000836992 001__ 836992
000836992 005__ 20210129231143.0
000836992 0247_ $$2doi$$a10.1088/1751-8121/aa7fca
000836992 0247_ $$2ISSN$$a0022-3689
000836992 0247_ $$2ISSN$$a0301-0015
000836992 0247_ $$2ISSN$$a0305-4470
000836992 0247_ $$2ISSN$$a1361-6447
000836992 0247_ $$2ISSN$$a1751-8113
000836992 0247_ $$2ISSN$$a1751-8121
000836992 0247_ $$2Handle$$a2128/15162
000836992 0247_ $$2WOS$$aWOS:000406799800001
000836992 0247_ $$2altmetric$$aaltmetric:23318380
000836992 037__ $$aFZJ-2017-06014
000836992 041__ $$aEnglish
000836992 082__ $$a530
000836992 1001_ $$0P:(DE-Juel1)159135$$aTordeux, Antoine$$b0$$eCorresponding author
000836992 245__ $$aInfluence of the number of predecessors in interaction within acceleration-based flow models
000836992 260__ $$aBristol$$bIOP Publ.$$c2017
000836992 3367_ $$2DRIVER$$aarticle
000836992 3367_ $$2DataCite$$aOutput Types/Journal article
000836992 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1503655790_30059
000836992 3367_ $$2BibTeX$$aARTICLE
000836992 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836992 3367_ $$00$$2EndNote$$aJournal Article
000836992 520__ $$aIn this paper, the stability of the uniform solutions is analysed for microscopic flow models in interaction with $K\geqslant1$ predecessors. We calculate general conditions for the linear stability on the ring geometry and explore the results with particular pedestrian and car-following models based on relaxation processes. The uniform solutions are stable if the relaxation times are sufficiently small. However the stability condition strongly depends on the type of models. The analysis is focused on the relevance of the number of predecessors K in the dynamics. Unexpected non-monotonic relations between K and the stability are presented. Classes of models for which increasing the number of predecessors in interaction does not yield an improvement of the stability, or for which the stability condition converges as K increases (i.e. implicit finite interaction range) are identified. Furthermore, we point out that increasing the interaction range tends to generate characteristic wavelengths in the system when unstable.
000836992 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000836992 588__ $$aDataset connected to CrossRef
000836992 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b1$$ufzj
000836992 7001_ $$0P:(DE-HGF)0$$aSchadschneider, Andreas$$b2
000836992 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b3$$ufzj
000836992 773__ $$0PERI:(DE-600)1363010-6$$a10.1088/1751-8121/aa7fca$$gVol. 50, no. 34, p. 345102 -$$n34$$p345102 -$$tJournal of physics / A$$v50$$x1751-8121$$y2017
000836992 8564_ $$uhttps://juser.fz-juelich.de/record/836992/files/Tordeux_2017_J._Phys._A__Math._Theor._50_345102.pdf$$yRestricted
000836992 8564_ $$uhttps://juser.fz-juelich.de/record/836992/files/Tordeux_2017_J._Phys._A__Math._Theor._50_345102.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836992 909CO $$ooai:juser.fz-juelich.de:836992$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000836992 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159135$$aForschungszentrum Jülich$$b0$$kFZJ
000836992 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b1$$kFZJ
000836992 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich$$b3$$kFZJ
000836992 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000836992 9141_ $$y2017
000836992 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836992 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836992 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS A-MATH THEOR : 2015
000836992 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836992 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836992 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836992 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836992 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000836992 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836992 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836992 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000836992 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836992 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836992 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836992 920__ $$lyes
000836992 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000836992 980__ $$ajournal
000836992 980__ $$aVDB
000836992 980__ $$aUNRESTRICTED
000836992 980__ $$aI:(DE-Juel1)JSC-20090406
000836992 9801_ $$aFullTexts