001     836957
005     20240711092255.0
024 7 _ |a 10.1016/j.surfcoat.2017.06.016
|2 doi
024 7 _ |a 0257-8972
|2 ISSN
024 7 _ |a 1879-3347
|2 ISSN
024 7 _ |a WOS:000406988200057
|2 WOS
037 _ _ |a FZJ-2017-05979
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Thiem, P. G.
|0 0000-0002-1552-4021
|b 0
245 _ _ |a Comparison of Microstructure and Adhesion Strength of Plasma, Flame and High Velocity Oxy-Fuel Sprayed CoatingsFfrom an Iron Aluminide Powder
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1502957174_16649
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study an iron aluminide powder with the feedstock powder composition of Fe-28Al-5Cr and a particle size of 45 μm to 75 μm was thermally sprayed onto AlSi10Mg and AlSi12CuNiMg substrates by flame spray (FS), atmospheric plasma spray (APS) and high velocity oxy-fuel spray (HVOF) processes. The combination of the utilized materials is due to lightweight design and is, therefore, different from most of the previous studies, which dealt with the application of iron aluminide coatings onto steels. Coatings were analyzed in terms of microstructural investigations using SEM coupled with EDX measurements in the as sprayed condition and after a heat treatment of 100 h at 500 °C in argon atmosphere. Phase analysis was performed by XRD measurements in the as sprayed and heat treated condition. The FS and APS coatings contained different amounts of a bcc solid solution α(Fe, Al, Cr), FeO, Fe3O4, FeAl2O4 and γ-Al2O3. It was found that the FeO rearranged to bcc Fe and Fe3O4 during this heat treatment. The HVOF coating retained 90% of feedstock powder material and a low fraction of oxide and Al-depleted phases. The microhardness was determined to be 277 HV0.4 (FS), 394 HV0.4 (APS) and 479 HV0.4 (HVOF) which was associated to the different constituting phases. Adhesion strength was measured using the tensile adhesion test (TAT) and the achieved adhesion was 13.8 MPa (APS), 30.3 MPa (FS) and exceeded 58 MPa (HVOF).
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Chornyi, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Smirnov, I. V.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Krüger, M.
|0 P:(DE-Juel1)172056
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.surfcoat.2017.06.016
|g Vol. 324, p. 498 - 508
|0 PERI:(DE-600)1502240-7
|p 498 - 508
|t Surface and coatings technology
|v 324
|y 2017
|x 0257-8972
856 4 _ |u https://juser.fz-juelich.de/record/836957/files/1-s2.0-S0257897217306199-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836957/files/1-s2.0-S0257897217306199-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836957/files/1-s2.0-S0257897217306199-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836957/files/1-s2.0-S0257897217306199-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836957/files/1-s2.0-S0257897217306199-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836957/files/1-s2.0-S0257897217306199-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:836957
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172056
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SURF COAT TECH : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21