing matrix elements. For actions with mul-

tice spacings

tiple species of pions, masses quoted are the RMS pion masses (where

available). The different M min entries correspond to the different lat-

Collaboration Refs.

Ny Mz min [MeV]

Description

RBC/UKQCD 14A [54]

FNAL/MILC 12 [60]

FNAL/MILC 11A [483]

2+1 327, 289

2+1 440, 320

2+1 440, 320, 250

Combined continuum and chiral extrapolation with
SU(2) NLO HM x PT and linear in quark mass
both with O(a?) terms. The chiral fit error is
estimated from difference between the NLO
HMy PT and linear fits, and further from
eliminating the heaviest ud quark mass point

Combined continuum and chiral extrapolation with
NLO rHMS x PT and NNLO analytic terms. See
the entry in Table 136. The omission of wrong-spin
contributions [796] in the HMrS x PT is treated as a
systematic error and estimated to be 3.2% for &

Combined continuum and chiral extrapolation with
NLO rHMS x PT and NNLO analytic terms
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Table 138 continued

Collaboration

Refs.

Ny Mz min [MeV]

Description

RBC/UKQCD 10C

HPQCD 09

HPQCD 06A

ETM 13B
ETM 12A,12B

[464]

[59]

[484]

[20]
[460,485]

2+1 430

2+1

2+1 510

440, 400

2 410, 275, 300, 270

Linear fit matched with SU (2) NLO HM x PT at the
lightest ud mass point is used as the preferred fit.
Many different fit Ansitze are considered. The
systematic error is estimated from the difference
between the SU (2) HM x PT fit described above
and a linear fit

Combined continuum and chiral extrapolation with
NLO rHMS x PT and NNLO analytic terms

Two sea ud quark masses m,4/mgs; = 0.25 and 0.5
are used to calculate the matrix element for By
meson at the predetermined value of the strange
quark mass. No significant sea-quark mass
dependence is observed and the value at the lighter
sea ud mass is taken as the result

M min refers to the charged pions, where 270 MeV
on the finest lattice only included in ETM 13B.
Linear and NLO (full QCD) HM x PT
supplemented by an ¢ term is used. The chiral fit
error is estimated from the difference between the
NLO HMx PT and linear fits

Table 139 Finite-volume effects in determinations of the neutral B-
meson mixing matrix elements. Each L-entry corresponds to a different
lattice spacing, with multiple spatial volumes at some lattice spacings.

For actions with multiple species of pions, masses quoted are the RMS
pion masses (where available)

Collaboration Refs. Ny L [fm] My minL Description

RBC/UKQCD 14A [54] 241 274,276 4.5,4.0 FV error is estimated from SU (2) xPT to be
0.76, 0, 1.07% for fp~/Bg, fB,/Bs, and &
respectively

FNAL/MILC 12 [60] 241 24/29,25 6.4,5.1 FV error is estimated to be less than 0.1% for
SU (3) breaking ratios from FV HMrS x PT

FNAL/MILC 11A [483] 241 24/29,25/29/3.6,3.8 64,58,49 FV error on fp+/Bp is estimated to be less
than 1%, which is inferred from the study of
the B-meson decay constant using FV
HMxPT [48]

RBC/UKQCD 10C [464] 2+1 1.8 3.9 FV error estimated through FV HM x PT as
1% for SU (3) breaking ratios

HPQCD 09 [59] 241 2.4/29,2.5 6.4,5.1 No explicit estimate of FV error, but expected
to be much smaller than other uncertainties

HPQCD 06A [484] 241 24 6.2 No explicit estimate of FV error, but expected
to be much smaller than other uncertainties

ETM 13B [20] 2 24,2.0/27,2.1,1.726 5.0,3.7,3.3,35 L =1.7/2.6fm only included in ETM 13B.

ETM 12A,12B [460,485] FV error is assumed to be negligible based

on the study of D-meson decay constants in
Ref. [32]
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Table 140 Operator renormalization in determinations of the neutral B-meson mixing matrix elements

Collaboration Refs. Ny Ren. Description

RBC/UKQCD 14A [54] 2+1 PT1I Static-light four-quark operators are renormalized with
one-loop mean-field-improved PT. The errors due to
neglected higher-order effects are estimated for purely
Oaf to be 6% on the matrix elements or 1.2% on & and
for Oafaz to be 1% or 0.2% respectively

FNAL/MILC 12 [60] 2+1 PT1I One-loop mean-field improved PT is used to renormalize
the four-quark operators with heavy quarks rotated to
eliminate tree-level O(a) errors. The error from neglecting
higher-order corrections is estimated to be 0.5% on &

FNAL/MILC 11A [483] 241 PT1I One-loop mean-field improved PT is used to renormalize
the four-quark operators with heavy quarks rotated to
eliminate tree-level O(a) errors. The error from neglected
higher-order corrections is estimated to be 4% on fp+/Bp

RBC/UKQCD 10C [464] 2+1 PT1I Static-light four-quark operators are renormalized with
one-loop mean-field-improved PT. The error due to
neglected higher-order effects is estimated to be 2.2% on &

HPQCD 09 [59] 241 PT1/ Four-quark operators in lattice NRQCD are matched to
QCD through order ay, Aqcp/M and oy /(aM) [797]
using one-loop PT. The error due to neglected higher-order
effects is estimated to be 4% on fp+/Bg and 0.7% on &

HPQCD 06A [484] 241 PT1] Four-quark operators in lattice NRQCD are matched to full
QCD through order o, Aqcp/M and oy /(aM) [797].
The error is estimated as ~ 1 - a2 to be 9% on fl%s Bp,

ETM 13B, 12A, 12B [20,460,485] 2 NPR The bag parameters are nonperturbatively renormalized in
the RI’-MOM scheme. They are calculated as functions of
the (MS) heavy-quark mass (renormalized
nonperturbatively in RI/MOM)

Table 141 Heavy-quark treatment in determinations of the neutral B-meson mixing matrix elements

Collaboration Refs. Ny Action Description

RBC/UKQCD 14A [54] 241 Static Two different static-quark actions with HYP1 and HYP2
smearings are used and the continuum extrapolation is
constrained so the two values converges in the limit.
The error due to the missing 1/my, corrections is
estimated to be 12% for individual matrix elements or
2.2% on & using power counting

FNAL/MILC 12 [60] 241 Fermilab The heavy-quark discretization error on £ is estimated to
be 0.3%. The error on & due to the uncertainty in the
b-quark mass is are estimated to be 0.4%

FNAL/MILC 11A [483] 241 Fermilab The heavy-quark discretization error on fp+/Bp is
estimated as 4% using power counting
RBC/UKQCD 10C [464] 2+1 Static Two different static-quark actions with Ape and HYP

smearings are used. The discretization error on & is
estimated as ~4% and the error due to the missing
1/my corrections as ~2%, both using power counting

HPQCD 09 [59] 241 NRQCD Heavy-quark truncation errors due to relativistic
corrections are estimated to be 2.5, 2.5 and 0.4% for

B~/ B, fB,+/Bp, and & respectively
HPQCD 06A [484] 241 NRQCD Heavy-quark truncation errors due to relativistic
corrections are estimated to be 3% for f }i Bgp,
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Table 141 continued

Collaboration Refs. Ny Description
ETM 13B [20] 2 The ratio method is used to perform an interpolation to the physical b
ETM 12A,12B [460,485] quark mass from the simulated heavy mass and the known static limit. In

an intermediate step, the ratios include HQET matching factors
calculated to tree-level, leading-log, and next-to-leading-log (ETM 13B
only) in continuum PT. The interpolation uses a polynomial up to
quadratic in the inverse quark mass. The systematic errors added
together with those of the chiral fit are estimated as 1.3—1.6% for bag
parameters for ETM 13B, while they are estimated from changing the
interpolating polynomial as 2% and from changing the order of HQET
matching factors as 3% for ETM 12A and 12B

B.6.3 Form factors entering determinations of |V,p| (B — wlv, By — Klv, Ay — plv)

See Tables 142, 143, 144, 145 and 146.

Table 142 Continuum extrapolations/estimation of lattice artefacts in determinations of B — wfv, By — K{v, and A, — pfv form factors

Collaboration Refs. Ny a [fm] Continuum extrapolation Scale setting
FNAL/MILC 15 [504] 241 0.045, 0.06, 0.09, Fit to HMrS x PT to remove light-quark ~ Relative scale r; /a set from the
0.12 discretization errors. Residual static-quark potential. Absolute

heavy-quark discretization errors scale r1, including related
estimated with power counting. Total uncertainty estimates, taken from
(stat 4 chiral extrap + HQ [48]
discretization 4+ gp+p ) error
estimated to be 3.1% for f and
3.8% for fy at g% = 20 GeV?

Detmold 15 A, — p  [547] 241 0.0849(12), Joint chiral-continuum extrapolation, Set from Y (25)-Y(1S5) splitting,

0.1119(17) combined with fit to qz dependence cf. [798]

of form factors in a “modified”
z-expansion. Systematics estimated
by varying fit form and O(a)
improvement parameter values

RBC/UKQCD 15 [505] 241 0.086,0.11 Joint chiral-continuum extrapolation Scale implicitly set in the
using SU (2) hard-pion HM x PT. light-quark sector using the 2~
Systematic uncertainty estimated by mass, cf. [144]
varying fit ansatz and form of
coefficients, as well as implementing
different cuts on data; ranges from
5.0 to 10.9% for B — = form
factors, and 2.5 to 5.1% for
B; — K. Light-quark and gluon
discretization errors estimated at 1.1
and 1.3%, respectively

HPQCD 14 [511] 241 0.09,0.12 Combined chiral-continuum Relative scale | /a set from the
extrapolation using hard-pion static-quark potential. Absolute
rHMS x PT. (No explicit estimate of scale ry set to 0.3133(23) fm
discretization effects)

HPQCD 06 [503] 2+1 0.09,0.12 Central values obtained from data at Relative scale ry /a set from the

a = 0.12 fm. Discretization errors
observed to be within the statistical
error by comparison with data at

a = 0.09 fm

static-quark potential. Absolute
scale ry set through Y 25-1§
splitting cf. HPQCD 05B [463]
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Table 143 Chiral-extrapolation/minimum pion mass in determinations of B — w{fv, B; — K{v, and A, — pfv form factors. For actions with
multiple species of pions, masses quoted are the RMS pion masses. The different M, min entries correspond to the different lattice spacings

Collaboration Refs.

Ny

M. 7T, min [MeV]

Description

FNAL/MILC 15 [504]

Detmold 15 Ap — p [547]

RBC/UKQCD 15 [505]

HPQCD 14 [511]

HPQCD 06 [503]

2+1

2+1

2+1

2+1

2+1

330, 260, 280, 470

227, 245 (valence pions)

289, 329

295, 260

400, 440

Simultaneous chiral-continuum extrapolation and ¢>
interpolation using NNLO SU (2) hard-pion
HMTrS x PT. Systematic error estimated by adding
higher-order analytic terms and varying the B*-B-m

coupling

Joint chiral-continuum extrapolation, combined with fit

to g2 dependence of form factors in a “modified”
z-expansion. Only analytic NLO terms

o (m2 —m

2
7, phys

) included in light mass dependence.

Systematic uncertainty estimated by repeating fit with
added higher-order terms

Joint chiral-continuum extrapolation using SU (2)
hard-pion HM x PT. Systematic uncertainty estimated
by varying fit ansatz and form of coefficients, as well
as implementing different cuts on data; ranges from
5.0to 10.9% for B — 7 form factors, and 2.5 to 5.1%
for By - K

Combined chiral-continuum extrapolation using
hard-pion rtHMS x PT. (No explicit estimate of
extrapolation systematics)

First interpolate data at fixed quark mass to fiducial
values of E, using the Becirevic—Kaidalov and
Ball-Zwicky ansitze, then extrapolate data at fixed E
to physical quark masses using SU (3) rtHMS x PT.
Systematic error estimated by varying interpolation
and extrapolation fit functions

Table 144 Finite-volume effects in determinations of B — mlv,

spacings. For actions with multiple species of pions, the lightest masses

By — K{v,and A, — pfv form factors. Each L-entry corresponds to are quoted
a different lattice spacing, with multiple spatial volumes at some lattice
Collaboration Refs. Ny L [fm] Mz minL Description
FNAL/MILC 15 [504] 2+1 2.9,2.9/3.4/3.8, >3.8 FV effects estimated by replacing
2.5/2.9/3.6/5.8, infinite-volume chiral logs with sums
2.4/2.9 over discrete momenta, found to be
negligible
Detmold 15 Ap, — p [547] 241 2.7,2.7 >3.1 (valence FV effect estimated at 3% from
sector) experience on x PT estimates of FV
effects for heavy-baryon axial couplings
RBC/UKQCD 15 [505] 2+1 2.8,2.6 4.0,4.4 FV effects estimated by correction to
chiral logs due to sums over discrete
momenta; quoted 0.3-0.5% for f and
0.4-0.7% for fy for B — 7, and 0.2%
for f4 and 0.1-0.2% for fy for By — K
HPQCD 14 [511] 2+1 2.5,2.4/2.9 >3.8 FV effects estimated by shift of pion log,
found to be negligible
HPQCD 06 [503] 241 2.4/2.9 >3.8 No explicit estimate of FV error, but

expected to be much smaller than other
uncertainties
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Table 145 Operator renormalization in determinations of B — wfv, By — K{v, and A, — p{v form factors

Collaboration Refs.

Ny

Ren.

Description

FNAL/MILC 15 [504]

Detmold 15 A, — p [547]

RBC/UKQCD 15 [505]

HPQCD 14 [511]

HPQCD 06 [503]

2+1

2+1

2+1

2+1

2+1

mNPR

mNPR

mNPR

mNPR

PT1¢

Perturbative truncation error estimated at 1%
with size of one-loop correction on
next-to-finer ensemble

Perturbative truncation error estimated at 1%
with size of one-loop correction on
next-to-finer ensemble

Perturbative truncation error estimated as
largest of power counting, effect from value
of oy used, numerical integration.
Nonperturbative normalization of
flavour-diagonal currents computed by
fixing values of ratios of meson 2-point
functions to 3-point functions with an extra
current inversion, cf. [53]

Currents matched using one-loop HISQ
lattice perturbation theory, omitting
O(as AQep/myp. Systematic uncertainty
resulting from one-loop matching and
neglecting O(AéCD / mlz7 terms estimated at
4% from power counting

Currents included through O(asAqcp/M,
as/(aM), as aAqcp). Perturbative
truncation error estimated from power
counting

Table 146 Heavy-quark treatment in determinations of B — w¢v, By — K/{v, and A, — pfv form factors

Collaboration Refs.

Ny

Action

Description

FNAL/MILC 15 [504]

Detmold 15 Ay — p [547]

RBC/UKQCD 15 [505]

HPQCD 14 [511]

HPQCD 06 [503]

2+1

2+1

2+1

2+1

2+1

Fermilab

Columbia RHQ

Columbia RHQ

NRQCD

NRQCD

Total statistical + chiral
extrapolation + heavy-quark
discretization + gp+p, error estimated to
be 3.1% for f4 and 3.8% for fy at
g% =20 GeV?

Discretization errors discussed as part of
combined chiral-continuum—q2 fit,
stemming from az|p|2 terms

Discretization errors estimated by power
counting to be 1.8% for f1 and 1.7% for fy

Currents matched using one-loop HISQ
lattice perturbation theory, omitting
O(as Aqep/myp. Systematic uncertainty
resulting from one-loop matching and
neglecting O(Aéa) / m% terms estimated at
4% from power counting

Discretization errors in f. (¢%) estimated to
be O(as(@Aqcp)?) ~ 3%. Relativistic
errors estimated to be
O((Aqep/M)*) ~ 1%
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B.6.4 Form factors for B — K{T ¢~

See Tables 147, 148, 149, 150 and 151.

Table 147 Continuum extrapolations/estimation of

lattice artefacts in determinations of form factors for B — K£1¢~

Collaboration Refs. Ny a [fm] Continuum extrapolation Scale setting
FNAL/MILC 15D [516] 241 0.045,0.06, 0.09, Fit to SU(2) HMrS x PT for the Relative scale ry /a set from the
0.12 combined chiral-continuum limit static-quark potential. Absolute scale ry,

extrapolation. Combined including related uncertainty estimates,
stat + chiral extrap + HQ taken from [48]
discretization + gp+p, error
provided as a function of g2 for
each form factor, ranging
between ~1.4% and ~2.8%

HPQCD 13E [518] 241 0.09,0.12 Combined chiral-continuum Relative scale r /a set from the
extrapolation using rHMS x PT. static-quark potential. Absolute scale r;
Errors provided as a function of set to 0.3133(23) fm

g2, combined total ranging from

~3% to ~5% in data region

Table 148 Chiral-extrapolation/minimum pion mass in determinations of form factors for B — K ¢*¢~. For actions with multiple species of
pions, masses quoted are the RMS pion masses. The different My min entries correspond to the different lattice spacings

Collaboration Refs. Ny

Mz min [MeV] Description

FNAL/MILC 15D [516] 2+1

HPQCD I13E [518] 2+1

330, 260, 280, 470 Simultaneous chiral-continuum extrapolation and ¢2 interpolation
using SU(2) HMrS x PT, with a hard-kaon x PT treatment of
high-energy kaons. Combined stat 4 chiral extrap + HQ
discretization + g+ error provided as a function of ¢ for
each form factor, ranging between ~1.4% and ~2.8%

295, 260 Combined chiral-continuum extrapolation using rHMS x PT. Errors
provided as a function of g2, combined total ranging from ~3%
to ~5% in data region

Table 149 Finite-volume effects in determinations of form factors for B — K¢ ¢~. Each L-entry corresponds to a different lattice spacing, with
multiple spatial volumes at some lattice spacings. For actions with multiple species of pions, the lightest masses are quoted

Collaboration Refs. Ny L [fm] My minL Description

FNAL/MILC 15D [516] 241 2.9,2.9/3.8, >3.8 FV effects estimated by replacing infinite-volume chiral logs
2.5/2.9/3.6/5.8, with sums over discrete momenta, found to be negligible
2.4/2.9

HPQCD I13E [518] 241 2.5,2.4/2.9 >3.8 FV effects included in combined chiral-continuum

extrapolation

Table 150 Operator renormalization in determinations of form factors for B — K¢t~

Collaboration Refs. Ny Ren. Description

FNAL/MILC 15D [516] 241 mNPR Perturbative truncation error estimated at 1% for f and fy and
2% for fr, using size of one-loop correction on next-to-finer
ensemble

HPQCD 13E [518] 241 mNPR Currents matched using one-loop massless-HISQ lattice

perturbation theory. Associated systematic uncertainty
dominates quoted 4% uncertainty from matching, charm
quenching, and electromagnetic and isospin-breaking effects
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Table 151 Heavy-quark treatment in determinations of form factors for B — K¢t~

Collaboration Refs. Ny Action Description

FNAL/MILC 15D [516] 241 Fermilab Combined stat + chiral extrap + HQ discretization + gp+*p, error
provided as a function of g2 for each form factor, ranging
between ~1.4% and ~2.8%

HPQCD I13E [518] 241 NRQCD Currents matched using one-loop massless-HISQ lattice

perturbation theory. Associated systematic uncertainty dominates
quoted 4% uncertainty from matching, charm quenching, and
electromagnetic and isospin-breaking effects

B.6.5 Form factors entering determinations of |V p| (B — D*lv, B — DIlv, B; — Dglv, A, — A lv)and R(D))

See Tables 152, 153, 154, 155 and 156.

Table 152 Continuum extrapolations/estimation of lattice artefacts in determinations of B — D{v, B — D*{v, B; — Dglv, and A, — ALy
form factors, and of R(D)

Collaboration

Refs. Ny a [fm]

Continuum extrapolation

Scale setting

HPQCD 15

FNAL/MILC 15C

[541] 241 0.09,0.12

[540] 241

0.045, 0.06, 0.09,

Combined chiral-continuum
extrapolation as part of modified
z-expansion of form factors,
which also includes uncertainty
related to matching of NRQCD
and relativistic currents

Combined chiral-continuum

Implicitly set from r;

Relative scale | /a set from the

0.12 extrapolation using HMrS x PT. static-quark potential. Absolute
Form factors fitted to NLO xPT, scale r1, including related
with chiral logs taken from uncertainty estimates, taken from
staggered version of the [48]. Uncertainty related to scale
Chow-Wise result, modified to setting estimated at 0.2%
include taste-breaking terms.
O(a?) terms introduced based on
power-counting arguments. Total
uncertainty estimated at 0.6% for
f+ and 0.5% for f for the
largest recoil
Detmold 15 Ay, — Ac [547] 241 0.0849(12), Joint chiral-continuum Set from Y (25)-Y(1S5) splitting,
0.1119(17) extrapolation, combined with fit cf. [798]
to g% dependence of form factors
in a “modified” z-expansion.
Systematics estimated by varying
fit form and O(a) improvement
parameter values
FNAL/MILC 14 [539] 241 0.045, 0.06, 0.09, Combined chiral-continuum Relative scale ry/a set from the
0.12,0.15 extrapolation using HMrS x PT. static-quark potential. Absolute
Total uncertainty quoted at 0.5% scale ry, including related
uncertainty estimates, taken from
[48]. Uncertainty related to scale
setting estimated at 0.1%
Atoui 13 [537] 2 0.054, 0.067, 0.085, Combined continuum and chiral Scale set through F,

0.098

extrapolation, with linear terms in
a? and me,. No dependence on a
Or Mgea Observed within errors.
Stability of results vs. fits with no
mgea dependence checked
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Table 153 Chiral-extrapolation/minimum pion mass in determinations
of B— D{v,B — D*{v, By — Dslv,and A, — A £v form factors,
and of R(D). For actions with multiple species of pions, masses quoted

are the RMS pion masses. The different My i, entries correspond to
the different lattice spacings

Collaboration Refs. Ny

Mn,min [MeV]

Description

HPQCD 15 [541] 241 295, 260

ENAL/MILC 15C [540] 241

Detmold 15 Ap — A, [547] 241

FNAL/MILC 14 [539] 2+1

Atoui 13 [537] 2

330, 260, 280, 470

227, 245 (valence pions)

330, 260, 280, 470, 590

270, 300, 270, 410

Combined chiral-continuum extrapolation as part of
modified z-expansion of form factors. Hard-pion
x PT for light mass dependence used to estimate
systematic uncertainty to be 1.14%

Combined chiral-continuum extrapolation using
HMIrS x PT. Form factors fitted to NLO x PT, with
chiral logs taken from staggered version of the
Chow-Wise result, modified to include
taste-breaking terms. O(a?) terms introduced
based on power-counting arguments. Total
uncertainty estimated at 0.6% for f and 0.5% for
fo for the largest recoil

Joint chiral-continuum extrapolation, combined with
fit to ¢2 dependence of form factors in a
“modified” z-expansion. Only analytic N L O terms
o (m3 —m? ) included in light mass

dependence. Systematic uncertainty estimated by

repeating fit with added higher-order terms

Combined chiral-continuum extrapolation using
HMTrS x PT. Systematic errors estimated by adding
higher-order analytic terms and varying the
D*-D-m coupling. Total uncertainty quoted at
0.5%

Combined continuum and chiral extrapolation, with
linear terms in a2 and mgey. No dependence on a or
Mgeq Observed within errors. Stability of results vs.
fits with no mge, dependence checked

Table 154 Finite-volume effects in determinations of B — D{v,
B — D*tv, By — Dglv, and A, — A Lv form factors, and of
R(D). Each L-entry corresponds to a different lattice spacing, with

multiple spatial volumes at some lattice spacings. For actions with mul-
tiple species of pions, the lightest pion masses are quoted

Collaboration Refs. Ny L [fm] My minL Description

HPQCD 15 [541] 2+1 25,2429 >3.8 FV effects estimated to be negligible

FNAL/MILC 15C [540] 241 2.9,2.9-3.8,2.5-5.8, >3.8 FV error estimated to be negligible in [542]
2.4/2.9

Detmold 15 Ay — A, [547] 241 2.7,2.7 >3.1 (valence FV effect estimated at 1.5% from experience

sector) on xPT estimates of FV effects for
heavy-baryon axial couplings

FNAL/MILC 14 [539] 241 2.9,29-3.8,2.4-5.5, >3.8 FV error estimated to be negligible
2.4/2.9,2.4

Atoui 13 [537] 2 1.7/2.6,2.1,2.0/2.7, >3.6 No volume dependence observed within
2.4 errors
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Table 155 Operator renormalization in determinations of B — Dfv, B — D*{v, B; — Dsflv, and Ap — A Lv form factors, and of R(D)

Collaboration Refs.

Ren. Description

HPQCD 15 [541]

FNAL/MILC 15C [540]

Detmold 15 Ay, — Ac [547]

FNAL/MILC 14 [539]

Atoui 13 [537]

One loop. One-loop matching of currents taken
from [758]

mNPR Form factors extracted from ratios of
correlators that renormalize with ratios
of current normalizations, computed at
one-loop in perturbation theory.
Dependence of renormalization factor
on recoil parameter w neglected.
Systematic uncertainty due to
perturbative truncation and
w-dependence estimated by power
counting to 0.7%

mNPR Perturbative truncation error estimated at
1% with size of one-loop correction on
next-to-finer ensemble

mNPR Majority of current renormalization factor
cancels in double ratio of lattice
correlation functions. Remaining
correction calculated with one-loop
tadpole-improved lattice perturbation
theory. Systematic uncertainty estimated
at 0.4%

- Observables obtained from ratios that do
not require renormalization. Checks
performed by comparing with results
coming from currents that are
renormalized separately with
nonperturbative Zy

Table 156 Heavy-quark treatment in determinations of B — D{v, B — D*{v, By — Dgfv, and A, — A Lv form factors, and of R(D)

Collaboration Refs. Ny Action Description
HPQCD 15 [541] 241 NRQCD for b quark, Discretization errors estimated via power
HISQ for ¢ quark counting to be 2.59%

FNAL/MILC 15C [540] 241 Fermilab Discretization errors of form factors
estimated via power counting to be 0.4%

Detmold 15 Ay, — A, [547] 2+1 Columbia RHQ Discretization errors discussed as part of
combined chiral—continuum—q2 fit,
stemming from a?|p|? terms

FNAL/MILC 14 [539] 241 Fermilab Discretization errors estimated via power
counting to be 1%

Atoui 13 [537] 2 tmWil Results obtained from step scaling in

heavy-quark mass via the ratio method.
Separate continuum limit extrapolations
with mild a® dependence carried out for
each mass point separately. Result at
physical value of m;, obtained by
interpolation between data region and
known exact HQET limit
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B.7 Notes to Sect. 9 on the strong coupling o
B.7.1 Renormalization scale and perturbative behaviour

See Tables 157, 158, 159 and 160.

Table 157 Renormalization scale and perturbative behaviour of «; determinations for Ny = 0

Collaboration Refs. Ny Oleff n Description

FlowQCD 15 [564] 0 0.09-0.12 2 ayg(2.63/a) computed from the boosted coupling.
The physical volume ranges from 2.4 ~ 3.8 fm

Sternbeck 12 [652] 0 0.11-0.18 3 at(p) for p = 5-40GeV. Fitted to PT without
power corrections. (8 = 6.0, 6.4, 6.7, 6.92)

Ilgenfritz 10 [655] 0 0.07-0.9 3 ar(p) for p = 1-240GeV. (8 = 5.8, 6.0, 6.2, 6.4,
9.0)

Sternbeck 10 [653] 0 0.07-0.32 3 at for p = 2.5-140GeYV, fitted to PT partially on
very small lattices

Brambilla 10 [606] 0 0.22-0.47 3 agq(1/r) for the range r/ro = 0.15-0.5. Fit of V (r)

to PT with renormalon subtraction and
resummation reproduces the static potential for
r/ro = 0.15-0.45 well

Boucaud 08 [648] 0 0.18-0.35 3 at(p) with p = 3-6GeV. Fitted to PT with 1/p?
correction

Boucaud 05 [645] 0 0.22-0.55 3 Amgf using gluon and ghost propagators with
2 < < 6GeV. Fit to perturbation theory

QCDSF-UKQCD 05 [625] 0 0.10-0.15 2 aggs(2.63/a) computed from the boosted coupling

CP-PACS 04 [582] 0 0.08-0.28 2 asg(1/L) step-scaling functions at

aerr = 0.08, 0.19, study of continuum limit.
Agreement of continuum limit with ALPHA 98

Boucaud 01A [657] 0 0.18-0.45 2 amom With p = 2.5-10GeV. Consistency check of
n; = 2 loop perturbation formula with gluon
condensate. (A2) from apom and gluon
propagator are consistent

Soto 01 [656] 0 0.25-0.36, 0.3-0.36, 2 oy for p = 3-10GeV. Fit with n; = 2 loop
0.19-0.24 formula with gluon condensate. (Without
condensate does not fit the lattice data.) (8 = 6.0,
6.2,6.8)
Boucaud 00A [659] 0 0.35-0.55, 0.25-0.45, 2 AOM with p = 2-10GeV. Fitted to n; = 2 loop
0.22-0.28, 0.18-0.22 perturbation theory with power correction.
(B =06.0,62,64,6.8)
Boucaud 00B [658] 0 0.35-0.55, 0.25-0.45, 2 amom With 2 < u < 10GeV. Consistency check of
0.22-0.28, 0.18-0.22 n; = 2 loop perturbation formula with gluon
condensate. /3;” oM — 15 ﬂé"’ OM ig needed.
(B =06.0,62,64,6.8)
Becirevic 99A [661] 0 0.25-0.4 2 ooy With p =2.5-5.5GeV
Becirevic 99B [660] 0 0.18-0.25 ooy from a single lattice spacing with
p =5.6-9.5GeV
SESAM 99 [623] 0 0.15 1 ay(3.41/a) computed from the boosted coupling
ALPHA 98 [590] 0 0.07-0.28 2 asp(1/L) step scaling, agreement with perturbative
running (n; = 2) for aefr < 0.15
Boucaud 98A [663] 0 0.35-0.5 1,2 amoM, With 2.1 < u <3.9GeV. n; = 1 for amoms,
n; = 2 for am
Boucaud 98B [662] 0 0.27-0.50 2 ooy With u = 2.2-4.5GeV
Alles 96 [643] 0 0.35-0.71 ogom (P) with p = 1.8-3.0GeV
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Table 157 continued

Collaboration Refs. Ny Cloff n; Description

Wingate 95 [624] 0 0.15 1 ay (3.41/a) computed from the boosted coupling

Davies 94 [622] 0 0.15 1 ay (3.41/a) computed from the boosted coupling

Liischer 93 [579] 0 0.09-0.28 1 asp(1/L) step scaling, agreement with perturbative
running (n; = 1) for aefr < 0.17

UKQCD 92 [594] 0 0.17-0.40 1 agq(1/r) for a single lattice spacing. Fit of agq(1/7)
to a NLO formula

Bali 92 [607] 0 0.15-0.35 1 agq(1/r) for the lattice spacing used in the analysis.
Box size L ~ 1.05 fm. Fit of oqq(1/7) to a NLO
formula. Agzg is found to depend on the fit range

El-Khadra 92 [620] 0 0.12-0.15 1 aggs (7t /a) from one-loop boosted perturbation

theory

Table 158 Renormalization scale and perturbative behaviour of « determinations for Ny = 2

Collaboration

Refs.

Ny

Aeff

ni

Description

Karbstein 14

ALPHA 12
Sternbeck 12

ETM 11C

ETM 10F

Sternbeck 10
JLQCD 08

QCDSF-UKQCD 05
ALPHA 04

ALPHA 01

Boucaud 01B

SESAM 99
Wingate 95
Aoki 94
Davies 94

[563]

[12]
[652]

[605]

[654]

[653]
[614]

[625]
[588]

[589]

[644]

[623]
[624]
[621]
[622]

2

[\

NI SR (SR S

0.28-0.41

See ALPHA 04
0.17-0.23

0.26-0.96

0.24-0.45

0.19-0.38
0.25-0.30

0.18-0.20
0.078-0.44

0.078-0.44

0.25-0.5

0.17
0.18
0.14
0.18

3

2

ay (p) for momentum 1.5 < p < 3.0 GeV. Values
computed from the quoted A parameter with the two-loop
B function; larger values (0.32—0.62) are obtained with
3-loop running. As with ETM 11C central values are
taken from a = 0.042 fm lattice with L = 1.3 fm and
my = 350 MeV

Determination of Agzs/fk using ALPHA 04
a for (rg p)2 = 200-2000. Fit to PT without condensate.
Deviation at higher energy is observed

agq(1/r) as computed by us from A = 315MeV. Fit of
V(r) to PT with renormalon subtraction and resummation
reproduces the static potential for r/rg = 0.2-0.6 well.
One fit range, using r/a = 2—4 at the smallest lattice
spacing corresponds to aefr = 0.26-0.40. In the MS
scheme one has ay(1/r) = 0.24-0.63 and for the
restricted fit aggg(1/r) = 0.24-0.36. Central values taken
from a = 0.042 fm lattice with L = 1.3fm and
my; = 350MeV

a7 for momentum up to 2.6-5.6 GeV. Fitted to PT with
gluon condensate correction term

ar for 1 < (ap)? < 10. Fitted with n; = 3 loop formula

ays(Q) for 0.65 < (a 0)? < 1.32. Fit with the perturbative
formula with power corrections

ays(1.4/a) computed from the boosted coupling

asp(1/L) step scaling, agreement with n; = 2 looprunning
foray; < 0.2

asp(1/L) step scaling, agreement with n; = 2 loop running
for ay < 0.2

agom for momentum up to 7GeV. Fitted with n; = 3 loop
formula with and without power correction, leading to

different results for A2 Extrapolation of s (1.3 GeV) in
Ny from Ny =0,2t0 Ny = 3 is made

The boosted coupling ap(3.41/a)

avy(3.41/a) computed from the boosted coupling
ays(7/a) computed from the boosted coupling
ay(3.41/a) computed from In Wy,
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Table 159 Renormalization scale and perturbative behaviour of «; determinations for Ny = 3

Collaboration Refs. Ny Cleff n; Description

Bazavov 14 [61] 2+1 0.19-0.41 3 Update of Bazavov 12 including finer lattices down
to a = 0.041 fm. Fit range r/r; = 0.12-0.50
(r/ro = 0.08-0.33). Perturbative expansion of the
force F(r) integrated to determine potential
Bazavov 12 [604] 241 0.23-0.57 3 agq computed by us from Agzgro = 0.70. Fit of V (r)
to PT with renormalon subtraction and

resummation reproduces the static potential for
r/ro = 0.135-0.5 well

Sternbeck 12 [652] 241 0.19-0.25 3 aT for ( pro)2 = 200-2000. Comparison with 4-loop
formula

JLQCD 10 [613] 241 0.29-0.35 2 aps(Q) for 0.4 < (a 0)? < 1.0. Fit with the
perturbative formula with power corrections

HPQCD 10 [9] 2+1 2 Uses method of Sect. 9.6. Update of r| and ry/a in
HPQCD 08A

HPQCD 10 [9] 2+1 0.12-0.42 2 Uses method of Sect. 9.7. aefr from R4 and R/ Rs.

Fit of R,, n =4...10 to PT including (am)*
terms with i < 10; coefficients constrained by

priors

PACS-CS 09A [62] 2+1 0.08-0.27 2 asgr(1/L) step scaling, agreement with 3-loop
running for oy < 0.27

HPQCD 08B [152] 241 0.38 2 Fit of the ratios to PT at the charm mass including

(am)Zi terms with i < 2...4; coefficients
constrained by priors

HPQCD 08A [617] 241 0.15-0.4 2 avy(g*) for a variety of short-distance quantities,
using same method as in HPQCD 05A

Maltman 08 [63] 241 2 Re-analysis of HPQCD 05A for a restricted set of
short-distance quantities with similar results

HPQCD 05A [616] 2+1 0.2-0.4 2 avy(g™*) for a variety of short-distance quantities

Table 160 Renormalization scale and perturbative behaviour of « determinations for Ny = 4

Collaboration Refs. Ny Oleff n; Description

HPQCD 14A [5] 2+14+1 0.11-0.33 2 Range given for a.ft from R4. Fit of ratios
R, n =4...10 to perturbation theory including
(am)¥ terms with i < 10-20 and higher-order
perturbative terms; coefficients constrained by

priors

ETM 13D [649] 24141 0.26-0.7 3 at(p) for p = 1.6-6.5 GeV. Update of [650] with
improved power law determination

ETM 12C [650] 2+1+1 0.24-0.38 3 ar(p) for p = 1.7-6.8 GeV. Fit to PT with gluon
condensate correction or higher power

ALPHA 10A [586] 4 0.07-0.28 2 asp(1/L). Comparison to PT with 2-, 3-loop
B-function

ETM 11D [651] 24141 0.24-0.4 3 at(p) for p = 3.8-7.1 GeV with H(4)-procedure.
Fit to PT with gluon condensate correction

Perez 10 [587] 4 0.06-0.28 2 asp(1/L). Comparison with 1-, 2-, 3-loop B-function
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B.7.2 Continuum limit

See Tables 161, 162, 163, 164 and 165.

Table 161 Continuum limit for ; determinations with Ny = 0

Collaboration Refs. Ny ap Description
FlowQCD 15 [564] O 9 Lattice spacings with @ = 0.06-0.02fm  wg 4/a, together with ro = 0.5 fm and conversion factor
ro/wo4 = 2.587(45)
Sternbeck 12 [652] O 4 Lattice spacings a < 0.1fm Atoas =0.18, ap =2.7,1.5for 8 = 6.0,6.4
Brambilla 10 [606] O At least three lattice spacings with Extrapolation of potential differences V (r) — V(0.51rp) linear
02<2a/r<1.1 in a® performed in [570] with several lattice spacings
Tlgenfritz 10 [655] 0  a=0.136, 0.093, 0.068, 0.051 fm Atog =0.3,ap =2.0,14,1.0,0.8 (8 =5.8,6.0, 6.2, 6.4).
(B =5.8,6.0,6.2, 6.4), while no value For p=9.0atap = 1.4, oy = 0.082
of a is given for § = 9.0
Sternbeck 10 [653] O 8 Lattice spacings a = 0.004—0.087fm V3 <ap <12
(ro = 0.467 fm)
Boucaud 08 [648] O a =0.1,0.07,0.05fm At oy = 0.3 the data have ap = 2.6, 1.9, 1.5
QCDSF/UKQCD 05 [625] O 7 Lattice spacings with ro/a, together with ro = 0.467 fm
a = 0.10-0.028 fm
Boucaud 05 [645] 0 a=0.1,0.07,0.05fm Atas; <03ap=19,14,1.0
CP-PACS 04 [582] O 4 Spacings,a/L = 1/12 — 1/4. Iwasaki and Liischer Weisz tree-level improved bulk actions;
boundary improvement at tree-level, one-loop and with two
different choices of implementation
Soto 01 [656] O a=0.07,0.05,0.03fm At as < 0.3, the data have ap = 1.4, 1.0, 0.6
Boucaud 01A [657] 0 a=0.1,0.07,0.05,0.03fm Atas; <03ap=19,14,1.0,0.6
Boucaud 00A [659] 0 a=0.1,0.07,0.05,0.03 fm Ata; <03ap=19,14,1.0,0.6
Boucaud 00B [658] 0 a=0.1,0.07,0.05,0.03fm Ata; <03ap=19,14,1.0,0.6

Table 162 Continuum limit for s determinations with Ny = 0 continued

Collaboration Refs. Ny ap Description
SESAM 99 [623] O One lattice spacing with a = 0.086 fm T spectrum splitting
Becirevic 99A [661] 0 a =0.07,0.05fm Atay; <03ap=14,1.0
Becirevic 99B [660] 0 a=0.1,0.07,0.03fm Only a = 0.03fm used to extract as. Atag < 0.3,ap = 0.6-1.5
ALPHA 98 [590] O 4 to 6 spacings, a/L = 1/12-1/5in One-loop O(a) boundary improvement, linear extrapolation in
step-scaling functions (SSF) a/L.a/L =1/8-1/5foray <0.11 SSE, a/L =1/12-1/5
for 0.12 < ag < 0.20 SSE. Lnax /1o from [799], where
several lattice spacings were used
Boucaud 98A [663] O a =0.1,0.07,0.05 fm Ata; <03,ap=1.9,14,1.0
Boucaud 98B [662] O a =0.1,0.07,0.05 fm Atas <03,ap=19,14,1.0
Alles 96 [643] O a <0.1fm Atay =0.35,ap =15
Wingate 95 [624] O One lattice spacing with a = 0.11 fm Charmonium 1S-1P splitting
Davies 94 [622] O One lattice spacing with a = 0.077 fm Y spectrum splitting
Liischer 93 [579] O Four or five lattice spacings, One-loop O(a) boundary improvement, linear extrapolation in
a/L = 1/12-1/5 in step-scaling a/L.a/L =1/8-1/5foras; <0.11 SSE, a/L =1/10-1/5
functions for 0.11 < oy < 0.22 SSE, a/L = 1/12-1/6 for
0.22 < oy < 0.28 SSF, a/L = 1/8.5-1/4.5 for continuum
extrapolation of Lm,x/ VK
UKQCD 92 [594] 0 One lattice spacing with No continuum limit
044 <2a/r <1.6
Bali 92 [607] O One lattice spacing with No continuum limit
04 <2a/r <1.6
El-Khadra 92 [620] O Three lattice spacings with Charmonium 15-1P splitting

a=0.17, 0.11, 0.08fm
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Table 163 Continuum limit for oy determinations with Ny =2

Collaboration Refs. Ny ap Description
Karbstein 14 [563] 2 0.32-1.19 At p = 1.5GeV
0.63-1.19 At p = 3GeV, roughly coincides with
oy, =0.3
ALPHA 12 [12] 2 a = 0.049, 0.066, 0.076 fm from Two-loop O(a) boundary improvement,
fx linear extrapolation of Ly fk in a?
Sternbeck 12 [652] a =0.073,0.07, 0.06 fm Atay; =0.23,ap =2.1,2.0, 1.7
ETM 11C [605] 0.30 <2a/r <1.0 Four lattice spacings; continuum limit studied
0.67 < 2a/r < 1.26 when with a particular range in r; central result
oy, =03 from the smallest lattice spacing,
a = 0.042 fm
ETM 10F [654] 2 a = 0.05, 0.07, 0.08 fm. Different Ata; =03,ap=1.6,13,1.1
lattice spacings are patched
together
Sternbeck 10 [653] a = 0.068, 0.076, 0.082 fm Atay <03,ap > 1.7
JLQCD 08 [614] a = 0.12 fm from ryp = 0.49 fm Single lattice spacing, 0.64 < (aQ)* < 1.32.
Atagy =0.3,ap = 0.81
QCDSF-UKQCD 05 [625] 2 Four lattice spacings with 1o, together with rop = 0.467 fm
a = 0.10-0.066 fm
ALPHA 04 [588] 2 a/L=1/8,1/6,1/5,1/4 One-loop (at weak coupling) and two-loop
O(a) boundary improvement, linear
extrapolation of SSF in (a/L)2
ALPHA 01A [589] 2 a/L=1/6,1/5,1/4 One-loop (at weak coupling) and two-loop
O(a) boundary improvement, weighted
average of SSF witha/L =1/5,1/6
Boucaud 01B [644] 2 a =0.05,0.07, 0.09 fm. Data at Atagy =0.3,ap = 1.6, 1.3, 0.9; plain Wilson
different lattice spacings are action with O(a) errors
patched together
SESAM 99 [623] 2 One lattice spacing with Y spectrum splitting
a =0.079 fm
Wingate 95 [624] 2 One lattice spacing with Charmonium 1S5-1P splitting
a=0.11fm
Aoki 94 [621] 2 One lattice spacing with Charmonium 1P-1S splitting
a =0.10fm
Davies 94 [622] 2 One lattice spacing with T spectrum splitting
a = 0.08 fm

Table 164 Continuum limit for oy determinations with Ny =3

Collaboration Refs. Ny ajp Description

Bazavov 14 [61] 2+1 2a/r =0.52-3.2 Five lattice spacings; three used for
determination. At aefr = 0.3, then
0.86 <ap =2a/r < 1.3.
myL = 2.4,2.6,2.2 at smallest three lattice
spacings of a = 0.060, 0.049, 0.041 fm
respectively [351]; adequate coverage of
topological sectors is not clear

Bazavov 12 [604] 2+1 2a/r =0.6-2.0 7 lattice spacings; four lattice spacings with
1.14 <2a/r < 1.5 when o5 (1/r) = 0.3.
2a/r =2 when o (1/r) = 0.23 (on the
finest lattice)

Sternbeck 12 [652] 241 a =0.07fm Atay =0.23,ap =2.1
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Table 164 continued

Collaboration Refs. Ny aj Description
HPQCD 10 [9] 241 ap = 2amy = 0.61-1.75 Five lattice spacings; three lattice spacings
with 1.0 < ap < 1.5 when ag, (1) < 0.3;
three lattice spacings with 1.0 < ap < 1.5
when agg g (1) < 0.33
JLQCD 10 [613] 2+1 a =0.11 fm from Single lattice spacing, 0.4 < (aQ)? < 1.0 for
ro = 0.49 fm the momentum fit range. At oy = 0.3,
ap = 0.89
HPQCD 10 [9] 2+1 Update of r| and r| /a in HPQCD 08A
PACS-CS 09A [62] 241 a/L=1/8,1/6,1/4 Tree-level O(a) boundary improvement,
which has been seen to behave better than
one-loop in simulations [582]; weighted
average of a/L = 1/8, 1/6 for step-scaling
function which agrees with a linear
extrapolation in a /L of all data points of the
SSF. Linear extrapolation in a/L of
Lmaxm, witha/Lyax =1/8,1/6,1/4
HPQCD 08B [152] 241 ap =2amp = 0.8, 1.2, 1.7, Four lattice spacings with heavy-quark mass
2.1 approximately the charm mass, where
ag,(n) =0.38
HPQCD 08A [617] 241 Six lattice spacings with r1 using Y spectrum splitting
a = 0.18-0.045 fm
Maltman 08 [63] 241 Five lattice spacings with Re-analysis of HPQCD 05A with additional
a = 0.18-0.06 fm lattice spacings a = 0.06, 0.15 fm
HPQCD 05A [616] 241 Three lattice spacings with r1 using Y spectrum splitting

a = 0.18-0.09 fm

Table 165 Continuum limit for oy determinations with Ny = 4
Collaboration Refs. Ny anp Description
HPQCD 14A [5] 24141 ap = 2amy = 0.78-2.09 Four lattice spacings; two lattice spacings
with ap < 1.5 and one more lattice spacing
with apu < 1.6 when ag, (1) < 0.3
ETM 13D [649] 2+1+1 a = 0.060, 0.068 fm from For oy < 0.3, ap = 1.5, 1.7. Update of [650]
Jx
ETM 12C [650] 24+ 141 a = 0.061, 0.078 fm from Global fit with (ap)? discretization effects.
fx Foray <0.3,ap =1.5,2.2
ETM 11D [651] 24+ 1+1 a =0.061,0,078fm Foroy <0.3,ap =1.5,2.0
ALPHA 10A [586] 4 a/L=1/4,1/6,1/8 Constant or global linear fit in (a/L)?
Perez 10 [587] 4 a/L=1/4,1/6,1/8 Linear extrapolation in (a/ L)2. one-loop

improvement at the boundary
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