000837081 001__ 837081
000837081 005__ 20210129231158.0
000837081 0247_ $$2doi$$a10.1007/s00259-017-3812-3
000837081 0247_ $$2ISSN$$a0340-6997
000837081 0247_ $$2ISSN$$a1432-105X
000837081 0247_ $$2ISSN$$a1619-7070
000837081 0247_ $$2ISSN$$a1619-7089
000837081 0247_ $$2pmid$$apmid:28831534
000837081 0247_ $$2WOS$$aWOS:000415085500013
000837081 037__ $$aFZJ-2017-06078
000837081 041__ $$aEnglish
000837081 082__ $$a610
000837081 1001_ $$0P:(DE-Juel1)171957$$aVerger, Antoine$$b0
000837081 245__ $$aComparison of $^{18}$F-FET PET and perfusion-weighted MRI for glioma grading: a hybrid PET/MR study
000837081 260__ $$aHeidelberg [u.a.]$$bSpringer-Verl.$$c2017
000837081 3367_ $$2DRIVER$$aarticle
000837081 3367_ $$2DataCite$$aOutput Types/Journal article
000837081 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510581840_28474
000837081 3367_ $$2BibTeX$$aARTICLE
000837081 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837081 3367_ $$00$$2EndNote$$aJournal Article
000837081 520__ $$aPurposeBoth perfusion-weighted MR imaging (PWI) and O-(2-18F-fluoroethyl)-L-tyrosine PET (18F–FET) provide grading information in cerebral gliomas. The aim of this study was to compare the diagnostic value of 18F–FET PET and PWI for tumor grading in a series of patients with newly diagnosed, untreated gliomas using an integrated PET/MR scanner.MethodsSeventy-two patients with untreated gliomas [22 low-grade gliomas (LGG), and 50 high-grade gliomas (HGG)] were investigated with 18F–FET PET and PWI using a hybrid PET/MR scanner. After visual inspection of PET and PWI maps (rCBV, rCBF, MTT), volumes of interest (VOIs) with a diameter of 16 mm were centered upon the maximum of abnormality in the tumor area in each modality and the contralateral unaffected hemisphere. Mean and maximum tumor-to-brain ratios (TBRmean, TBRmax) were calculated. In addition, Time-to-Peak (TTP) and slopes of time–activity curves were calculated for 18F–FET PET. Diagnostic accuracies of 18F–FET PET and PWI for differentiating low-grade glioma (LGG) from high-grade glioma (HGG) were evaluated by receiver operating characteristic analyses (area under the curve; AUC).ResultsThe diagnostic accuracy of 18F–FET PET and PWI to discriminate LGG from HGG was similar with highest AUC values for TBRmean and TBRmax of 18F–FET PET uptake (0.80, 0.83) and for TBRmean and TBRmax of rCBV (0.80, 0.81). In case of increased signal in the tumor area with both methods (n = 32), local hot-spots were incongruent in 25 patients (78%) with a mean distance of 10.6 ± 9.5 mm. Dynamic FET PET and combination of different parameters did not further improve diagnostic accuracy.ConclusionsBoth 18F–FET PET and PWI discriminate LGG from HGG with similar diagnostic performance. Regional abnormalities in the tumor area are usually not congruent indicating that tumor grading by 18F–FET PET and PWI is based on different pathophysiological phenomena.
000837081 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000837081 588__ $$aDataset connected to CrossRef
000837081 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian$$b1
000837081 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b2
000837081 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b3
000837081 7001_ $$0P:(DE-Juel1)165921$$aSabel, Michael$$b4
000837081 7001_ $$0P:(DE-HGF)0$$aWittsack, Hans J.$$b5
000837081 7001_ $$0P:(DE-Juel1)131788$$aRota Kops, Elena$$b6
000837081 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b7
000837081 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b8
000837081 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim J.$$b9
000837081 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b10$$eCorresponding author
000837081 773__ $$0PERI:(DE-600)2098375-X$$a10.1007/s00259-017-3812-3$$n13$$p2257–2265$$tEuropean journal of nuclear medicine and molecular imaging$$v44$$x1619-7089$$y2017
000837081 8564_ $$uhttps://juser.fz-juelich.de/record/837081/files/s00259-017-3812-3.pdf$$yRestricted
000837081 8564_ $$uhttps://juser.fz-juelich.de/record/837081/files/s00259-017-3812-3.gif?subformat=icon$$xicon$$yRestricted
000837081 8564_ $$uhttps://juser.fz-juelich.de/record/837081/files/s00259-017-3812-3.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837081 8564_ $$uhttps://juser.fz-juelich.de/record/837081/files/s00259-017-3812-3.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837081 8564_ $$uhttps://juser.fz-juelich.de/record/837081/files/s00259-017-3812-3.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837081 8564_ $$uhttps://juser.fz-juelich.de/record/837081/files/s00259-017-3812-3.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837081 909CO $$ooai:juser.fz-juelich.de:837081$$pVDB
000837081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171957$$aForschungszentrum Jülich$$b0$$kFZJ
000837081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b1$$kFZJ
000837081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b2$$kFZJ
000837081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b3$$kFZJ
000837081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131788$$aForschungszentrum Jülich$$b6$$kFZJ
000837081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b7$$kFZJ
000837081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b8$$kFZJ
000837081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b9$$kFZJ
000837081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b10$$kFZJ
000837081 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000837081 9141_ $$y2017
000837081 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837081 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837081 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837081 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837081 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837081 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J NUCL MED MOL I : 2015
000837081 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837081 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837081 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837081 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837081 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000837081 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000837081 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEUR J NUCL MED MOL I : 2015
000837081 920__ $$lyes
000837081 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000837081 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000837081 980__ $$ajournal
000837081 980__ $$aVDB
000837081 980__ $$aI:(DE-Juel1)INM-3-20090406
000837081 980__ $$aI:(DE-Juel1)INM-4-20090406
000837081 980__ $$aUNRESTRICTED