000837003 001__ 837003
000837003 005__ 20240711092257.0
000837003 0247_ $$2doi$$a10.1063/1.4996429
000837003 0247_ $$2ISSN$$a0021-8979
000837003 0247_ $$2ISSN$$a0148-6349
000837003 0247_ $$2ISSN$$a1089-7550
000837003 0247_ $$2WOS$$aWOS:000409414100029
000837003 0247_ $$2altmetric$$aaltmetric:23376147
000837003 037__ $$aFZJ-2017-06019
000837003 041__ $$aEnglish
000837003 082__ $$a530
000837003 1001_ $$0P:(DE-Juel1)130994$$aTabatabaei, Fatemeh$$b0$$eCorresponding author
000837003 245__ $$aPhase field modeling of rapid crystallization in the phase-change material AIST
000837003 260__ $$aBerlin$$bSpringer$$c2017
000837003 3367_ $$2DRIVER$$aarticle
000837003 3367_ $$2DataCite$$aOutput Types/Journal article
000837003 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1503043419_19305
000837003 3367_ $$2BibTeX$$aARTICLE
000837003 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837003 3367_ $$00$$2EndNote$$aJournal Article
000837003 520__ $$aWe carry out phase field modeling as a continuum simulation technique in order to study rapid crystallization processes in the phase-change material AIST (Ag4In3Sb67Te26). In particular, we simulate the spatio-temporal evolution of the crystallization of a molten area of the phase-change material embedded in a layer stack. The simulation model is adapted to the experimental conditions used for recent measurements of crystallization rates by a laser pulse technique. Simulations are performed for substrate temperatures close to the melting temperature of AIST down to low temperatures when an amorphous state is involved. The design of the phase field model using the thin interface limit allows us to retrieve the two limiting regimes of interface controlled (low temperatures) and thermal transport controlled (high temperatures) dynamics. Our simulations show that, generically, the crystallization velocity presents a maximum in the intermediate regime where both the interface mobility and the thermal transport, through the molten area as well as through the layer stack, are important. Simulations reveal the complex interplay of all different contributions. This suggests that the maximum switching velocity depends not only on material properties but also on the precise design of the thin film structure into which the phase-change material is embedded.
000837003 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000837003 588__ $$aDataset connected to CrossRef
000837003 7001_ $$0P:(DE-Juel1)130562$$aBoussinot, Guillaume$$b1
000837003 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, Robert$$b2
000837003 7001_ $$0P:(DE-HGF)0$$aApel, Markus$$b3
000837003 7001_ $$0P:(DE-Juel1)130567$$aBrener, Efim$$b4
000837003 773__ $$0PERI:(DE-600)1398311-8$$a10.1063/1.4996429$$gVol. 122, no. 4, p. 045108 -$$n4$$p045108$$tApplied physics / A$$v122$$x0340-3793$$y2017
000837003 8564_ $$uhttps://juser.fz-juelich.de/record/837003/files/1.4996429.pdf$$yRestricted
000837003 8564_ $$uhttps://juser.fz-juelich.de/record/837003/files/1.4996429.gif?subformat=icon$$xicon$$yRestricted
000837003 8564_ $$uhttps://juser.fz-juelich.de/record/837003/files/1.4996429.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837003 8564_ $$uhttps://juser.fz-juelich.de/record/837003/files/1.4996429.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837003 8564_ $$uhttps://juser.fz-juelich.de/record/837003/files/1.4996429.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837003 8564_ $$uhttps://juser.fz-juelich.de/record/837003/files/1.4996429.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837003 909CO $$ooai:juser.fz-juelich.de:837003$$pVDB
000837003 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130994$$aForschungszentrum Jülich$$b0$$kFZJ
000837003 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich$$b2$$kFZJ
000837003 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich$$b4$$kFZJ
000837003 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000837003 9141_ $$y2017
000837003 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837003 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS A-MATER : 2015
000837003 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837003 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837003 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837003 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837003 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837003 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837003 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837003 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837003 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837003 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837003 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000837003 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
000837003 980__ $$ajournal
000837003 980__ $$aVDB
000837003 980__ $$aI:(DE-Juel1)IEK-2-20101013
000837003 980__ $$aI:(DE-Juel1)PGI-2-20110106
000837003 980__ $$aUNRESTRICTED
000837003 981__ $$aI:(DE-Juel1)IMD-1-20101013