Home > Publications database > Semiconductor-to-Metal Transition and Quasiparticle Renormalization in Doped Graphene Nanoribbons2 > print |
001 | 836981 | ||
005 | 20210129231140.0 | ||
024 | 7 | _ | |a 10.1002/aelm.201600490 |2 doi |
024 | 7 | _ | |a WOS:000399448600005 |2 WOS |
024 | 7 | _ | |a 2128/22958 |2 Handle |
037 | _ | _ | |a FZJ-2017-06003 |
041 | _ | _ | |a English |
082 | _ | _ | |a 621.3 |
100 | 1 | _ | |a Senkovskiy, Boris V. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Semiconductor-to-Metal Transition and Quasiparticle Renormalization in Doped Graphene Nanoribbons2 |
260 | _ | _ | |a Chichester |c 2017 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1502958842_16645 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A semiconductor-to-metal transition in N = 7 armchair graphene nanoribbons causes drastic changes in its electron and phonon system. By using angle-resolved photoemission spectroscopy of lithium-doped graphene nanoribbons, a quasiparticle band gap renormalization from 2.4 to 2.1 eV is observed. Reaching high doping levels (0.05 electrons per atom), it is found that the effective mass of the conduction band carriers increases to a value equal to the free electron mass. This giant increase in the effective mass by doping is a means to enhance the density of states at the Fermi level which can have palpable impact on the transport and optical properties. Electron doping also reduces the Raman intensity by one order of magnitude, and results in relatively small (4 cm−1) hardening of the G phonon and softening of the D phonon. This suggests the importance of both lattice expansion and dynamic effects. The present work highlights that doping of a semiconducting 1D system is strikingly different from its 2D or 3D counterparts and introduces doped graphene nanoribbons as a new tunable quantum material with high potential for basic research and applications. |
536 | _ | _ | |a 142 - Controlling Spin-Based Phenomena (POF3-142) |0 G:(DE-HGF)POF3-142 |c POF3-142 |f POF III |x 0 |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Fedorov, Alexander V. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Haberer, Danny |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Farjam, Mani |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Simonov, Konstantin A. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Preobrajenski, Alexei B. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Mårtensson, Niels |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Atodiresei, Nicolae |0 P:(DE-Juel1)130513 |b 7 |u fzj |
700 | 1 | _ | |a Caciuc, Vasile |0 P:(DE-Juel1)130583 |b 8 |u fzj |
700 | 1 | _ | |a Blügel, Stefan |0 P:(DE-Juel1)130548 |b 9 |u fzj |
700 | 1 | _ | |a Rosch, Achim |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Verbitskiy, Nikolay I. |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Hell, Martin |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Evtushinsky, Daniil V. |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a German, Raphael |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Marangoni, Tomas |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a van Loosdrecht, Paul H. M. |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Fischer, Felix R. |0 P:(DE-HGF)0 |b 17 |e Corresponding author |
700 | 1 | _ | |a Grüneis, Alexander |0 P:(DE-HGF)0 |b 18 |e Corresponding author |
773 | _ | _ | |a 10.1002/aelm.201600490 |g Vol. 3, no. 4, p. 1600490 - |0 PERI:(DE-600)2810904-1 |n 4 |p 1600490 |t Advanced electronic materials |v 3 |y 2017 |x 2199-160X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/836981/files/Senkovskiy_et_al-2017-Advanced_Electronic_Materials.pdf |y Restricted |
856 | 4 | _ | |x icon |u https://juser.fz-juelich.de/record/836981/files/Senkovskiy_et_al-2017-Advanced_Electronic_Materials.gif?subformat=icon |y Restricted |
856 | 4 | _ | |x icon-1440 |u https://juser.fz-juelich.de/record/836981/files/Senkovskiy_et_al-2017-Advanced_Electronic_Materials.jpg?subformat=icon-1440 |y Restricted |
856 | 4 | _ | |x icon-180 |u https://juser.fz-juelich.de/record/836981/files/Senkovskiy_et_al-2017-Advanced_Electronic_Materials.jpg?subformat=icon-180 |y Restricted |
856 | 4 | _ | |x icon-640 |u https://juser.fz-juelich.de/record/836981/files/Senkovskiy_et_al-2017-Advanced_Electronic_Materials.jpg?subformat=icon-640 |y Restricted |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/836981/files/Senkovskiy_et_al-2017-Advanced_Electronic_Materials.pdf?subformat=pdfa |y Restricted |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/836981/files/qt0vc437fc.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/836981/files/qt0vc437fc.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:836981 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130513 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130583 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)130548 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-142 |2 G:(DE-HGF)POF3-100 |v Controlling Spin-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV ELECTRON MATER : 2015 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|