000837005 001__ 837005
000837005 005__ 20240709094321.0
000837005 0247_ $$2doi$$a10.1007/s00161-015-0447-0
000837005 0247_ $$2ISSN$$a0935-1175
000837005 0247_ $$2ISSN$$a1432-0959
000837005 0247_ $$2WOS$$aWOS:000403509700006
000837005 0247_ $$2altmetric$$aaltmetric:2848359
000837005 037__ $$aFZJ-2017-06021
000837005 041__ $$aEnglish
000837005 082__ $$a530
000837005 1001_ $$0P:(DE-Juel1)130562$$aBoussinot, Guillaume$$b0$$eCorresponding author
000837005 245__ $$aElimination of surface diffusion in the non-diagonal phase field model
000837005 260__ $$aBerlin$$bSpringer$$c2017
000837005 3367_ $$2DRIVER$$aarticle
000837005 3367_ $$2DataCite$$aOutput Types/Journal article
000837005 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1503043990_19313
000837005 3367_ $$2BibTeX$$aARTICLE
000837005 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837005 3367_ $$00$$2EndNote$$aJournal Article
000837005 520__ $$aWe present a non-diagonal phase field model for phase transformations with unequal but finite diffusivities in the two phases. This model allows to recover the desired boundary conditions at the diffuse interface, and especially the elimination of the artificially enhanced surface diffusion effect. The model is non-diagonal since it incorporates the kinetic cross-coupling between the non-conserved and the conserved fields that was recently introduced (Brener and Boussinot in Phys Rev E 86:060601, 2012). We test numerically this model for the two-dimensional relaxation of a weakly perturbed interface towards its flat equilibrium.
000837005 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000837005 588__ $$aDataset connected to CrossRef
000837005 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, Robert$$b1$$ufzj
000837005 7001_ $$0P:(DE-Juel1)130567$$aBrener, Efim$$b2$$ufzj
000837005 7001_ $$0P:(DE-HGF)0$$aHüter, Claas$$b3
000837005 773__ $$0PERI:(DE-600)1478722-2$$a10.1007/s00161-015-0447-0$$gVol. 29, no. 4, p. 969 - 976$$n4$$p969–976$$tContinuum mechanics and thermodynamics$$v29$$x0935-1175$$y2017
000837005 909CO $$ooai:juser.fz-juelich.de:837005$$pVDB
000837005 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich$$b1$$kFZJ
000837005 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich$$b2$$kFZJ
000837005 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000837005 9141_ $$y2017
000837005 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837005 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCONTINUUM MECH THERM : 2015
000837005 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837005 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837005 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837005 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837005 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837005 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837005 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837005 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000837005 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837005 920__ $$lno
000837005 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000837005 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
000837005 980__ $$ajournal
000837005 980__ $$aVDB
000837005 980__ $$aI:(DE-Juel1)IEK-2-20101013
000837005 980__ $$aI:(DE-Juel1)PGI-2-20110106
000837005 980__ $$aUNRESTRICTED
000837005 981__ $$aI:(DE-Juel1)IMD-1-20101013