001     837025
005     20240708133418.0
024 7 _ |a 10.1063/1.4998970
|2 doi
024 7 _ |a 0034-6748
|2 ISSN
024 7 _ |a 1089-7623
|2 ISSN
024 7 _ |a WOS:000409178100035
|2 WOS
024 7 _ |a 2128/16712
|2 Handle
037 _ _ |a FZJ-2017-06041
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Seon, C. R.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a VUV spectroscopy in impurity injection experiments at KSTAR using prototype ITER VUV spectrometer
260 _ _ |a [S.l.]
|c 2017
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1516886209_22605
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ITER vacuum ultra-violet (VUV) core survey spectrometer has been designed as a 5-channel spectral system so that the high spectral resolving power of 200–500 could be achieved in the wavelength range of 2.4–160 nm. To verify the design of the ITER VUV core survey spectrometer, a two-channel prototype spectrometer was developed. As a subsequent step of the prototype test, the prototype VUV spectrometer has been operated at KSTAR since the 2012 experimental campaign. From impurity injection experiments in the years 2015 and 2016, strong emission lines, such as Kr xxv 15.8 nm, Kr xxvi 17.9 nm, Ne vii 46.5 nm, Ne vi 40.2 nm, and an array of largely unresolved tungsten lines (14-32 nm) could be measured successfully, showing the typical photon number of 1013–1015 photons/cm2 s.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Song, I.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jang, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lee, H. Y.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jeon, T. M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lee, H. G.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pak, S.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Cheon, M. S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Choi, J. H.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Biel, W.
|0 P:(DE-Juel1)129967
|b 9
700 1 _ |a Bernascolle, P.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Barnsley, R.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kim, B. S.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kim, H. S.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Choe, W.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Park, J. S.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a An, Y. H.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Hong, J. H.
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.1063/1.4998970
|g Vol. 88, no. 8, p. 083511 -
|0 PERI:(DE-600)1472905-2
|n 8
|p 083511 -
|t Review of scientific instruments
|v 88
|y 2017
|x 1089-7623
856 4 _ |y Published on 2017-08-18. Available in OpenAccess from 2018-08-18.
|u https://juser.fz-juelich.de/record/837025/files/1.4998970.pdf
856 4 _ |y Published on 2017-08-18. Available in OpenAccess from 2018-08-18.
|x icon
|u https://juser.fz-juelich.de/record/837025/files/1.4998970.gif?subformat=icon
856 4 _ |y Published on 2017-08-18. Available in OpenAccess from 2018-08-18.
|x icon-1440
|u https://juser.fz-juelich.de/record/837025/files/1.4998970.jpg?subformat=icon-1440
856 4 _ |y Published on 2017-08-18. Available in OpenAccess from 2018-08-18.
|x icon-180
|u https://juser.fz-juelich.de/record/837025/files/1.4998970.jpg?subformat=icon-180
856 4 _ |y Published on 2017-08-18. Available in OpenAccess from 2018-08-18.
|x icon-640
|u https://juser.fz-juelich.de/record/837025/files/1.4998970.jpg?subformat=icon-640
856 4 _ |y Published on 2017-08-18. Available in OpenAccess from 2018-08-18.
|x pdfa
|u https://juser.fz-juelich.de/record/837025/files/1.4998970.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:837025
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129967
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REV SCI INSTRUM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21