
Jül -4402

M
it

g
lie

d
 d

e
r

H
e
lm

h
o

lt
z-

G
e
m

e
in

sc
h

a
ft

Zentralinstitut für Engineering, Elektronik und Analytik (ZEA)

Systeme der Elektronik (ZEA-2)

Implementation of a JTAG Verification

Environment for a Complex Highly Integrated

Real SoC Solution for a Neutrino Detector

Rathnakar Meka

Berichte des Forschungszentrums Jülich 4402

Implementation of a JTAG Verification

Environment for a Complex Highly

Integrated Real SoC Solution for a

Neutrino Detector

Rathnakar Meka

Berichte des Forschungszentrums Jülich; 4402

ISSN 0944-2952

Zentralinstitut für Engineering, Elektronik und Analytik (ZEA)

Systeme der Elektronik (ZEA-2)

Jül-4402

DE 464 (Master, Duisburg, Univ., 2017)

Vollständig frei verfügbar über das Publikationsportal des Forschungszentrums Jülich (JuSER)

unter www.fz-juelich.de/zb/openaccess

Forschungszentrum Jülich GmbH

Zentralbibliothek, Verlag

52425 Jülich

Tel.: +49 2461 61-5220

Fax: +49 2461 61-6103

E-Mail: zb-publikation@fz-juelich.de

 www.fz-juelich.de/zb

 This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0,

 which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Implementation of a JTAG Verification Environment

for a Complex Highly Integrated Real SoC Solution
for a Neutrino Detector

thesis submitted to the faculty of engineering at

University of Duisburg-Essen

in partial fulfillment of the requirements for the degree of

Master of Science in Embedded Systems Engineering

By

RATHNAKAR MEKA

Matriculation No.: 3009223

worked at

Central Institute of Engineering, Electronics and Analytics - Electronic Systems (ZEA-2),

(Zentralinstitut für Engineering, Elektronik und Analytik, Systeme die Elektronik, (ZEA-2))

Forschungszentrum Jülich GmbH

Supervisors: Prof. Dr.-Ing. Stefan van Waasen

Prof. Dr.-Ing. Andreas Czylwik

Duisburg, Germany

June 2017

ACKNOWLEDGMENT

First of all, I would like to thank Prof. Dr.-Ing. Stefan van Waasen for proposing me

such an interesting topic and supervising me in this thesis work. I would also like to take this

opportunity to thank Prof. Dr.-Ing. Andreas Czylwik for the support in all cases.

I am very grateful to Pavithra Muralidharan, Andre Zambanini for their thoughtful comments

and interesting questions about the contents through out my thesis work. Danke schoen!.

They have changed my way of approach to a new task and to understand what it means to

do. I would like to thank Daniel Liebau, Mario Schlösser, Roger Heil, Christian Roth and Ivan

Flammia for their valuable guidance and suggestions. I am also grateful to come to ZEA-2,

Forschungszentrum Jülich GmbH to work on this thesis and for their support.

I am thankful to my parents and brother for their love, support and prayers.

Finally, I thank all my friends for their support.

The outcome of this thesis work would not be possible without all of them.

Rathnakar Meka, June 2017

ABSTRACT

This master thesis work deals with the configuration, enabling for the verification and

interpretation of the data for the application specific designed read-out Vulcan chip by means

of MATLAB tool for applications.

Vulcan chip is an advanced system-on-chip (SoC) also called as an analog-to-digital unit

(ADU) and it is developed by the Central Institute of Engineering, Electronics and Analytics

- Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH. This chip will be used in

the Jiangmen Underground Neutrino Observatory (JUNO) detector project to preprocess and

digitize the analog data generated by the applied Photomultiplier Tubes (PMTs) reacting on

neutrino events. A configuration system is needed to enable the verification of the designed chip

and the digitized data has to be interpreted and verified. A JTAG1 communication protocol is

implemented to investigate the configuration of the chip.

At first, the theoretical fundamentals of the designed chip will be explained to provide the basic

understanding of the designed chip. This includes the characteristics of the chip by means of

the functionality of individual blocks, configuration interface and different data modes in the

chip. Furthermore, a configuration system is implemented which will be used to configure the

chip and enables it for verification. Moreover, the configuration libraries are implemented in

MATLAB. These libraries enable the chip for verification and test the write and read operations

of all configuration registers in the chip. The implemented configuration system and libraries

successfully configures the chip and the configuration libraries will be used in further verification

tests.

Secondly, the data extraction algorithms are implemented in MATLAB to analyze the data in

different modes for the chip. The algorithms are tested for different data modes and the results

are included in the report.

Finally, the created data extraction algorithms will be used in the automatic data acquisition

and analysis environment for easy analysis of the data from the chip.

1JTAG-Joint Test Action Group

Contents

Acknowledgment . i

Abstract . iii

List of Figures vii

List of Tables xi

1 Introduction 1

1.1 Motivation . 1

1.2 JUNO Experiment . 2

1.2.1 Scientific Goals . 2

1.2.2 Experimental Setup . 3

1.2.3 Intelligent PMT . 4

1.3 Vulcan (Analog-to-Digital Unit) . 5

1.4 Objective of Thesis and Thesis Organization . 5

2 Vulcan Read-Out Chip 7

2.1 Overview . 7

2.2 Analog Unit (AU) . 8

2.2.1 Transimpedance Amplifier . 8

2.2.2 Analog-to-Digital Converter . 9

2.2.3 Phase-Locked Loop . 10

2.3 Digital Control Unit (CU) . 11

2.3.1 Overview . 11

2.3.2 JTAG Core . 12

2.3.3 Configuration Register Implementation 17

2.3.4 Other Blocks . 18

2.4 Data Processing Modes . 20

2.4.1 Normal Mode . 20

2.4.2 ADC Pass-Through Mode . 24

v

2.4.3 Scan Mode . 24

3 Development of the Laboratory Configuration System 27

3.1 Hardware Components of the Configuration System 27

3.1.1 SEGGER J-Link Pro Debugger . 27

3.1.2 J-Link JTAG 20-Pin Measurement Adapter 29

3.1.3 FPGA Evaluation Board . 29

3.1.4 Vulcan Evaluation Board . 30

3.1.5 Saleae Logic Analyzer . 31

3.2 Verification Test Bench Setup . 32

3.3 Implementation into MATLAB Environment . 33

3.3.1 Data Link Libraries and JTAG API Functions 33

3.3.2 Configuration Libraries . 34

3.3.3 J-Link JTAG Communication . 36

3.3.4 Configuration Results . 37

3.4 Laboratory Results with the Vulcan . 40

3.4.1 Error Rate Results . 42

3.4.2 Processing Time Results . 44

4 Development of Data Analysis Functions 45

4.1 Overview of the Vulcan Data Flow . 45

4.1.1 Analog Unit . 45

4.1.2 Digital Control Unit . 46

4.2 Laboratory Setup . 46

4.2.1 Logic Analyzer . 47

4.3 Parse Data Input . 48

4.4 Extraction of the Data . 48

4.4.1 Extraction of the ADC Pass-Through Mode Data 48

4.4.2 Extraction of Scan Mode Data . 52

4.4.3 Extraction of Normal Mode Data . 56

5 Conclusion and Outlook 61

5.1 Vulcan Chip Configuration . 61

5.2 Data Extraction . 62

5.3 Future Work . 62

Bibliography 63

List of Figures

1.1 Layout of the central detection system of JUNO detector [2] 2

1.2 Schematic of a PMT coupled to a scintillator [5] 4

1.3 PMT with electronics . 4

1.4 Three different ADC gain ranges in the Vulcan chip 5

1.5 Configuration system with the JTAG communication protocol (J-Link Pro device) 6

2.1 Top level of the Vulcan chip . 8

2.2 A basic block diagram of a transimpedance amplifier 9

2.3 Flash ADC with principle logic . 10

2.4 Overview of the digital control unit . 11

2.5 Schematic of a JTAG enabled device . 12

2.6 Schematic of a Test Access Port . 14

2.7 TAP Controller state machine [9] . 15

2.8 Exemplary sequences for register interaction, an x represents an undefined state.

Transmission in each block is starting from the LSB to MSB 17

2.9 Block diagram of the Programmable Adaptive Memory 19

2.10 An excerpt of the LVDS multiplexer . 19

2.11 PLL clock signal division for different blocks in the chip 20

2.12 A 32 bit header information . 21

2.13 Concept of stuffing zeros in empty samples . 23

2.14 Data processing scheme in ADC Pass-Through Mode 24

2.15 Data processing scheme in Scan Mode . 25

3.1 A schematic of the hardware setup . 27

vii

3.2 SEGGER J-Link Pro V4.00 debugger . 28

3.3 J-Link JTAG 20-pin connection pin-out . 28

3.4 JTAG 20-pin measurement adapter . 29

3.5 ZedBoard FPGA with Vulcan JTAG macro . 30

3.6 Vulcan Evaluation Board with peripherals . 30

3.7 Saleae Logic Pro 8 Analyzer . 31

3.8 Screenshot of a logic analyzer. The response of the JTAG signals while

performing write and read operations of the configuration register. The address

2 is written on TDI signal and data 30 read-out on TDO signal 31

3.9 The configuration system setup . 32

3.10 The flow of configuration libraries implementation (from top to bottom) 34

3.11 JTAG signals response of the exemplary write instruction, recorded by the Saleae

logic analyzer . 37

3.12 JTAG signals response of the exemplary read instruction, recorded by the Saleae

logic analyzer . 38

3.13 JTAG signals response of the exemplary write and read instructions, recorded

by the Saleae logic analyzer . 39

3.14 JTAG signals response of the exemplary write instruction for multiple

configuration registers, recorded by the Saleae logic analyzer 39

3.15 The synchronization of JTAG signals, recorded by a Saleae logic analyzer 40

3.16 Vulcan configuration system setup . 40

3.17 Screenshot of a Saleae logic analyzer, response of the JTAG signals recored while

configuring the Vulcan chip . 41

3.18 The error rate over different configuration registers 42

3.19 The error rate over different JTAG speeds for all configuration registers 43

3.20 Processing time for different instructions . 44

4.1 Data flow in control unit . 46

4.2 Schematic of the Vulcan laboratory setup . 47

4.3 Logic Analyzer U4164A . 47

4.4 Screenshot of the ADC Pass-Through Mode data plot from the Vulcan simulation 49

4.5 The structure of the transfered data along with the trigger lines in a CSV file . . 49

4.6 The Flow of extraction of the data in APT mode 49

4.7 Extracted ADC Pass-Through Mode data from the Vulcan simulation 50

4.8 A Screenshot of the Logic analyzer for ADC Pass-Through Mode data from the

actual Vulcan chip . 51

4.9 A plot for the extracted ADC Pass-Through Mode data from the actual Vulcan

chip . 51

4.10 Screenshot of the Scan mode data with workaround method from the Vulcan

simulation . 53

4.11 The flow of the extraction of the data in Scan mode 53

4.12 Extracted scan mode data with workaround method from the Vulcan simulation 54

4.13 The data in scan Mode with workaround method from the actual Vulcan chip

before data interpretation . 54

4.14 Extracted scan mode data from the Vulcan chip 55

4.15 Screenshot of the normal mode data from the Vulcan simulation 56

4.16 The structure of the data along with the trigger sequence in a CSV format file

transfered to the connected PC . 56

4.17 The Flow of extraction of the data in PAM mode 57

4.18 A plot of the extracted normal mode data from the Vulcan simulation 58

4.19 A screenshot of the PAM Mode data transferred to the Logic analyzer from the

actual Vulcan chip . 58

4.20 A plot for the extracted PAM mode data from the Vulcan chip 59

List of Tables

1.1 Precision measurement of neutrino oscillation parameters 3

2.1 TAP controller signals . 14

2.2 Registers and bit length for the Vulcan chip . 14

2.3 List of instructions and an Opcode assigned for instructions 16

2.4 List of all implemented bus modes . 21

2.5 List of all considered trigger sources . 22

3.1 List of I/O ports and J-Link pin numbers used for the J-Link connection with

the zedboard . 30

3.2 List of hardware devices used in the configuration system setup 32

3.3 List of JTAG API functions used in the configuration libraries 33

3.4 List of created Configuration libraries . 35

3.5 Configuration examples and information in configuration registers 36

3.6 List of hardware components used in the Vulcan configuration system setup . . . 41

3.7 The processing time for different instructions . 44

xi

Chapter 1

Introduction

1.1 Motivation

A system-on-chip (SoC) is an integrated circuit (also called as an IC or "chip"). It consists

of multiple components such as connectivity, memory, analog and digital components of an

electronic system mounted on a single bed with a microcontroller or a microprocessor or a DSP

core at its central part. The designed SoC needs to be verified in different scenarios. The highly

configurable integrated circuit, an analog-to-digital unit (ADU) also called as Vulcan chip is

designed by the IC-development team at ZEA-2, Forschungszentrum Jülich GmbH. It will be

used in the JUNO project (which will be discussed in section 1.2). This chip preprocesses the

analog data, digitizes it and compresses the amount of data but not the quality of data. It can

be configured over JTAG interface to make it easy to utilize the required blocks to perform the

specified applications.

The designed chip needs a configuration system to enable the chip and to allow the verification

of the chip. The configuration system provides the access to the internals of the chip and

makes the functionality available and modifiable. The configuration libraries implementation

in MATLAB is based on the design specifications and numerous standards as well as guidelines

laid down in a joint test action group (JTAG) interface in the area of configuration of the chip.

The JTAG interface is a standard serial communication protocol with a test access port (TAP)

controller followed by a set of rules. The JTAG TAP port is used for JTAG control as well as

providing the serial data in the chip. The configuration system should be developed in such a

way that any user can do the configuration of the Vulcan chip by using this system, without any

previous experience with the JTAG interface. The data extraction algorithms implementation

in MATLAB to interpret the digitized data is also based on the theoretical concepts for different

data modes in the chip. The developed configuration system and data extraction algorithms

will be used in later stages to create automatic data acquisition and analysis environment for

the chip.

1

1.2. JUNO EXPERIMENT

1.2 JUNO Experiment

The Jiangmen Underground Neutrino Observatory (JUNO) is a neutrino detector and it is built

in China territory following the Daya Bay reactor experiment. It is a multi-purpose neutrino

experiment designed with a 20,000-ton linear alkyl benzene (LAB) based liquid scintillator

detector of unprecedented 3% energy resolution (at 1 MeV) with 700-meter rock overburden.

It is designed to determine the neutrino mass hierarchy and oscillation parameters of the

reactor-neutrino energy spectrum from the Yangjiang and Taishan nuclear power plants which

both are in 53 km distance and to improve the uncertainty less than 1% in several neutrino

parameters [1].

Figure 1.1: Layout of the central detection system of JUNO detector [2]

1.2.1 Scientific Goals

Neutrinos are weakly interacting particles that are created in one of three lepton flavors :

electron neutrinos (νe), muon neutrinos (νµ) and tau neutrinos (ντ). Neutrinos change their

flavors during propagation. This phenomenon is called neutrino oscillation. The probability for

the oscillations of flavors is described by the PMKS matrix which contains the mixing angles

(θ12, θ23 and θ13) as the main parameters [1]. The differences of squared neutrino masses,

∆m2

ij = m2

i −m2

j (i,j= 1,2,3), have an influence on the energy spectrum of the reactor neutrinos

[2].

The primary goal of JUNO detector is the determination of the neutrino mass hierarchy by

absolutely measuring the energy spectrum of reactor’s anti-electron neutrinos and secondary

goal is the finest resolution of mixing angles [2]. Further goals are the measurements of

supernova neutrinos, geo neutrinos, solar neutrinos, atmospheric neutrinos and searches for

exotic physics phenomena. The precision of ∆m2

12
, ∆m2

32
and sin2θ12 will be improved by

2

CHAPTER 1. INTRODUCTION

JUNO detector [3]. The current precision values and the estimated detector precision values

for ∆m2

12
, ∆m2

32
and sin2θ12 are listed in table 1.1.

Precision measurements

present JUNO

∆m2

12
∼ 3% ∼ 0.6%

∆m2

23
∼ 5% ∼ 0.6%

sin2θ12 ∼ 5% ∼ 0.7%

Table 1.1: Precision measurement of neutrino oscillation parameters

1.2.2 Experimental Setup

JUNO will be located in Kaiping, Jiangmen, in Southern China. It is located 53 km away from

both the Yangjiang and Taishan nuclear power plants which are in under construction. The

total thermal power 36 GW is planned for these reactors. No other nuclear power plants are

placed within 200 km distance which avoids neutrino interferences. The overburden for the

experimental hall is more than 700 meters (inducing the 270 m height granite mountain which

provides a good shielding) in order to reduce the muon-induced backgrounds. Experiment

construction has started in 2014 and is planned to be completed in 2019. The construction

includes several tunnels, an underground experiment hall, a water pool, a central detector and

a muon tracking detector [1]. The overview of the JUNO detector is shown in figure 1.1.

The central detector is filled with 20 kton linear alkyl benzene (LAB) liquid scintillator. The

neutrinos interact with the liquid scintillator in subsequent, the scintillator produces the

scintillation light. The scintillation light is detected by 18,000 20˝-photomultiplier tubes

(PMTs). Based on the charge and time information from the PMT, the energy of the incident

neutrinos and the interaction vertex can be reconstructed. The energy resolution, radioactivity

level and technical challenges are the main involvements to choose the design concepts for the

JUNO detector [2]. The energy resolution has to be better than 3% at 1 MeV to reach the

expected sensitivity of mass hierarchy. The central detector will be protected by a water pool

from the natural radioactivity in surrounding rocks. The selection of the PMTs with high

efficiency and highly transparent liquid scintillator are some technical challenges.

3

1.2. JUNO EXPERIMENT

1.2.3 Intelligent PMT

Photomultiplier Tube (PMT) makes use of the external photoelectric effect and are exceptional

in sensitivity and in response speed [4]. A PMT is constructed as a vacuum tube which consists

of a photocathode, a focusing electrode, several dynodes and an anode. Light (photons) enters

into PMT strikes the photocathode and eject electrons from the photocathode into the vacuum

inside. The focusing electrode accelerates these photoelectrons towards every dynode where

each dynode emits more low energy electrons. Finally, the emitted electrons are collected

at the anode and results in a sharp current pulse. The figure 1.2 explains the scheme of a

photomultiplier tube.

High energy

photon
Low energy photons

Scintillator
Primary

electron

Secondary

electrons

Ionization

track

Photo

cathode

Focusing

electrode

Photomultiplier

Tube (PMT)

Dynode Anode

Connecting

pins

Figure 1.2: Schematic of a PMT coupled to a scintillator [5]

HV ADU GCU PCU BEC

water

ElectronicsPMT

Figure 1.3: PMT with electronics

In the JUNO experiment, each PMT will be attached to a receiver chain (shown in figure

1.3). A cable connects the PMT electronics with a back end card (BEC) which is above the

water level. The PMT electronics consists of a PMT base with a high voltage unit (HV), an

analog-to-digital unit (ADU), a general control unit (GCU) and a power control unit (PCU).

The ADU receives the current signal from each PMT in parallel and digitizes the received

signal.

4

CHAPTER 1. INTRODUCTION

1.3 Vulcan (Analog-to-Digital Unit)

Vulcan consists of three single analog-to-digital converters (ADCs) assigned to three different

signal ranges (shown in the figure 1.4) yielding in a large dynamic range. It consists of an analog

unit (AU) and a digital control unit (CU). It has configurable operating modes to configure the

chip and to test the functionality of individual blocks. This configuration can be done by using

JTAG communication protocol. For configuration of the chip, a JTAG macro is inserted while

designing the chip.

Charge [photo electron; p.e]

A
D

C
 o

u
t

1 2 4 8 16 31 64 128 256 512 1024 2048

ADC High

gain

ADC Medium

gain
ADC Low

gain

1
4

1
6

2
5

6
6

4 1b=0.06p.e 1b=0.4p.e 1b=8p.e

Figure 1.4: Three different ADC gain ranges in the Vulcan chip

Vulcan can process the data in different data processing modes. The processing modes are

normal (PAM) mode, ADC passthrough (APT) mode, scan mode, parallel mode, serial mode

and derivative mode. In this work, only the first three processing modes are considered. The

concept of the Vulcan chip is explained in detail in chapter 2.

1.4 Objective of Thesis and Thesis Organization

In this thesis work, the configuration of the Vulcan chip via JTAG interface is arranged. This

thesis work is divided into to two sub tasks. The first task is to create a configuration system

(shown in figure 1.5) and configuration libraries which are easy to use MATLAB libraries

to configure the chip via JTAG interface by using configuration registers. The write and

read operations in configuration registers are done by using JTAG communication protocol.

Configuration registers set the parameters for the blocks and also provide an option to modify

the mode of operation. The second task is to interpret the output data from the chip and

analyze the data in different data processing modes. Extraction and visualization of the data

5

1.4. OBJECTIVE OF THESIS AND THESIS ORGANIZATION

will assist in the analysis of the data. The final aim of the thesis is to prepare the data extraction

algorithms for different data processing modes using MATLAB.

U
S

B

J-Link Pro device
Measurement

Adapter

Vulcan chip

(Vulcan Evaluation Board)

Saleae Logic

Analyzer

USB cable

Ethernet

cable

5 pin cable

20 pin cable

Figure 1.5: Configuration system with the JTAG communication protocol (J-Link Pro device)

This thesis work is documented as mentioned below:

• Chapter 2 explains about the architecture of Vulcan read-out chip.

• Chapter 3 presents the development of the laboratory configuration system and the

configuration libraries.

• Chapter 4 shows the development of data extraction functions for the data analysis in

different data modes.

• Chapter 5 draws the conclusion on this work and gives a short discussion on future work.

6

Chapter 2

Vulcan Read-Out Chip

This chapter describes the underlying architecture of the Vulcan read-out chip as well as the

data processing modes of it.

2.1 Overview

The main task of the Vulcan read-out chip is to readout the signals from PMTs, to preprocess

the analog data, to digitize the data and to transfer the digitized data to the back-end part of

the data acquisition system.

Vulcan chip has the basic functions:

• Low power ADCs

• Data can be processed in different data modes

• Data compression

• JTAG communication protocol for configuration

The chip consists of a digital control unit (CU) and an analog unit (AU). The AU includes: three

input chains for the same signal and a phase-locked loop (PLL). Each input chain (explained in

section 2.2) includes a transimpedance amplifier (TIA), an 8 bit ADC and trigger logic. This

complete architecture of the Vulcan chip is designed by ZEA-2.

The PLL generates a clock signal for the ADC, control unit and low voltage differential signaling

(LVDS) drivers based on an external 32.5 MHz reference clock. The PLL makes sure that both

the internal clock and the reference clock have a fixed phase. The output of an ADC sends

data to the control unit, the CU writes into a data buffer and shifts it to the GCU from the

data buffer.

7

2.2. ANALOG UNIT (AU)

2.2 Analog Unit (AU)

The analog unit (AU) receives the current signal from PMTs and converts it into the analog

voltage signal. The analog voltage signal is then sampled by a ladder of comparators that

produce the digital thermometer code. Then the thermometer code sends out data to the

control unit (CU). The overview of the analog unit (AU) is shown in figure 2.1.

ADU
CU

RX

HVU

PCU

PLL

TIA

BIASJTAG

PAM

Register

GCU

R
A

M

HGI
LVDS Parallel

Data

Clock

Supply, Bias

Analog

Signal

Synchronous

Data / Control

JTAG

S
o

C

MGI

LGI

ADC_REG

DIG_PLL

BIST

DSP

16

 ADC

REFCLK

DATA<15:0>

3

TRG<2:0>

DAC

RX

TIA

BIAS

 ADC

DAC

RX

TIA

BIAS

 ADC

DAC

VDD_3V3

OSC

OSC

OSC

N

N

A
D

C
_

E
n

co
d

e
r

APTLV
D

S
_

M
U

X

AU

Digitized

Signal

32-bit

output

Figure 2.1: Top level of the Vulcan chip

2.2.1 Transimpedance Amplifier

A transimpedance amplifier (TIA) is a current-to-voltage converter implemented with an

operational amplifier. It is also used to amplify the small signal from the photomultiplier.

Thus, the amplified signal is large enough for further processing. Each transimpedance amplifier

suites for an appropriate application but all have one common aspect: the requirement of a

current signal into a voltage signal conversion. The figure 2.2 shows a basic block diagram of

a transimpedance amplifier.

The functionality of the TIA in Vulcan is current-to-voltage conversion of the input signal (from

PMTs). The converted output voltage signal is forward to the ADCs.

8

CHAPTER 2. VULCAN READ-OUT CHIP

Vout

Rf

If

Figure 2.2: A basic block diagram of a transimpedance amplifier

2.2.2 Analog-to-Digital Converter

An analog-to-digital converter (ADC) is a device used for interfacing the analog and digital

domains. The ADC converts an analog signal into a digital code. This conversion is done in

two step process, i.e., sampling the analog signal and quantizing the sampled value.

There are several architectures of converters used for various applications. Flash, sigma delta,

successive approximation (SAR) and pipelined converters are few among the types of converters.

It can be characterized by the number of bits produced over the analog signal input range (8

bits in Vulcan) and the sampling rate (1 GS/s in Vulcan). The analog input signal of a converter

with N-bit resolution can encode into 2N levels. The accuracy of the measurement is limited

by the resolution of a converter. The more accurate measurement needs the higher resolution

(number of bits). The effective resolution of a converter is dampened by noise and it is measured

by ENOB (explained in section 2.2.2.2). In the Vulcan read-out chip, the converter follows the

principal of an integrating flash ADC and has a 8 bit resolution. Each converter has four

internal converters with 6 bit resolution.

2.2.2.1 Flash ADC

A Flash ADC, also known as a direct-conversion converter, is the fastest way to convert an

analog signal to a digital signal compared to other types of converters. It is suitable for very

large bandwidth applications [6]. It is made by cascading high-speed comparators.

It uses a bank of comparators and a resistive ladder which provides the reference voltages to

compare the analog input voltage with consecutive reference voltages. The circuit employs

2N
− 1 comparators for an N-bit converter. The figure 2.3(a) illustrates a 3-bit converter. Each

comparator transmits a logic 1˝ or 0˝ depends on the comparison of analog input voltage

with the reference voltage applied to it. If the analog input voltage signal becomes lower than

the respective comparator reference voltage level the output pattern changes from ones to zeros.

When the logic 0˝ is interpreted in the sequence of ones, that zero is called as bubble error

(shown in figure 2.3(a)) which is caused by comparator mismatches, noise or distortion. The

output of the comparators is fed as an input to the digital encoder which converts the inputs

into corresponding binary values [6].

9

2.2. ANALOG UNIT (AU)

Input Signal

Vref

7

6

1

3

4

0

0

0

0

0

0

0

1

Thermometer

code

1 2 3 4 5 6

Bubble error
8

2

5

0

0

0

0

0

0

0

1

1

0

0

0

0

0

1

1

1

0

0

0

0

1

1

1

1

0

0

0

1

1

1

1

1

0

0

1

1

1

1

1

1

0

0

1

1

0

1

1

1

D
ig

ita
l T

h
e

rm
o

m
e

te
r co

d
e

(a) Flash Analog-to-Digital Converter (b) Physical Thermometer

Figure 2.3: Flash ADC with principle logic

The flash ADC approach is known as thermometer encoding. This is so named because the

design is similar to the concept of mercury thermometer. The sequence of ones represents a

mercury part and the sequence of zeros represents the empty space in a physical thermometer

(figure 2.3(b)).

2.2.2.2 ENOB

ENOB [7] known as Effective Number of Bits or Effective Bits characterizes the real dynamic

performance of an ADC. However, the real ADC circuits deals with the noise and distortion.

The ENOB of an ideal is equal to the resolution of a ADC. The ENOB is based on the signal

to noise ratio (SNR) equation of an ideal ADC based on a pure sinusoidal signal. The equation

2.2 is the signal-to-noise ratio (SNR) of an N-bit ADC.

SNR = (6.02 × N + 1.76) dB (2.1)

Where N is the resolution of an ADC. The equation is rearranged to calculate the effective

number of bits out of an SNR measurement in dB.

ENOB =
SNR − 1.76

6.02
(2.2)

2.2.3 Phase-Locked Loop

A phase-locked loop (PLL) is a clock signal generator and it generates an internal clock signal

which is multiplied of a low frequency external reference signal. A PLL consists in general of

10

CHAPTER 2. VULCAN READ-OUT CHIP

an oscillator, a phase detector, frequency divider and loop filter. For matching the phase of

an internal clock, the oscillator constantly is adjusted on frequency to match the phase and

frequency of a reference signal. The phase detector always compares the phase of an oscillator

output signal with the phase of a reference signal.

The functionality of the PLL in Vulcan is generation of a 4 GHz clock signal from an external

reference frequency of 32.5 MHz. This clock signal is divided down to 500 MHz and 250 MHz

for ADC or LVDS and digital part respectively.

2.3 Digital Control Unit (CU)

2.3.1 Overview

In the digital control unit, the length of data samples is reduced from 256 bit to 8 bit samples

and transmits the data in different data processing modes with double data rate.

C
U

R
e

g
iste

rs

J oint

T est

A ction

G roup

controller

H ead of

A assigned

L iabilities

B uild

I n

S elf

T est

A
D

C
_

E
n

co
d

e
r

P rogramable

A daptive

M emory

LV
D

S
_

M
U

XFrom

AU

ADC_

REF erence

regulation

Dig_ ital

PLL

controlS elf l i

I n

A DC

P ass

T hrough

D igital

S ignal

P rocessing

C
U

16

3

DATA<15:0>

TRG<2:0>

output

output

JTAG

signals

32 bit length

Figure 2.4: Overview of the digital control unit

In the control unit, a JTAG macro has been employed including a TAP controller which controls

the central state machine by receiving commands on the JTAG TMS pin. The JTAG macro

writes into and reads from the configuration registers that store the configuration of the chip.

The data from all three ADCs (four samples from each ADC) transfers to the ADC-Encoder.

It converts the data from thermometer code to a Gray coded data. Then, it sends the data

to the Programmable Adaptive Memory (PAM) module. Vulcan has different data processing

modes (explained in detail in section 2.4) for the data transmission. In normal (PAM) mode,

the additional information is added to the data and stored in an internal ring buffer and then

transmits to the output. In ADC pass-through (APT) mode the data transmits to the output

without saving. The Digital Signal Processing (DSP) mode block is the source of trigger lines.

In LVDS multiplexer (LVDS_MUX) the data processing mode among different modes can be

chosen. LVDS bus with 16 bit length transmits the data with double data rate (DDR).

11

2.3. DIGITAL CONTROL UNIT (CU)

2.3.2 JTAG Core

Joint Test Action Group (JTAG) is an advanced DFT technique for the purpose of configuring

and testing the chip. JTAG is chosen for the configuration because it is available as an IP core

and it is configurable.

JTAG interface is an IEEE 1149.1 standard four-wire (and an optional reset signal) serial

protocol that establishes the details of access to any chip with a JTAG port. JTAG is the name

of the task force that developed the IEEE 1149.1 standard and by now also for communication

standard. The number of connector signals (wires) depends on the version of JTAG. It can be

two, four or five signals.

Test Access Port

Controller

Bypass Register

Instruction Register

Data Register

Internal

Logic

TDI
TMS

TCK

TDO

TRST

I/O pads

Figure 2.5: Schematic of a JTAG enabled device

The connector signals (shown in figure 2.5) are:

1. Test Clock (TCK): The test clock pin provides the clock signal to run the TAP

controller, which loads and unloads the instruction and data registers.

12

CHAPTER 2. VULCAN READ-OUT CHIP

2. Test-Mode select (TMS): The test mode select pin controls the test operations on the

TAP controller. On the rising edge of TCK, depending on the state of TMS, a transition

will be made in the TAP controller state machine.

3. Test Data Input (TDI): The test data input pin is used to shift serial test instructions

into instruction register and data into the data registers. TDI is clocked into the device

on the rising edge of the TCK.

4. Test Data Output (TDO): The test data output pin is used to shift serial test

instructions from the instruction register and data out of data registers. TDO is clocked

out on the falling edge of the TCK.

5. Test Reset (TRST): The Test reset pin is used to reset the TAP controller.

The functionality offered by the JTAG interface is debug access and boundary scan:

• Debug Access is used by debugger tools to configure the chip and to access the internals

of the chip. Examples: registers, memories and the system state [8].

• Boundary Scan is used by hardware test tools to test the circuitry connections of a

device, example: on a PCB (Printed Circuit Board).

The configuration of the Vulcan chip can be done by using configuration registers which are

controlled by the instructions. The JTAG interface has four predefined instructions and three

custom instructions to configure the Vulcan chip. These custom JTAG instructions are provided

to allow writing and reading operations in the configuration registers and access the functional

blocks of the chip.

The debugger tool which has a JTAG port connects to the host by using an interface such as

USB, Ethernet and connects to the target device to configure it (explained in detail in chapter

3).

2.3.2.1 TAP Controller

The schematic of the Test Action Port (TAP) is shown in figure 2.6. It contains four input

signals and an output signal that are driving the circuit blocks and controls the operations

(write or read) specified. The TAP facilitates a serial loading and unloading of instructions

and data. The table 2.1 lists the TAP signals with a small description.

The TAP defines a set of registers and a controller that are used to define the operation of the

JTAG interface. There are two types of registers associated with the interface. Each compliant

device has one instruction register and one or more data registers (see in figure 2.5). The

instruction register has a 3 bit length and the data register has an 8 bit length for the Vulcan

13

2.3. DIGITAL CONTROL UNIT (CU)

TDI

TMS

TCK

TRST

TDO
Test Access

Port

Figure 2.6: Schematic of a Test Access Port

TAP signal Type Description

TCK input Generates a JTAG Clock signal

TMS input Controls the TAP controller state transitions

TDI input Serial data from debugger tool to target

TDO output Serial data from target to debugger tool

TRST input Optional, resets the TAP controller

Table 2.1: TAP controller signals

chip. The table 2.2 lists the length of instruction register and data register for the Vulcan chip.

Type of register Register length (no.of bits)

Instruction 3 bits

Data 8 bits

Table 2.2: Registers and bit length for the Vulcan chip

The TAP Controller (shown in figure 2.7) is a 16-state finite state machine added on the IC-die

itself. It produces the internal control signals. The TAP controller is driven by TCK and TMS

signals only. These two signals drive the TAP Controller as a 16-state machine to generate a

clock and control signals for the instruction and data registers. A test clock rising edge and

system power-up events can trigger a change of controller state.

The flow through a state machine is controlled by the value of TMS signal. The state of the

TMS signal at the rising edge of TCK is responsible for determining the sequence of state

transitions. The state machine is set into instruction mode (shift-IR state) by sending the

sequence 01100 on JTAG TMS signal to the controller. Then, the instruction will be shifted

into instruction register which is sent on the JTAG TDI input. The state machine sets into

data mode by sending the sequence 1100 on JTAG TMS signal. Then, the data is shifted into

data register which is sent on the JTAG TDI input.

14

CHAPTER 2. VULCAN READ-OUT CHIP

State transition path

to instruction register

State transition path

to data register

Figure 2.7: TAP Controller state machine [9]

There are two state transition paths (shown in figure 2.7) for shifting the data on TDI signal

into the device,

• one for shifting in an instruction to the instruction register and,

• one for shifting data into the data register as determined by the current instruction.

15

2.3. DIGITAL CONTROL UNIT (CU)

2.3.2.2 JTAG Custom Instructions

The JTAG IEEE standard 1149.1 describes few instructions that can be implemented but

SAMPLE, EXTEST, PRELOAD and BYPASS instructions are mandatory for all JTAG

enabled devices. Custom instructions are the instructions designed for the Vulcan chip to

perform the configuration operations. They comprise of loading an address (LOADADD),

writing data (WRITE) and reading data (READ) instructions. As mentioned in table 2.2 all

instructions have 3 bit length. The chip configuration is done by using only these instructions.

All the instructions with an assigned Opcode and also a functionality performed by the JTAG

interface in the chip are listed in the table 2.3.

Name of an
Instruction

Opcode Description

SAMPLE 001 Connects JTAGTDI and JTAGTDO together via
a Boundary Scan Register (BSR) and read the
data

EXTEST 010 Writes the data to the core (internal logic).
JTAGTDI and JTAGTDO are connected via the
Boundary Scan register (BSR)

PRELOAD 011 Preloads the test data into the BSR before loading
an EXTEST instruction

LOADADD 100 Shifts the address of a configuration register to
perform write and read operations

WRITE 101 Writes the 8-bit data into configuration register
which is set by the LOADADD

READ 110 Read the 8-bit data from configuration register
which is set by the LOADADD

BYPASS 111 Connects JTAGTDI and JTAGTDO together via
a single bit bypass register

Table 2.3: List of instructions and an Opcode assigned for instructions

16

CHAPTER 2. VULCAN READ-OUT CHIP

The figure 2.8 describes how the instructions and data are transmitted on JTAG signals. Every

instruction and data word are transmitted on TMS, TDI and TDO signals from LSB to MSB

order.

00110 1000 0000

xxxxx 100

100 0011

xxxx address

01

xx

JTAGTMS

JTAGTDI

Go to

instruction

mode

Transmit

instruction

Go to data

mode
Transmit data word

Return

to idle

00110 1000 0000

xxxxx 101

100 0011

xxxx register

01

xx

JTAGTMS

JTAGTDI

Load Address

Write Register

00110 1000 0000

xxxxx xxx

100 0011

xxxx register

01

xx

JTAGTMS

JTAGTDO

Read Register

xxxxx 0000 0000110 xxxx xxJTAGTDI

Go to

instruction

mode

Transmit

instruction

Go to data

mode
Transmit data word

Return

to idle

Go to

instruction

mode

Transmit

instruction

Go to data

mode
Transmit data word

Return

to idle

LSBMSB

Figure 2.8: Exemplary sequences for register interaction, an x represents an undefined state.
Transmission in each block is starting from the LSB to MSB

2.3.3 Configuration Register Implementation

Vulcan has 256 configuration registers but only 248 registers (81 for the digital control unit and

167 for the analog unit) are used for the Vulcan configuration and access to these registers is

provided by the JTAG interface. Each register has a length of 8 bits with 8 bit unique address.

For every configuration register, the LOADADD instruction has to be loaded before performing

a writing or reading operation. Once the LOADADD instruction is loaded and the address of

a configuration register is being set, the WRITE and READ operations will be performed for

the selected configuration register. The TAP controller shift-IR state is used for instruction

register to load an instruction and the shift-DR state is used for the data register to write and

read the data. In this configuration, the length of an instruction register and a data register is

fixed.

17

2.3. DIGITAL CONTROL UNIT (CU)

2.3.4 Other Blocks

2.3.4.1 BIST

The built-in-self-test (BIST) is used to test the integrated circuit by itself independent

of external equipment through generating the temporary logic and analyzing the resultant

response. The temporary programmable logic or rewritable memory of the BIST avoids the

extra cost of an integrated circuit.

In Vulcan, the BIST generate signals either for the ADC through DAC or for the digital

part and thus increases the testability. The BIST has two options to generate signals: by

using stored data and by generating a programming logic. The BIST module does not have

a verification option. Therefore, it is not possible to verify the Vulcan chip independent of

external equipment.

2.3.4.2 ADC-Encoder

The ADC-Encoder converts the thermometer code into gray coded data by direct conversion

and encode the thermometer code into binary format code by counting the number of ones in

the thermometer code. This module is configured by using the configuration register.

The output of an ADC is a 256 bit thermometer code sample and it is forwarded to the

encoder. The encoder is highly configurable and it has a bit manipulation scheme and a Gray

coded data conversion scheme. Bit manipulation scheme can change the order of samples (6 bit

ADC samples), force bits to zero, invert the bits in the sample, invert the sequence of ones and

sequence of zeros in a thermometer code and change the bit order in ADC data. Gray coded

data conversion scheme has two options to convert the data: by counting the number of ones

(in which case there is no gray encoding) and state transition detection in the thermometer

code. It sends the gray coded data to the PAM module.

2.3.4.3 PAM

In Vulcan, the programmable adaptive memory (PAM) module generates the gain mode change

information along with the data samples and stores it in an internal ring buffer. Then, transfers

the stored data to the output. In this module, the amount of the data (especially noise) can

be compressed but not the quality of data.

In PAM module the gray coded data is converted into binary data if the output of an

ADC-Encoder is a gray coded data. The normal (PAM) data mode acts as a primary data

processing mode of the Vulcan chip. It receives data samples from three different ADCs in the

chip. The assignment of ADC 1, 2 and 3 to high, medium and low gain is done with upper and

lower threshold values set by the configuration register.

18

CHAPTER 2. VULCAN READ-OUT CHIP

Data selector

3 samples-> 1 sample

Internal storage

Ring

buffer

Data formatting &

Noise compression
ADC 1

ADC 2

ADC 3

Figure 2.9: Block diagram of the Programmable Adaptive Memory

The selection of one sample among three samples of three different ADCs (shown in figure 2.9)

for every sample clock is also done with the upper and lower threshold values. The highest

resolution ADC sample is chosen by comparing the three ADCs. The PAM generates the header

information along with the data and stores in the ring buffer. This header information consists

of different gain (high, medium and low) mode changes and the system events. The data is

formated based on different gain mode changes and system events. Then the formated data is

send out to the output. The data formatting and noise compression are explained in section

2.4.1.

2.3.4.4 DSP

The digital signal processing (DSP) block provides the trigger output lines. There are three

different trigger output lines for the Vulcan chip. The trigger generation is performed in parallel

to the main data processing and it is indicated by trigger lines.

2.3.4.5 LVDS Multiplexer

LVDS_MUX

PAM

APT

LVDS

output

Selection

line

32

32

16

3

mux DDR

32

250MHz

clock
500MHz

clock

Figure 2.10: An excerpt of the LVDS multiplexer

A portion of the low-voltage differential signaling multiplexer (LVDS_MUX) is shown in figure

2.10. It selects the data which can transfer to the LVDS output. It has 8 different settings,

19

2.4. DATA PROCESSING MODES

encoded in 3 bits (000 to 111) for different data modes (mentioned in section 1.3) and to select

different possibilities like the PLL counter or a test pattern. The multiplexer gets the data

from different data modes as 32 bit data samples. The data mode selection in multiplexer can

be done by using a configuration register. The LVDS output bus has 16 bit data length. The

parallel bus operates with double data rate (DDR) and transfers data on both the rising edge

and falling edge of a clock signal.

2.4 Data Processing Modes

The ADC in analog unit drives with a 500 MHz clock and transfers the data as 256 bit samples,

digital control unit drives with a 250 MHz clock and transfers the data as 32 bit samples (4× 8

bit sample) and the LVDS block drives with a 500 MHz clock and transfers the data to output

as 16 bit samples in every clock cycle.

ADC CU LVDS

D
e

m
u

x

500MHz/

2ns
250MHz/

4ns

500MHz/

2ns

PLL Clock

signal(4MHz)

32 16

256

256 bit

length

Figure 2.11: PLL clock signal division for different blocks in the chip

As mentioned in section 1.3, Vulcan can be operated in different data processing modes. The

three particular modes (normal mode, APT mode and scan mode) require a 16 bit LVDS

output bus (DATA0 – DATA15). Normal mode and APT mode uses the three independent

trigger LVDS output lines (TRG0 – TRG2) with the LVDS output bus and scan mode uses the

LVDS output bus and the first trigger line (TRG0) only. If not mentioned otherwise, data is

transmitted with most significant bit (MSB) first.

2.4.1 Normal Mode

The Normal (PAM) mode is the primary data processing mode for the Vulcan chip. In this

mode the data samples are transmitted along with the system events and sends out the data

with the included system events. This mode is used to compress the noise samples and to

reduce the amount of data but not the quality of the data.

The optimal ADC selection is explained in section 2.3.4.3. The 32 bit header information

(shown in figure 2.12) consists of an information of a synchronization counter, a digital counter,

a bubble counter, bus mode (gain mode change) and trigger.

20

CHAPTER 2. VULCAN READ-OUT CHIP

Sync.counter

10 bits

Digital counter

10 bits

Bubble counter

4 bits

Bus mode

4 bits

Trigger

4 bits

Figure 2.12: A 32 bit header information

The header information determines the source (ADC) of the data samples. The header

information delays the data by two clock cycles thus increases the overhead. Therefore, an

internal ring buffer is used to store the data samples and the header information until it can

be sent out. While sending the data out from ring buffer a reset signal with four consecutive

samples as zeros is added before header information to distinguish the header information from

the data samples. Valid data samples contain at least one non-zero bit otherwise, they would

be considered as a reset signal. Multiple reasons can cause the occurrence of a trigger event.

The trigger event can be a gain mode change and other system events (mentioned in figure

2.12). The header information is sent out before data when the trigger event occurs. Several

trigger events will fill up the ring buffer and can causes overflow. The concept of emptying the

ring buffer, bus mode changes and trigger events are explained in detail in sections 2.4.1.1 and

2.4.1.2.

2.4.1.1 Bus Modes

The bus mode is a change of the gain from one to other gains (high gain, medium gain and

low gain). This bus mode indicates the changed gain mode with the defined code in the header

information.

Bus
Mode

Mode Description Header
Code

NOISE Transmits four LSBs of four consecutive samples (4-bits each)
of the “High Gain” ADC

0001

HG Transmits 8-bit samples of the “High Gain” ADC 0010

MG Transmits 8-bit samples of the “Medium Gain” ADC 0011

LG Transmits 8-bit samples of the “Low Gain” ADC 0100

NOISE50 Like NOISE but changes to MG and LG are disabled 0101

HG50 Like HG but changes to MG and LG are disabled 0110

NOISE80 Like NOISE50 but system event triggers are disabled 0111

HG80 Like HG50 but system event triggers are disabled 1000

Table 2.4: List of all implemented bus modes

The table 2.4 lists the bus mode changes and the assigned code used in the header information.

The NOISE mode bus mode is selected if the signal falls below a specified threshold. In NOISE

21

2.4. DATA PROCESSING MODES

mode the four least significant bits of four consecutive samples1 of the “High Gain” ADC are

combined as 16 bit data word and transmitted. In total 8 data samples are read from the

ring buffer while it is writing only 4 samples in every clock (250 MHz) cycle. This leads to an

emptying of the ring buffer. Bus mode changes may happen from any bus mode to any other

bus mode. At every rising edge or falling edge of the clock, the bus mode can change to HG,

MG or LG bus mode. After the Power-on-Reset, the system operates in HG bus mode. In

HG bus mode, two 8-bit samples of the “High Gain” ADC are transmitted. Depending on the

signal level, the bus mode may change to either MG or LG where two 8-bit samples of the

“Medium Gain” or the “Low Gain” ADC are transmitted respectively.

If the bus mode change happens repeatedly the changes will fill up the ring buffer and causes

the overflow. Then, the bus modes NOISE50, HG50, NOISE80 and HG80 are addressed. The

bus mode changes to NOISE50 or HG50 bus mode if the ring buffer fills up 50% of it. Bus

mode changes to MG and LG are disabled if the NOISE50 or HG50 bus mode is selected. If

the ring buffer occupancy reaches 80%, the NOISE80 or HG80 bus mode is selected and bus

mode changes to MG, LG modes and the trigger events generation are disabled. Thus, the

occupancy of the ring buffer is controlled.

2.4.1.2 Triggers

The header information interrupts the data transmission when the bus mode change or any

system event occurs. Multi-source trigger events (BAD, BAP, PCO and BPO triggers) combine

triggers from multiple sources in one event. The respective trigger code is transmitted in header

information which causes the data interruption. The table 2.5 customizes all trigger sources

and the assigned trigger code used in the header information.

Trigger Trigger Description Trigger
Code

BMC Bus mode change 0001

DCO Digital counter overflow due to late syn signal 0010

SYN SYN signal detected 0011

RBU Ring buffer underflow. Less samples available than required 0100

BAD Bus mode change and digital counter overflow 0101

BAS Bus mode change and syn signal detection 0110

SCO SYN signal detection and syn counter overflow 0111

BSO Bus mode change and syn signal detection and syn counter
overflow

1000

Table 2.5: List of all considered trigger sources

1The reason for selecting four consecutive samples is the control unit is operated at 250 MHz clock signal
and the data is transmitted as four samples in one clock cycle

22

CHAPTER 2. VULCAN READ-OUT CHIP

Bus mode change (BMC) trigger addresses any kind of bus mode change and the new bus mode

code with the BMC trigger code are provided together in the header information. At each

sample (8 bit) of data, the bus mode can be changed. The BMC trigger code is generated and

transmitted into header information before the data samples of a new bus mode are transmitted.

If the bus mode change takes place after the transmission at the rising edge, the new trigger

sequence is transmitted before the data otherwise stuff the data samples with zeros until the

header information can be transmitted. Then, the non zero samples which have already been

sent are replaced by zeros. The figure 2.13 explains the concept of stuffing zeros in empty

samples.

RESET 1

16 bits

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

RESET 2

16 bits

HEADER 1

16 bits

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

HEADER 2

16 bits

DATA

16 bits

DATA

16 bits

Sample 2

DATA

16 bits

Sample 2

Sample 1

DATA

16 bits

Sample 2

Sample 1

DATA

16 bits

Sample 2

Sample 1

DATA

16 bits

Sample 1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

SYN-Counter

<9:0>

Digital

Counter

<9:4>

Digital

Counter

<3:0>

Bubble

Counter

Bus Mode

Trigger Code

32 bit Header

information

Stuffing zeros

32 bit H d32 bit Reset

signal

32 bit Reset

Figure 2.13: Concept of stuffing zeros in empty samples

The other information in the header is from the bubble counter, digital counter and

synchronization counter. The 4-bit bubble counter provides the amount of bubble errors in

the data. The timing information is provided by the 10-bit internal counter. A synchronization

counter synchronizes all read-out chips and the SYN synchronization signal which is intended

to be continuously pulsed resets the digital counter. A digital counter overflow (DCO) trigger

is generated when the SYN synchronization signal not pulsed in time and results the digital

counter overflow. The ring buffer underflow (RBU) trigger is generated when the ring buffer

has fewer samples than required to form a valid data word.

23

2.4. DATA PROCESSING MODES

2.4.2 ADC Pass-Through Mode

The ADC pass-through (APT) mode is the alternative data processing mode for the Vulcan

chip. It is used primarily for debugging of the internals of the ADC and to process the data

samples.

The ADC Pass-Through (APT) block gets the binary converted ADC 1, 2 and 3 samples from

the PAM module. The high gain, medium gain and low gain selection for ADC 1,2 and 3

samples is done like in PAM mode (see in section 2.3.4.3). The LVDS trigger output lines

(TRG2, TRG1 and TRG0) indicates three different gain sources. One among three gains (high

gain, medium gain and low gain) is selected based on the gain source and transmits the data of

the chosen gain along with the LVDS trigger lines. In order to avoid the ambiguous assignment

of the trigger output lines, a pair of two samples has to have the same gain origin. The LVDS

output lines have enough bandwidth because no additional information (trigger sequence) is

transmitted along with the data samples on the LVDS (16 bit data lines) bus. The figure 2.14

illustrates the transmission of data samples along with the trigger lines.

15 25 40 80 AA AB FF EF

09 20 70 51 65 03 FF 25

ADC1 samples

ADC2 samples Selected ADC

TRG0 output

TRG1 output

250MHz clock

ADC3 samples 10 25 35 05 20 01 50 FF

TRG2 output

50 13 2A EF

11 34 32 2A

2B 02 EF FF

Figure 2.14: Data processing scheme in ADC Pass-Through Mode

2.4.3 Scan Mode

The scan mode is used for the debugging of the internals of the ADC and also for configuration

purpose.

The figure 2.15 explains the data transmission in scan mode. This mode is also called as “debug

mode”. In this mode, every four thermometer code (256 bit) samples from the ADC are buffered

as a data set (4 × 256 bits) and are transmitted as 32 sections. Each section consists of 8 bits

from all four thermometer code samples of the data set. The data sets are transmitted from all

three ADCs. The control unit is operated at 250 MHz clock signal and the data is transmitted

as four samples in one clock cycle. Therefore, one section out of 32 sections of the data set is

transmitted in every clock cycle but the transmission of 4 (8 bit) samples in clock cycle is still

same. Thus, the sample 1 and 2 are transmitted on an LVDS bus as a first LVDS word and the

24

CHAPTER 2. VULCAN READ-OUT CHIP

sample 3 and 4 are transmitted on LVDS bus as a second LVDS word from each section of the

data set. To identify the start of a new data set, the first trigger line (TRG0) is used. When

the new thermometer data set is started, the trigger line TRG0 is enabled only for one clock

cycle (first section of the data set).

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S129 S130 S131 S132 S133 S134 S135 S136

Sx,Sx,Sx,Sx S1;S2;S3;S4 S1;S2;S3;S4 S129;S130;S131;S132

16bit 16bit 16bit 16bit 16bit 16bit

Sx

#1

Sx

#1
Sx

#1

Sx

#1

S2

#32

S1

#32

S4

#32

S3

#32

S2

#31

S1

#31

S4

#31

S3

#31

16bit 16bit 16bit 16bit

S2

#1

S1

#1

S4

#1

S3

#1

S130

#32

S129

#32

S132

#32

S131

#32

250MHz clock

Samples from ADC#

ADC# (buffered)

LVDS Output

TRG0 Output

Figure 2.15: Data processing scheme in Scan Mode

The first design version of the Vulcan chip has a bug for this data mode in it. That is the

TRG0 never enables for this mode. So the workaround method is introduced to overcome this

issue in the design. The workaround method is explained in detail in section 4.4.2.2.

25

2.4. DATA PROCESSING MODES

26

Chapter 3

Development of the Laboratory

Configuration System

This chapter describes the configuration system setup to configure the Vulcan read-out chip

and configuration libraries to perform write and read operations in the configuration registers.

The thesis work started with the configuration system setup.

The Vulcan chip configuration is done by using a JTAG enabled device called J-Link Pro

debugger from SEGGER (explained in detail in section 3.1.1) which has a JTAG interface with

a TAP controller induced.

3.1 Hardware Components of the Configuration System

In this section, the proposed configuration system with all hardware support is discussed. It

consists of a SEGGER J-Link Pro debugger, a measurement adapter, Saleae logic analyzer,

Vulcan evaluation board and the zedboard FPGA for emulation purpose. The schematic of the

hardware setup is shown in figure 3.1.

PC
J-Link Pro

device

Vulcan

read-out chipTCP/IP

network

20 pin flat

cable

Figure 3.1: A schematic of the hardware setup

3.1.1 SEGGER J-Link Pro Debugger

J-Link Pro V4.00 is a JTAG emulator device (shown in figure 3.2) manufactured by SEGGER

Microcontroller GmbH & Co. KG. It can connect to the PC by using Ethernet (TCP/IP) and

27

3.1. HARDWARE COMPONENTS OF THE CONFIGURATION SYSTEM

USB. J-Link Pro download speed is up to 3 MBytes/s [10]. The actual speed depends on various

factors, such as JTAG clock speed and host CPU core. It can support multiple devices. It has

a built-in JTAG TAP controller which is compatible with the standard 20 pin connector. The

JTAG 20 pin connection pin-out is shown in figure 3.3.

TCP/IP

network

cable

USB or

Power

supply cable

Figure 3.2: SEGGER J-Link Pro V4.00
debugger

Figure 3.3: J-Link JTAG 20-pin
connection pin-out

From the figure 3.3, VTref is the reference voltage for the J-Link device. TDI and TMS are

the input signals. TCK is the clock signal which drives the TAP controller. TDO is the output

signal, reads out the data. nTRST is the reset signal and used to reset the TAP controller.

RTCK is the adaptive clock signal for the J-Link device to provide an external clock for the

J-Link device.

The J-Link software development kit (SDK) is used to integrate the J-Link support into the

newly created applications [11]. This integration is done by using a standard DLL or a shared

library.

The J-Link SDK allows the functionality of the J-Link device for the Vulcan, such as:

• Low-level communication with the target via JTAG commands (establish and terminates
the connection and set the JTAG speed).

• Reading and writing into the configuration registers.

For the Vulcan chip configuration, the J-Link Pro device is connected to the PC over Ethernet

(TCP/IP) network. The device is configured with an IP address by using a J-Link configuration

28

CHAPTER 3. DEVELOPMENT OF THE LABORATORY CONFIGURATION SYSTEM

tool provided by J-Link SDK. The J-Link Pro device is used for configuration of the Vulcan

chip because of its libraries, drivers and compatibility. In addition, all JTAG signals and target

voltage can also be measured. The observation and analysis of all JTAG signals are done by

adding a measurement adapter to the setup (explained in section 3.1.2).

3.1.2 J-Link JTAG 20-Pin Measurement Adapter

The J-Link measurement adapter provides test points for the JTAG signals to check the JTAG

signal integrity. The measurement adapter is connected in between the J-Link Pro device and a

target device. The adapter has a standard 20-pin socket to connect with the J-Link Pro device

and a 20-pin flat cable is used to connect with the target device (here the Vulcan chip).

Test points

J-Link Pro

device
Target

Figure 3.4: JTAG 20-pin measurement adapter

3.1.3 FPGA Evaluation Board

The ZedBoard has an ARM core processor and a FPGA. The ZedBoard FPGA is used

for the emulation of the Vulcan chip. The Vulcan JTAG macro and the configuration

registers has been flashed into the ZedBoard FPGA (shown in figure 3.5) to develop the

write and read operations of configuration registers before Vulcan was available. The flashing

is done by the IC development team and made it as available at run time. If the J-Link

JTAG port connects to the ZedBoard JTAG port, it makes the communication with the

ZedBoard TAP controller, not with the Vulcan JTAG macro. To avoid this, the general

I/O ports of the ZedBoard are used to connect the Vulcan JTAG macro (which is flashed

into ZedBoard) with the J-Link Pro device JTAG port. The I/O ports that are assigned

to the JTAG signals and the pin numbers of a J-Link JTAG port are listed in table 3.1.

29

3.1. HARDWARE COMPONENTS OF THE CONFIGURATION SYSTEM

Figure 3.5: ZedBoard FPGA with Vulcan
JTAG macro

Name of

the signal

zedboard

I/O Pin

J-Link

20-pin

TCK JA4 9

TRST JA10 3

TMS JA1 7

TDI JA2 5

TDO JA3 13

VTref VCC 1

GND GND 20

Table 3.1: List of I/O ports and
J-Link pin numbers used for the
J-Link connection with the zedboard

3.1.4 Vulcan Evaluation Board

JTAG

port LVDS

interface

Vulcan

chip

(a) Vulcan evaluation board (b) Layout of the Vulcan evaluation
board. The Vulcan chip, JTAG port,
LVDS plugs and minimal logic for the
chip verification

Figure 3.6: Vulcan Evaluation Board with peripherals

After the emulation of the Vulcan chip, the ZedBoard FPGA is replaced by the Vulcan

evaluation board (which the Vulcan chip with some minimal logic mounted on it). The figure

3.6(a) shows the Vulcan evaluation board with JTAG port, LVDS interface and the Vulcan

30

CHAPTER 3. DEVELOPMENT OF THE LABORATORY CONFIGURATION SYSTEM

chip. It is a printed circuit board contains Vulcan chip, micro controller and some minimal

logic required to test the Vulcan chip and it is developed at the ZEA-2: Electronic Systems.

This board has a 20-pin JTAG port and it is connected to the J-Link pro device by using a 20

pin flat cable.

3.1.5 Saleae Logic Analyzer

The Saleae Logic Pro 8 USB Logic Analyzer [12] is an 8 channel logic analyzer and uses for

debugging embedded applications which are acquired protocols like serial, I2C, JTAG or SPI.

It is connected to the PC over USB and the Saleae Logic software allows to view and capture

the signals [13]. The JTAG signals are collected into the logic analyzer through the test points

of a measurement adapter (see in section 3.1.2) and recorded while configuring the Vulcan chip.

An example of the recorded activity is shown in figure 3.8.

Figure 3.7: Saleae Logic Pro 8 Analyzer

Figure 3.8: Screenshot of a logic analyzer. The response of the JTAG signals while performing
write and read operations of the configuration register. The address 2 is written on TDI signal
and data 30 read-out on TDO signal

31

3.2. VERIFICATION TEST BENCH SETUP

3.2 Verification Test Bench Setup

The verification of the configuration registers write and read operations is done by feeding in

test vectors (instruction and data) to the configuration registers of the Vulcan JTAG macro

(flashed into zedboard FPGA) by using the created configuration libraries (listed in the table

3.4). With the configuration libraries, all configuration registers (81 for the digital control unit

and 167 for the analog unit) write and read operations are tested. The verification is done in

various aspects, such as register check, bit order and synchronization of TMS and TDI signals

with TCK signal. The hardware setup of the configuration system is shown in figure 3.9 and

the table 3.2 lists the hardware devices used in the configuration system.

USB

Power

supply

5

TCP/IP

network

V
T
r
e
f

G
N
D

T
C
K

T
R
S
T

T
D
O

T
D
I

T
M
S

G
N
D

T
D
O

T
C
K

T
M
S

T
D
I

T
R
S
T

V
T
r
e
f

1

2
3

4

5

6

Figure 3.9: The configuration system setup

List of hardware devices

1. J-Link Pro device 2. J-Link JTAG 20-pin measurement adapter

3. Saleae logic analyzer 4. I/O ports

5. ZedBoard FPGA (target device) 6. MATLAB software tool

Table 3.2: List of hardware devices used in the configuration system setup

32

CHAPTER 3. DEVELOPMENT OF THE LABORATORY CONFIGURATION SYSTEM

3.3 Implementation into MATLAB Environment

The MATLAB is chosen as a test stand for the verification of the Vulcan chip. It has several

functions that are needed for programming new applications and mathematical processing. In

this work a MATLAB parsing data feature is used in analysis of the Vulcan data.

By using dedicated libraries e.g: Data Link Libraries, it is possible to establish communication

with the devices (Logic analyzer, Oscilloscope) that are not directly controllable via MATLAB.

The integration of a J-Link device into MATLAB workspace is done via a standard DLL and

the DLL provides the C-language application programming interface (API) functions [14] to do

the configuration of the chip.

3.3.1 Data Link Libraries and JTAG API Functions

The data link library (DLL) has to be loaded first, to use J-Link and the SDK in a custom

application. A JLink_x64.dll library with all API functions [14] is provided by the J-Link SDK

and it is used to create configuration libraries (explained in section 3.3.2) for the Vulcan chip.

The DLL library is loaded into MATLAB workspace by using a loadlibrary() function. The

API functions are loaded directly from the DLL with a calllib() MATLAB function.

JTAG API Functions List

API Function Description of a function

JLINK_Open Opens the J-Link connection

JLINK_Clock Creates a JTAG clock on TCK

JLINK_SetSpeed Sets the speed for JTAG Communication (JLink
frequency)

JLINK_Close Terminates the J-Link connection

JLINK_JTAG_StoreInst Stores a command (instruction) in the output
buffer (see in section 3.2.4)

JLINK_JTAG_StoreData Stores the data sequence in output buffer

JLINK_JTAG_StoreGetData Stores data in the output buffer and retrieves TDO
data from input buffer

JLINK_JTAG_GetData Retrieves TDO data from input buffer

JLINK_JTAG_SyncBits Writes out the data remaining in the input buffer

JLINK_JTAG_SyncBytes Writes out the data remaining in the input buffer
as Bytes

Table 3.3: List of JTAG API functions used in the configuration libraries

In order to use the JTAG API functions, the header files provided by the J-Link SDK are

included with the DLL library and the API functions are defined as C-declaration functions in

header files [14]. Therefore, the equivalent MATLAB notation is used when the API functions

are being called. All API functions are defined in ‘JLinkARMDLL.h’ header file and the

33

3.3. IMPLEMENTATION INTO MATLAB ENVIRONMENT

‘JLinkARM_Const.h’ header file is used as a reference for parameters and function returned

values. The ‘JLink.h’ header file is also used for standard call functions. The table 3.3 lists the

API functions which are used to create the configuration libraries.

3.3.2 Configuration Libraries

The configuration libraries developed in MATLAB provide a generic configuration interface

which enables the configuration of the Vulcan chip. The figure 3.10 explains about

the flow of low level library usage to create the main configuration library. The

low level library functions send_address, write_data and read_data are created:

to load an instruction (LOADADD, WRITE and READ), to write data and to read

data from the configuration registers respectively. With these low level functions the

main configuration library functions config_register_write, config_register_read,

config_register_write_read and config_register_write_bulk are created: to write an

instruction and data into register, to read an instruction and data from the register, to write and

read an instruction and data from the register and also for bulk instructions (multiple register

addresses) along with the data (write, read and write-read) respectively. The configuration

libraries are also included the operations: establish or terminate the J-Link device connection

and set the J-Link JTAG speed (JTAG frequency). The jlink_init function is created to open

(and) close a connection and to set the JTAG speed. The other function load_dll is created

to load the DLL library with the header files into MATLAB workspace.

Text Block

MATLAB

DLL library

send_address write_data read_data

Main library

config_register_write_readconfig_register_readconfig_register_write

Low level library

jlink_init

config_register_write_bulk

load_dll

Figure 3.10: The flow of configuration libraries implementation (from top to bottom)

34

CHAPTER 3. DEVELOPMENT OF THE LABORATORY CONFIGURATION SYSTEM

The table 3.4 lists all configuration libraries with a small description. With these configuration

libraries, the verification team has developed the advanced libraries to verify the functionality

of internal blocks of the chip.

Name of a function Description

J-Link initialization library

load_dll loads the DLL library into MATLAB workspace

jllink_init Opens the J-Link connection and sets the JTAG
speed

Low level library

send_address loads the Opcode of a LOADADD instruction
into instruction register and the address of the
configuration register into a data register

write_data loads the Opcode of a WRITE instruction into
instruction register and writes the data value of
the configuration register into a data register

read_data loads the Opcode of a READ instruction into
instruction register and reads the data value out
from the configuration register

Main configuration library

config_register_write(address,data) uses send address and write data functions
from low level library to load an address of a
configuration register and to write data into
configuration register.

config_register_read(address) uses send address and read data functions
from low level library to load an address of a
configuration register and to read data from the
configuration register.

config_register_write_read(address,data) uses send address, write data and read data
functions from low level library to load an
address of a configuration register, to write data
into configuration register, and to read data
from the configuration register.

config_regitser_write_bulk(registers) uses send address and write data functions from
low level library to load multiple addresses of
the configuration registers and to write data
into respected configuration registers by looping
the steps multiple times.

Table 3.4: List of created Configuration libraries

The table 3.5 lists the examples of configuration of the Vulcan chip by using configuration

libraries. The Opcode for all three instructions denoted in binary code format. In

config_register_write_bulk(registers) library, the registers indicate the multiple addresses and

data values of configuration registers.

35

3.3. IMPLEMENTATION INTO MATLAB ENVIRONMENT

Configuration Library Instruction Opcode address data
LOADADD WRITE READ

config_register_write(2,30) 100 101 - 2 30

config_register_read(2) 100 - 110 2 30

config_register_write_read(5,30) 100 101 110 5 30

config_register_write_bulk(registers) 100 101 - 1,2 2,1

Table 3.5: Configuration examples and information in configuration registers

A sample MATLAB script for the send_address function shows that the way of sending the

LOADADD Opcode and address of the configuration register.

1 f unc t i on send_address (address)

2 l oad_ins t r = 4 ;

3 i n s t r_pt r = l i b p o i n t e r (’ u int8Ptr ’ , l oad_ins t r) ;

4 % load an i n s t r u c t i o n to load an address o f r e g i s t e r

5 c a l l l i b (’ JLink_x64 ’ , ’ JLINK_JTAG_StoreInst ’ , inst r_ptr , 3) ;

6 load_address = address ;

7 address_ptr = l i b p o i n t e r (’ u int8Ptr ’ , load_address) ;

8 % load an address o f the c o n f i g u r a t i o n r e g i s t e r

9 c a l l l i b (’ JLink_x64 ’ , ’JLINK_JTAG_StoreData ’ , address_ptr , 8) ;

10 end

A sample MATLAB script for the write_data function shows that the way of sending a WRITE

instruction Opcode and data value into the configuration register.

1 f unc t i on write_data (data)

2 l oad_ins t r = 5 ;

3 i n s t r_pt r = l i b p o i n t e r (’ u int8Ptr ’ , l oad_ins t r) ;

4 % load an i n s t r u c t i o n to wr i t e data

5 c a l l l i b (’ JLink_x64 ’ , ’ JLINK_JTAG_StoreInst ’ , inst r_ptr , 3) ;

6 write_data = data ;

7 data_ptr = l i b p o i n t e r (’ u int8Ptr ’ , write_data) ;

8 % wr i t e the data in to c o n f i g u r a t i o n r e g i s t e r

9 c a l l l i b (’ JLink_x64 ’ , ’JLINK_JTAG_StoreData ’ , data_ptr , 8) ;

10 end

3.3.3 J-Link JTAG Communication

The J-Link JTAG sends the data on TMS and TDI signals with the synchronization to the

TCK. It has two output buffers to store the TMS and TDI signals and an input buffer to

store the TDO signal. The instruction and data sequences stored in the output buffers until

36

CHAPTER 3. DEVELOPMENT OF THE LABORATORY CONFIGURATION SYSTEM

the Synchronization function JLINK_JTAG_SyncBits or JLINK_JTAG_SyncBytes is being

called. The instruction and data sequences are stored in buffers from least significant bit (LSB)

to most significant bit (MSB) order. The size of each buffer is 1 MByte [14].

3.3.4 Configuration Results

As explained in section 3.1.5, the JTAG signals are recorded by using Saleae logic analyzer

while configuring the Vulcan chip. With the recorded activity, the information in instruction

and data registers is verified. Thus, the configuration system and libraries are implemented

with more reliability for the configuration of the Vulcan chip and to enable the chip for further

verifications.

3.3.4.1 Loading an Address

To load an address of the configuration register, the instruction Opcode for a LOADADD is

shifted into instruction register through the TDI signal. Then, the address of the configuration

register is shifted into the data register through TDI signal. The JLINK_JTAG_StoreInst

and JLINK_JTAG_StoreData API functions are used to drive the TAP controller TMS signal

into Shift-IR and Shift-DR states respectively. The TAP controller scan for the configuration

register which has the same loaded address in the Vulcan chip. The LOADADD instruction

has to be loaded first, to perform write (or) read operation.

3.3.4.2 Writing Data

Opcode for LOADADD

instruciton
Opcode for WRITE

instruciton

Address of the

configuration register

Data value written into the

configuration register

Figure 3.11: JTAG signals response of the exemplary write instruction, recorded by the Saleae
logic analyzer

After loading an address of the configuration register an Opcode of a WRITE instruction is

37

3.3. IMPLEMENTATION INTO MATLAB ENVIRONMENT

shifted into instruction register to enable the write operation into the configuration register.

The data is shifted into the data register and then writes it into the configuration register which

is pointed out by the TAP controller. The write operation tested result of the configuration

register by using the config_register_write library is shown in figure 3.11.

3.3.4.3 Reading Data

To perform the reading operation for configuration registers, first, the address of the

configuration register has to be loaded (see in section 3.3.4.1). Then, the READ instruction

Opcode is shifted into instruction register to enable the read operation from the configuration

register. The TAP controller scan for the selected configuration register which has the same

loaded address and sends out the data of selected configuration register on TDO signal. The

JLINK_JTAG_StoreInst and JLINK_JTAG_StoreGetData API functions are used to drive

the TAP controller TMS signal into Shift-IR and Shift-DR states respectively. The read

operation tested result of the configuration register by using the config_register_read library

is shown in figure 3.12.

Opcode for LOADADD

instruciton

Address (2) of the

configuration register

Opcode for READ

instruciton

Reads out the data value

from the configuration

register

Figure 3.12: JTAG signals response of the exemplary read instruction, recorded by the Saleae
logic analyzer

3.3.4.4 Writing and Reading Data

For writing and reading operations, it loads an address of a configuration register, writes the

specified data into selected configuration register by using the TDI signal and reads the data

from the selected configuration register on the TDO signal. These three operations are explained

individually in above three sections (3.3.4.1, 3.3.4.2 and 3.3.4.3). The tested write and read

operations of the configuration register by using config_register_write_read library is shown

in figure 3.13.

38

CHAPTER 3. DEVELOPMENT OF THE LABORATORY CONFIGURATION SYSTEM

Opcode of a LOADADD

instruction

Address of a configuration

register

Opcode of a WRITE

instruction

Data writing into the

configuration register

Opcode of a READ

instruction

Reading back the data from

the configuration register

Figure 3.13: JTAG signals response of the exemplary write and read instructions, recorded by
the Saleae logic analyzer

3.3.4.5 Writing Bulk Instructions and Data

The process of writing more than one instruction and data values into configuration

registers at the same time is the same process like in writing data section (3.3.4.2) but the

JLINK_JTAG_SyncBits function is not being called until the specified addresses and data

loaded into output buffers of the J-link device. Once it is done with the loading of addresses

and data values, it transfers the complete data out in a single attempt. Up to 400 instructions

along with the data values can fit in the J-Link buffer. The write operation tested result of

multiple configuration registers by using the config_register_write_bulk library is shown in

figure 3.14.

Address of the

configuration register

Address of the

configuration register

Data of the configuration

register (address is 1)

Data of the configuration

register (address is 2)

Figure 3.14: JTAG signals response of the exemplary write instruction for multiple configuration
registers, recorded by the Saleae logic analyzer

39

3.4. LABORATORY RESULTS WITH THE VULCAN

3.3.4.6 Synchronization of JTAG Signals

From the tested results of all operations of the configuration registers, the periodic TCK clock

signal generation and the synchronization of the TMS and TDI signals with the TCK signal

are achieved. The figure 3.15 depicts the synchronization of JTAG signals.

TMS,TDI and TDO are synchronized with the TCK signalMS TDI and TDO are synchronized with the TCK si

Figure 3.15: The synchronization of JTAG signals, recorded by a Saleae logic analyzer

3.4 Laboratory Results with the Vulcan

5

20

USB

20

TCP/IP

network

1

2

3

4

5

6

Figure 3.16: Vulcan configuration system setup

40

CHAPTER 3. DEVELOPMENT OF THE LABORATORY CONFIGURATION SYSTEM

List of hardware components

1. J-Link Pro device 2. J-Link JTAG 20-pin measurement adapter

3. Saleae logic analyzer 4. 20-pin flat cable

5. Vulcan Evaluation Board 6. MATLAB software tool

Table 3.6: List of hardware components used in the Vulcan configuration system setup

The ZedBoard FPGA is replaced by the Vulcan evaluation board (which the Vulcan chip

mounted on it) in configuration setup and the updated setup is shown in figure 3.16 and the

table 3.6 lists all hardware components used in the Vulcan configuration system setup. In the

Vulcan configuration setup (figure 3.16), the measurement adapter directly connected to the

J-Link device with 1:1 point contact. The Vulcan evaluation board JTAG port is connected to

the measurement adapter by using a 20 pin flat cable.

The instruction and data are fed into configuration registers of the Vulcan chip by using the

created configuration libraries (listed in the table 3.4) to test the writing and reading operations

in the configuration registers. The loading an address, writing data and reading data operations

of the configuration registers are tested and compared with the configuration results in section

3.3.4. An example of the tested configuration operations is shown in figure 3.17.

Opcode of a LOADADD

instruction

Address of a configuration

register

Opcode of a WRITE

instruction

Data writing into the

configuration register

Opcode of a READ

instruction

Reading back the data from

the configuration register

Figure 3.17: Screenshot of a Saleae logic analyzer, response of the JTAG signals recored while
configuring the Vulcan chip

While testing the write and read operations in all configurations registers by using the created

configuration libraries, few random data values (from 1 to 256) are failed to write into all

configuration registers. The fails in registers are investigated in different aspects: the error

rate over all configuration registers for all different data values and the error rate over different

JTAG speeds is also calculated. The additional verification tests are done by measuring the

processing time for different instructions (write,write and write-read).

41

3.4. LABORATORY RESULTS WITH THE VULCAN

3.4.1 Error Rate Results

The error rate over different configuration registers is calculated as the number of fails to write

into the configuration register over the total number of tries to write into the configuration

register.

Figure 3.18: The error rate over different configuration registers

From the results in figure 3.18, the register number 24 is completely failing (100% error rate) to

perform the write and read operations and the registers 21, 22 and 23 also have relatively high

error rate compared to other configuration registers. The register number 41 (called conf_pam)

writes the data values up to 128 only(maximum value is 255). If the data value higher than

128 is written into the register 41, it terminates the configuration process (it will not write any

data value further). The error rate is not homogeneous in all registers. Thus the configuration

registers are not significant of the fails in registers. Due to the time constraint of the thesis,

the reason for the fails is not investigated. The possible reason could be the flip-flop fails and

it could occurs because of the setup violation due to different clock phases of the JTAG and

internal clock of the chip.

42

CHAPTER 3. DEVELOPMENT OF THE LABORATORY CONFIGURATION SYSTEM

The error rate over different JTAG clock speeds is calculated to check the impact of the JTAG

speed on the fails to perform the write and read operations in the configuration registers. The

figure 3.19 draws the error rate over different JTAG speeds. From the results, it is also shown

that the error rate is not significant for the fails in registers.

Figure 3.19: The error rate over different JTAG speeds for all configuration registers

The error rate result over both aspects is concluded that the reason for the fails could be in the

design of the chip. The reasons for the fails are the PLL clock was not locked and the J-Link

JTAG clock is not synchronized with the PLL clock. The update_DR signal is sent along with

the address and data from the JTAG TAP controller to the configuration registers block in the

Vulcan chip. But the update_DR signal is some times delayed (not in phase with the digital

clock). In result, the fails in registers occurred. To make the JTAG clock synchronization with

the PLL clock the 625 kHz JTAG clock signal is applied externally. Thus, the issue of fails in

configuration registers is solved and the Vulcan chip is successfully configured.

43

3.4. LABORATORY RESULTS WITH THE VULCAN

3.4.2 Processing Time Results

The processing time to perform write, read and write-read operations for registers (from 1 to

230) with one data value at 1000 kHz is shown in figure 3.20(a). The processing time for bulk

instructions (one configuration register address and data values from 0 to 255 in an increment

order) is also calculated and shown in figure fig. 3.20(b). The processing time is the time

to communicate between MATLAB, Vulcan chip via the J-Link device to perform a single

instruction.

(a) Processing time for different instructions
(b) Processing time of write bulk instructions

Figure 3.20: Processing time for different instructions

From the results (in figure 3.20), the processing time to write an instruction and data into

configuration register is in an average of 0.74 ms, to read an instruction and data is in an

average of 0.78 ms, and to write (and) read an instruction and data is around 0.86 ms. The

processing time for bulk instructions is also calculated and it is proportional to the number of

instructions performed. In the Vulcan chip the processing time for all configuration registers

is not stable (peaks) because of the other tasks performed by the host CPU at the same time.

The processing time for different instructions (write, read and write-read operations) is listed

in the table 3.7.

configuration operation processing time

Write ∼0.74 ms

Read ∼0.78 ms

Write-Read ∼0.86 ms

Table 3.7: The processing time for different instructions

44

Chapter 4

Development of Data Analysis

Functions

In chapter 3, the implementation of the JTAG configuration system for the Vulcan chip and

the configuration libraries to configure the chip are addressed. In this chapter, the data flow

in the Vulcan chip and extraction of the data in different data processing modes are discussed.

The data extraction algorithms are implemented to analyze the data in different data modes.

The data extraction algorithms constitute both interpretation of the data and analysis of the

data. The created algorithms compose the data samples in plots with the actual data samples.

The redundant data is subtracted from the data samples. The composition method of the data

samples is based on the data processing modes of the chip.

4.1 Overview of the Vulcan Data Flow

The main task of the Vulcan read-out chip is to preprocess the recieved analog signals and

digitize it and transmits the information to storage without loss of data. The analog unit (AU)

digitizes the analog signal and sends it to the digital Control unit (CU). Then the control unit

process the data in different data processing modes and transmits the data with a double data

rate in selected data modes.

4.1.1 Analog Unit

A transimpedance amplifier converts the current signal which comes from the PMTs into an

analog voltage signal. These signals are fed through the ADC. The converter follows the

principle of a flash ADC in conversion and it has an 8-bit resolution. Thus, the number of

comparators is limited to 255 (28
− 1) comparators1. As explained in section 2.2.2.1 the analog

1Number of comparators in a N-bit ADC are 2N
− 1

45

4.2. LABORATORY SETUP

input voltage is compared with consecutive reference voltages of each comparator parallel and

gives an output as a logic 1˝or logic 0˝. The output of the comparators (thermometer code)

is transfer to the digital control unit. Then the digtal control unit process the data in different

data modes.

4.1.2 Digital Control Unit

As mentioned in section 2.3, the data samples are transmitted as four samples in one clock

cycle. In ADC_Encoder, the thermometer code is converted into the gray coded data with two

options (by counting the number of ones and state transition detection in thermometer code).

The gray coded data is transferred to the PAM module and it is converted into binary data (8

bit samples). Then, the ADC 1, 2 and 3 samples are assigned to high gain, medium gain and

low gain by using the threshold values set by the configuration registers. In normal (PAM) data

processing mode the data samples are stored in a ring buffer along with the header information

and then transfered to the output. The ADC passthrough (APT) module gets the ADC 1, 2

and 3 samples from PAM module and the assignment of high gain, medium gain and low gain

is done as for in the PAM mode. The gain selection is done by using gain source provided

on trigger output lines. The digital signal processing (DSP) block provides the three identical

trigger output lines. The data streams (4×8 bits) in different data modes (PAM mode, APT

mode and scan mode) are transferred to the LVDS multiplexer. This multiplexer selects the

data stream from different data modes by using the configuration register and sends the data

stream to the output on LVDS bus. The LVDS bus transfers the data (16 bit) with double

data rate. The figure 4.1 illustrates the data flow in a control unit.

ADC_Encoder Ring Buffer

APT Mode DSP

LVDS_MUX

Gray coded

data

Triggers (3bit)

(TRG0,TRG1,TRG2)

LVDS data

(16 bit)
Thermometer

code

Gray to binary

conversion

ADC1,2,3 data

32 bit

Output

Output

From

AU

CU

PAM

Figure 4.1: Data flow in control unit

4.2 Laboratory Setup

The output data in different data modes of the chip has to be analyzed. For the data analysis,

a logic analyzer is added to the chain of hardware setup (figure 3.16) to analyze and store

46

CHAPTER 4. DEVELOPMENT OF DATA ANALYSIS FUNCTIONS

the data and also to transfer the stored data to the connected PC for further analysis. The

schematic of the Vulcan laboratory setup is shown in figure 4.2.

U
S

B

J-Link Pro device
Measurement

Adapter

Vulcan chip

(Vulcan Evaluation Board)

Saleae Logic

Analyzer

USB cable

Ethernet cable

5 pin cable

20 pin cable

19 pin cable

Keysight

Logic Analyzer

Figure 4.2: Schematic of the Vulcan laboratory setup

4.2.1 Logic Analyzer

A logic analyzer is an electronic device that captures and displays the signals from the digital

system. It is useful when the analysis of the timing relationships between the captured signals

in a digital system is needed. It connects to a computer over USB or Ethernet connection and

delivers the captured signals to the connected computer device.

Figure 4.3: Logic Analyzer U4164A

Keysight U4164A Series modular logic analyzer [15] (shown in figure 4.3) is connected to the PC

over a TCP/IP network and controlled via MATLAB. The LVDS interface (shown in 3.6(a)) of

the Vulcan chip is connected to the logic analyzer pods by using 16 pin cables. The output (16

bit LVDS data) of the Vulcan chip is sent to the logic analyzer through the pods to analyze and

47

4.3. PARSE DATA INPUT

store the data. The stored data is transferred to the connected PC in a csv file format (explained

in section 4.2.1.1). In the logic analyzer different data fields are set to the different data (LVDS

data and triggers). The transfered data is used by the created extraction algorithms for further

analysis.

4.2.1.1 Data Transfer Format

The Comma Separated Value (*.csv) data transfer format is used to transfer the data from the

logic analyzer to the connected PC. In a CSV format the data can be recorded with different

fields in a tabular form. Each field is separated by a comma (,) and it used as a data filed

separator. This format is not standardized. It can also contain semicolon (;) and quotation

marks (") as field separators.

4.3 Parse Data Input

Parsing data means breaking the data fields into the more readable format and assigning

variables to the respected data fields by following a set of rules. Thus, it can be easily

interpreted, managed and transmitted. The data fields in a CSV file are parsed into three

different variables and interpreted while extracting the data.

4.4 Extraction of the Data

The data extraction algorithms are implemented for ADC passthrough (APT) mode, scan

mode and normal (PAM) mode to visualize the transferred data in MATLAB. To test the

created algorithms, the CSV data files for different data modes were provided by the in-house

IC development team from the Vulcan simulations. Then the algorithms were tested with the

actual Vulcan data.

4.4.1 Extraction of the ADC Pass-Through Mode Data

The plot for the generated data by the simulation is shown in figure 4.4 and the three trigger

lines originate the source of the data samples. With this plot it is ambitious to analyze the

data (source of an ADC and data sample value). To make the analysis of the data samples

easier, the data samples are extracted based on the trigger lines and plotted in MATLAB by

using the created data extraction algorithm.

The data along with the three trigger lines is transmitted from the logic analyzer to the

connected PC. The structure of the data transfered in a CSV file is shown in the figure 4.5.

48

CHAPTER 4. DEVELOPMENT OF DATA ANALYSIS FUNCTIONS

Figure 4.4: Screenshot of the ADC Pass-Through Mode data plot from the Vulcan simulation

TRG2
Data

samples
TRG0TRG1

1Data value 00

0Data value 10

0Data value 10

0Data value 01

Figure 4.5: The structure of the transfered data along with the trigger lines in a CSV file

APT mode

data

Trigger lines

Actual data

samples

TRG0

TRG2

TRG1

Sorting

Low gain ADC

samples

Sorting

Medium gain

ADC samples

Sorting

High gain ADC

samples

1 bit length

8 bit length

3 bit length

Figure 4.6: The Flow of extraction of the data in APT mode

49

4.4. EXTRACTION OF THE DATA

The flow of data extraction in ADC passthrough mode is shown in the figure 4.6. In trigger

data field, the three trigger bits are denoted as three different trigger lines and assigned to three

different ADCs. The data samples are compared in such a way: if the first bit is high (TRG0

is 1), the data samples are from ADC1, if the second bit is high (TRG1 is 1) the data samples

are from ADC2 and if the third bit (TRG2 is 1) is high the data samples are from ADC3. The

data samples are sorted along with the trigger lines for three different ADCs. Only one trigger

line is enabled at a time (explained in figure 2.14).

The created algorithm sorts the data and plots the sorted data along with the trigger lines.

The figure 4.7 depicts the plot for the data samples extracted from the input data provided by

the Vulcan simulation (by the IC development team).

Figure 4.7: Extracted ADC Pass-Through Mode data from the Vulcan simulation

The created algorithm is also tested with the actual Vulcan data. The data transfered to the

logic analyzer from the Vulcan chip is shown in figure 4.8. The transfered data is stored in the

logic analyzer and sends out to the connected PC in a csv file format for further analysis of the

data. From the figure only one trigger line (TRG0) is enabled and it indicates that all samples

are from high gain ADC only. The developed algorithm extracts the data samples along with

the trigger lines and plots the extracted data.

The figure 4.9 shows the plot for the extracted data samples from the output data of the Vulcan

chip. The data samples are sorted and plotted for easy analysis. The extraction algorithm is

more efficient for the analysis of large amount of data samples from the chip.

50

CHAPTER 4. DEVELOPMENT OF DATA ANALYSIS FUNCTIONS

Figure 4.8: A Screenshot of the Logic analyzer for ADC Pass-Through Mode data from the
actual Vulcan chip

Figure 4.9: A plot for the extracted ADC Pass-Through Mode data from the actual Vulcan
chip

51

4.4. EXTRACTION OF THE DATA

4.4.2 Extraction of Scan Mode Data

4.4.2.1 The Intended Method

The data processing scenario in scan mode is explained in section 2.4.3. Each dataset consists

of 32 sections (each section consists of four 8 bit samples). All sections in the data set are

converted into binary code format. The binary converted sections are sorted as four 256 bit

data words (four thermometer code samples). If the data set does not have enough samples

(128 samples), the process of sorting data samples will be terminated. The sorted data sets

will be plotted in a sequential order. But this mode is not working as planned because of the

mismatch in bit assignment in a configuration register called conf_encoder to configure the

scan mode.

Scan mode data and ADC passthrough (APT) mode data is sent to the LVDS multiplexer via

the APT block. The data from one of these two modes can be selected and sent out. This

selection is done by using an enable signal. Because of the mismatch in bit assignment in a

configuration register the enable signal was wrongly connected. Due to a swap in the connection

of enable signal, the same signal which enabled the scan mode data to be sent out, disabled the

APT block. As a result, the scan mode data processing mode is disabled, the trigger line TRG0

is not enabled and no data samples are processed in scan mode. To overcome this scenario a

workaround method is proposed and the data extraction algorithm is modified to cope with

the workaround method.

4.4.2.2 Workaround Method

The workaround method is implemented in such a way that the data samples are transmitted

always from the high gain ADC of the APT block. The synchronization pattern is generated

to identify the start of the data set. The synchronization pattern generation is done in three

steps. The first step is, forcing ADC samples to zero for few clock cycles. The second step is,

set the first half of the thermometer code sample to sequence of ones and invert it (sequence of

zeros) for the second half. The third step is, shut down the inversion and start the transmission

of the actual data sets. These three steps are configured in the ADC-Encoder block. The

synchronization pattern is transmitted always before the actual data to identify the start of

the data set. The data sets are converted from gray coded to the binary format. After the

detection of a start of the new data set, the sorting of actual data sets is done same like in

intended method (see in section 4.4.2.1). The figure 4.10 shows the plot for data samples from

the Vulcan simulations.

52

CHAPTER 4. DEVELOPMENT OF DATA ANALYSIS FUNCTIONS

Figure 4.10: Screenshot of the Scan mode data with workaround method from the Vulcan
simulation

From the figure 4.10, the data samples with 16 bit length are transmitted and it is very

complicated to determine the 256 bit thermometer code samples to analyze the data. Thus, the

data sets are extracted and sorted as 256 bit words (thermometer code) by using the created

extraction algorithm and it plots the sorted data words in a sequential order. The figure 4.11

shows the flow of data extraction in this data mode.

Scan mode

data

ADC data

samples

Trigger

TRG0

Sorting the data as

256 bit words

8 bit length

1 bit length

Figure 4.11: The flow of the extraction of the data in Scan mode

The extracted data sets (4× 256 bit samples) for the data samples provided by the in-house

IC development team (from the Vulcan simulation) with workaround method are plotted in

MATLAB and shown it in figure 4.12. The gray color in the figure represents the sequence of

ones and the white color represents the sequence of zeros in a thermometer code.

53

4.4. EXTRACTION OF THE DATA

Figure 4.12: Extracted scan mode data with workaround method from the Vulcan simulation

Figure 4.13: The data in scan Mode with workaround method from the actual Vulcan chip
before data interpretation

54

CHAPTER 4. DEVELOPMENT OF DATA ANALYSIS FUNCTIONS

The created algorithm is tested with the data from the actual Vulcan chip. The data in

scan mode is transferred to the logic analyzer from the Vulcan chip. The figure 4.13 shows

the transferred data before the data extraction algorithm is applied. The data samples are

transmitted as 8 bit gray coded data samples (e.g: data value 170 in gray coded is equal to the

255 of the binary format data). In workaround method the data samples are always originates

from the high gain ADC only. Thus, the trigger line (TRG0) is always enabled for the scan

mode data processing mode.

The data samples are converted from gray coded data to binary coded data, sorted as 256 bit

data words and plotted by using the created algorithm. The figure 4.14 illustrates the extracted

data sets in scan mode from the Vulcan chip.

Figure 4.14: Extracted scan mode data from the Vulcan chip

55

4.4. EXTRACTION OF THE DATA

4.4.3 Extraction of Normal Mode Data

The data included with the raw header data generated from the Vulcan simulation (by the IC

development team) is shown in figure 4.15. The trigger lines are generated from the digital

part of the chip. The extraction algorithm is developed to subtract the redundant information

(trigger sequence) from the data and to plot the extracted data.

Figure 4.15: Screenshot of the normal mode data from the Vulcan simulation

In normal mode, the data is transmitted along with the trigger sequence (reset signal and header

information). The figure 4.16 denotes the structure of the data in normal mode transfered from

the logic analyzer to the connected PC.

Reset signal (16 bit) 015

Reset signal (16 bit) 1631

Header information (16 bit) 015

Header information (16 bit) 1631

Data samples (16 bit) 015

Data samples (16 bit) 015

<bit><bit>

Figure 4.16: The structure of the data along with the trigger sequence in a CSV format file
transfered to the connected PC

The process of data extraction in normal mode is shown in figure 4.17. After parsing the data

fields into three different variables the four consecutive zero samples (reset signal) are detected

from the data samples. After the reset signal detection, the next four samples are considered as

the header information. After header information, the data samples until the next reset signal

are considered as actual data samples. The actual data samples are extracted and sorted based

on the bus mode (4 bits) and trigger (4 bits) values in the header information. The timing

56

CHAPTER 4. DEVELOPMENT OF DATA ANALYSIS FUNCTIONS

information for every data sample is extracted from the digital counter. Then, the extracted

data samples are plotted based on the timing information. The data samples in NOISE, HG,

MG and LG bus modes are considered as normal flow state. The data samples in NOISE50,

HG50, NOISE80 and HG80 bus modes are considered as overflow state. The flow state indicates

the occupancy of the ring buffer. For example, the bus mode is HG50 that means the ring buffer

filled 50% and the data samples are from high gain ADC.

PAM mode

data

Reset signal

(32 bit)

Header

infromation

 (32 bit)

Actual data

samples (8 bit)

Trigger

(4 bit)

Bus mode

 (4 bit)

Bubble

counter

(4 bit)

Digital

Counter

(10 bit)

Sync.

Counter

(10 bit)

Sorting

based on the bus

mode

, 32 bit length

8 bit length

4 bit length

10 bit length

NOISE

HG

MG

LG

NOISE50

HG50

NOISE80

HG80

Figure 4.17: The Flow of extraction of the data in PAM mode

The extraction of the actual data samples (without trigger sequence) of the simulated data is

depicted in the figure 4.18. In noise mode bus mode the 8-bit data samples are splitted into

two 4-bit data samples by the extraction algorithm to emptying the ring buffer. The low gain

data is scaled by 100, medium gain data is scaled by 10 and high gain data is scaled by 1 for

better analysis with the plot. The flow indicator in the plot denotes the flow state of the data

samples (normal flow or overflow).

57

4.4. EXTRACTION OF THE DATA

Figure 4.18: A plot of the extracted normal mode data from the Vulcan simulation

LVDS

LSB

sample

LVDS

MSB

sample

LVDS

trigger

lines

Figure 4.19: A screenshot of the PAM Mode data transferred to the Logic analyzer from the
actual Vulcan chip

58

CHAPTER 4. DEVELOPMENT OF DATA ANALYSIS FUNCTIONS

After the extraction of the actual data from the data provided by Vulcan simulations, the

created algorithm is tested with the data from the actual Vulcan chip. The transmitted data

with the raw header data in PAM processing mode to the logic analyzer from the Vulcan

chip is shown in figure 4.19. The data samples are originated from the noise and high gain

bus modes. The plot is deceived with the extra information along with data. The created

extraction algorithm is eliminated this extra information from the data for easy analysis of the

data.

The extracted actual data from the Vulcan chip is depicted in the figure 4.20. The noise bus

mode data samples are splitted into two samples before sorting the data to make the ring buffer

empty (explained in detailed in section 2.4.1). The HG bus mode samples are scaled by 10 for

the better analysis of the data samples in the plot.

Figure 4.20: A plot for the extracted PAM mode data from the Vulcan chip

The data extraction algorithms for ADC pass-through (APT) mode, scan mode and normal

(PAM) mode are implemented and tested with the data from the actual Vulcan chip. The data

analysis in different data modes made easier.

The created data extraction algorithms will be used in the automatic data acquisition and

analysis environment to make life easier in the analysis of the data from the chip.

59

4.4. EXTRACTION OF THE DATA

60

Chapter 5

Conclusion and Outlook

5.1 Vulcan Chip Configuration

The aim of the work was to configure the Vulcan chip, enabling it for the verification and data

interpretation in different data modes of the chip. In this work the JTAG interface is used

in order to configure the Vulcan chip. The JTAG-enabled device called J-Link Pro emulator

has been used to perform the JTAG operations for the configuration of the chip. Different

MATLAB libraries based on custom instructions (LOADADD, WRITE and READ) have been

created in order to perform write and read operations of the configuration registers in the chip.

The developed functions make use of the DLL library and API functions provided by the J-Link

SDK. During the development phase, a ZedBoard FPGA has been used to emulate the chip in

advance. The Vulcan chip has been successfully configured by using the developed MATLAB

libraries. The verification team was subsequently able to develop the verification tests with the

help of the created MATLAB libraries to configure the individual blocks of the chip.

The configuration results from the actual Vulcan chip have been compared with the emulated

results. It has been shown that a periodic JTAG Test Clock (TCK) signal is generated and that

synchronization of the TMS, TDI and TDO signals with the TCK signal has been achieved,

thus enabling correct write and read operations. The processing time for different instructions

(write, read and write-read) is calculated. In Vulcan chip, a percentage of writing operations

on data values (from 1 to 256) are failed in all configuration registers. The fails are investigated

by calculating error rate over different aspects and solved. Thus, the Vulcan chip is successfully

configured.

The configuration system which has been set up by using the JTAG interface is used for enabling

the chip and for further verification tests.

A description of the principles of the JTAG communication protocol, working experience with

the MATLAB and J-Link emulator was obtained through this work.

61

5.2. DATA EXTRACTION

5.2 Data Extraction

The analysis of large quantity raw numeric data is a challenging task. In order to make the

process more efficient, dedicated data extraction algorithms have been developed. In this work

the extraction algorithms for different data modes (ADC passthrough (APT) mode, scan mode

and normal (PAM) mode) have been implemented in MATLAB. These algorithms have been

tested with the data generated by the Vulcan simulation and then with the actual data acquired

from the Vulcan chip.

The APT mode extraction algorithm sorts the data samples from all three ADCs based on

the trigger lines and plots the sorted data samples along with the trigger lines. Therefore, the

analysis of data samples from different gain ADCs is made easier. The scan mode extraction

algorithm sorts the data samples as 256 bit data words and plots the data words in a sequential

order. Thus, the debugging of comparators in an ADC is achieved. The PAM mode extraction

algorithm sorts the data samples based on the bus mode (gain changes) provided in the header

information and plots the actual data samples (no trigger sequence) only. Thus, the analysis

of data in more detail and the reduction in amount of data but not in the quality of data are

gained.

The developed data extraction algorithms are now ready for the implementation of automatic

data acquisition and data analysis environment for the Vulcan chip.

5.3 Future Work

The created configuration system with libraries and the data extraction algorithms will be used

to accelerate the verification tests of the Vulcan chip.

The processing time1 of different instructions (write, read, write-read) for all configuration

registers is calculated. This processing time can be improved for different instructions by

calculating the time to process different instructions only in Vulcan chip.

Enabling to get data in scan mode as for the intended method, the bit assignment issue in

configuration register for the scan mode data processing mode should be overcome in the future

version of the Vulcan chips.

The data extraction algorithms are implemented only for APT mode, scan mode and normal

(PAM) mode. For assistance of improved data analysis the data extraction algorithms for the

other three data modes (serial mode, parallel mode and derivative mode) should be implemented

in MATLAB. An automatic data analysis and data acquisition environment could be developed

by using the created configuration system with libraries and data extraction algorithms.

1Processing time is the time to communicate between MATLAB, Vulcan chip via J-Link device

62

Bibliography

[1] Miao He. JUNO Conceptual Design Report. 2015.

URL: https://arxiv.org/pdf/1508.07166.pdf.

[2] Yu-Feng Li. Overview of the Jiangmen Underground Neutrino Observatory (JUNO).

Vol.31 (2014) 1460300 (5 Pages), DOI:10.1142/S2010194514603007. International Journal

of Modern Physics: Conference Series.

[3] Neutrino oscillation parameters. [15.02.2107]

URL: http://juno.ihep.cas.cn/ATEjuno/201309/t20130912_109433.html.

[4] Photomultiplier tubes basics and applications. PMT hand book-Hamamatsu. Third edition

(Edition 3a). Available at URL: https://www.hamamatsu.com/resources/pdf/etd/PMT_

handbook_v3aE.pdf.

[5] Photomultiplier Tube (PMT) coupled to a Scintillator. [20.02.2017] URL: https://

commons.wikimedia.org/wiki/File:PhotoMultiplierTubeAndScintillator.jpg.

[6] Tutorial 810. Understanding of Flash ADCs-maxim integrated.

URL: http://pdfserv.maximintegrated.com/en/an/TUT810.pdf

[7] Nicholas Gray. ABCs of ADCs Analog-to-Digital Converter Basics. National Semiconductor,

2003.

[8] JTAG basics. Training JTAG Interface guide. Lauterbach GmbH. Version 26 October, 2016.

URL: http://www2.lauterbach.com/pdf/training_jtag.pdf.

[9] TAP controller state machine. [05.02.2107]

URL: https://de.wikipedia.org/wiki/Joint_Test_Action_Group.

[10] J-Link or J-Trace user guide. SEGGER Microcontroller GmbH & Co. KG. Software Version

6.10a. 05 December, 2016.

[11] SEGGER J-Link Software Development Kit. User guide for the J-Link application program

interface (API). Software Version 6.10n. 21 November, 2016.

[12] Saleae Logic Pro 8 software user guide. 29 December, 2014.

63

BIBLIOGRAPHY

[13] Saleae Logic Pro 8 USB logic analyzer data sheet. 2015.

[14] SEGGER J-Link Software Development Kit. User guide for the J-Link application program

interface (API). Software Version 6.10n. Chapter 4 (338 - 354). 21 November, 2016.

[15] Keysight U4164A logic and protocol analyzer user guide.

64

Jül-4402

Juli 2017

ISSN 0944-2952

