000836944 001__ 836944
000836944 005__ 20210129231134.0
000836944 0247_ $$2doi$$a10.1039/C6SC04797A
000836944 0247_ $$2ISSN$$a2041-6520
000836944 0247_ $$2ISSN$$a2041-6539
000836944 0247_ $$2Handle$$a2128/15146
000836944 0247_ $$2WOS$$aWOS:000404617300034
000836944 037__ $$aFZJ-2017-05969
000836944 082__ $$a540
000836944 1001_ $$0P:(DE-Juel1)145961$$aDammers, C.$$b0
000836944 245__ $$aPyroglutamate-modified Aβ(3-42) affects aggregation kinetics of Aβ(1-42) by accelerating primary and secondary pathways
000836944 260__ $$aCambridge$$bRSC$$c2017
000836944 3367_ $$2DRIVER$$aarticle
000836944 3367_ $$2DataCite$$aOutput Types/Journal article
000836944 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1502950762_16644
000836944 3367_ $$2BibTeX$$aARTICLE
000836944 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836944 3367_ $$00$$2EndNote$$aJournal Article
000836944 520__ $$aThe aggregation into amyloid fibrils of amyloid-β (Aβ) peptides is a hallmark of Alzheimer's disease. A variety of Aβ peptides have been discovered in vivo, with pyroglutamate-modified Aβ (pEAβ) forming a significant proportion. pEAβ is mainly localized in the core of plaques, suggesting a possible role in inducing and facilitating Aβ oligomerization and accumulation. Despite this potential importance, the aggregation mechanism of pEAβ and its influence on the aggregation kinetics of other Aβ variants have not yet been elucidated. Here we show that pEAβ(3-42) forms fibrils much faster than Aβ(1-42) and the critical concentration above which aggregation was observed was drastically decreased by one order of magnitude compared to Aβ(1-42). We elucidated the co-aggregation mechanism of Aβ(1-42) with pEAβ(3-42). At concentrations at which both species do not aggregate as homofibrils, mixtures of pEAβ(3-42) and Aβ(1-42) aggregate, suggesting the formation of mixed nuclei. We show that the presence of pEAβ(3-42) monomers increases the rate of primary nucleation of Aβ(1-42) and that fibrils of pEAβ(3-42) serve as highly efficient templates for elongation and catalytic surfaces for secondary nucleation of Aβ(1-42). On the other hand, the addition of Aβ(1-42) monomers drastically decelerates the primary and secondary nucleation of pEAβ(3-42) while not altering the pEAβ(3-42) elongation rate. In addition, even moderate concentrations of fibrillar Aβ(1-42) prevent pEAβ(3-42) aggregation, likely due to non-reactive binding of pEAβ(3-42) monomers to the surfaces of Aβ(1-42) fibrils. Thus, pEAβ(3-42) accelerates aggregation of Aβ(1-42) by affecting all individual reaction steps of the aggregation process while Aβ(1-42) dramatically slows down the primary and secondary nucleation of pEAβ(3-42).
000836944 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000836944 588__ $$aDataset connected to CrossRef
000836944 7001_ $$0P:(DE-Juel1)132019$$aSchwarten, M.$$b1
000836944 7001_ $$0P:(DE-HGF)0$$aBuell, A. K.$$b2
000836944 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b3$$eCorresponding author
000836944 773__ $$0PERI:(DE-600)2559110-1$$a10.1039/C6SC04797A$$gVol. 8, no. 7, p. 4996 - 5004$$n7$$p4996 - 5004$$tChemical science$$v8$$x2041-6539$$y2017
000836944 8564_ $$uhttps://juser.fz-juelich.de/record/836944/files/c6sc04797a.pdf$$yOpenAccess
000836944 8564_ $$uhttps://juser.fz-juelich.de/record/836944/files/c6sc04797a.gif?subformat=icon$$xicon$$yOpenAccess
000836944 8564_ $$uhttps://juser.fz-juelich.de/record/836944/files/c6sc04797a.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000836944 8564_ $$uhttps://juser.fz-juelich.de/record/836944/files/c6sc04797a.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000836944 8564_ $$uhttps://juser.fz-juelich.de/record/836944/files/c6sc04797a.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000836944 8564_ $$uhttps://juser.fz-juelich.de/record/836944/files/c6sc04797a.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000836944 909CO $$ooai:juser.fz-juelich.de:836944$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000836944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145961$$aForschungszentrum Jülich$$b0$$kFZJ
000836944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132019$$aForschungszentrum Jülich$$b1$$kFZJ
000836944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b3$$kFZJ
000836944 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000836944 9141_ $$y2017
000836944 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000836944 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836944 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM SCI : 2015
000836944 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM SCI : 2015
000836944 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836944 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836944 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836944 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000836944 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836944 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836944 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836944 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836944 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000836944 9801_ $$aFullTexts
000836944 980__ $$ajournal
000836944 980__ $$aVDB
000836944 980__ $$aI:(DE-Juel1)ICS-6-20110106
000836944 980__ $$aUNRESTRICTED
000836944 981__ $$aI:(DE-Juel1)IBI-7-20200312