Home > Publications database > Comparison of $^{18}$F-FET PET and perfusion-weighted MRI for glioma grading: a hybrid PET/MR study > print |
001 | 837081 | ||
005 | 20210129231158.0 | ||
024 | 7 | _ | |a 10.1007/s00259-017-3812-3 |2 doi |
024 | 7 | _ | |a 0340-6997 |2 ISSN |
024 | 7 | _ | |a 1432-105X |2 ISSN |
024 | 7 | _ | |a 1619-7070 |2 ISSN |
024 | 7 | _ | |a 1619-7089 |2 ISSN |
024 | 7 | _ | |a pmid:28831534 |2 pmid |
024 | 7 | _ | |a WOS:000415085500013 |2 WOS |
037 | _ | _ | |a FZJ-2017-06078 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Verger, Antoine |0 P:(DE-Juel1)171957 |b 0 |
245 | _ | _ | |a Comparison of $^{18}$F-FET PET and perfusion-weighted MRI for glioma grading: a hybrid PET/MR study |
260 | _ | _ | |a Heidelberg [u.a.] |c 2017 |b Springer-Verl. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1510581840_28474 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a PurposeBoth perfusion-weighted MR imaging (PWI) and O-(2-18F-fluoroethyl)-L-tyrosine PET (18F–FET) provide grading information in cerebral gliomas. The aim of this study was to compare the diagnostic value of 18F–FET PET and PWI for tumor grading in a series of patients with newly diagnosed, untreated gliomas using an integrated PET/MR scanner.MethodsSeventy-two patients with untreated gliomas [22 low-grade gliomas (LGG), and 50 high-grade gliomas (HGG)] were investigated with 18F–FET PET and PWI using a hybrid PET/MR scanner. After visual inspection of PET and PWI maps (rCBV, rCBF, MTT), volumes of interest (VOIs) with a diameter of 16 mm were centered upon the maximum of abnormality in the tumor area in each modality and the contralateral unaffected hemisphere. Mean and maximum tumor-to-brain ratios (TBRmean, TBRmax) were calculated. In addition, Time-to-Peak (TTP) and slopes of time–activity curves were calculated for 18F–FET PET. Diagnostic accuracies of 18F–FET PET and PWI for differentiating low-grade glioma (LGG) from high-grade glioma (HGG) were evaluated by receiver operating characteristic analyses (area under the curve; AUC).ResultsThe diagnostic accuracy of 18F–FET PET and PWI to discriminate LGG from HGG was similar with highest AUC values for TBRmean and TBRmax of 18F–FET PET uptake (0.80, 0.83) and for TBRmean and TBRmax of rCBV (0.80, 0.81). In case of increased signal in the tumor area with both methods (n = 32), local hot-spots were incongruent in 25 patients (78%) with a mean distance of 10.6 ± 9.5 mm. Dynamic FET PET and combination of different parameters did not further improve diagnostic accuracy.ConclusionsBoth 18F–FET PET and PWI discriminate LGG from HGG with similar diagnostic performance. Regional abnormalities in the tumor area are usually not congruent indicating that tumor grading by 18F–FET PET and PWI is based on different pathophysiological phenomena. |
536 | _ | _ | |a 572 - (Dys-)function and Plasticity (POF3-572) |0 G:(DE-HGF)POF3-572 |c POF3-572 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Filss, Christian |0 P:(DE-Juel1)141877 |b 1 |
700 | 1 | _ | |a Lohmann, Philipp |0 P:(DE-Juel1)145110 |b 2 |
700 | 1 | _ | |a Stoffels, Gabriele |0 P:(DE-Juel1)131627 |b 3 |
700 | 1 | _ | |a Sabel, Michael |0 P:(DE-Juel1)165921 |b 4 |
700 | 1 | _ | |a Wittsack, Hans J. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Rota Kops, Elena |0 P:(DE-Juel1)131788 |b 6 |
700 | 1 | _ | |a Galldiks, Norbert |0 P:(DE-Juel1)143792 |b 7 |
700 | 1 | _ | |a Fink, Gereon R. |0 P:(DE-Juel1)131720 |b 8 |
700 | 1 | _ | |a Shah, Nadim J. |0 P:(DE-Juel1)131794 |b 9 |
700 | 1 | _ | |a Langen, Karl-Josef |0 P:(DE-Juel1)131777 |b 10 |e Corresponding author |
773 | _ | _ | |a 10.1007/s00259-017-3812-3 |0 PERI:(DE-600)2098375-X |n 13 |p 2257–2265 |t European journal of nuclear medicine and molecular imaging |v 44 |y 2017 |x 1619-7089 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/837081/files/s00259-017-3812-3.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/837081/files/s00259-017-3812-3.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/837081/files/s00259-017-3812-3.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/837081/files/s00259-017-3812-3.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/837081/files/s00259-017-3812-3.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/837081/files/s00259-017-3812-3.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:837081 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171957 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)141877 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)145110 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131627 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131788 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)143792 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)131720 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)131794 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)131777 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-572 |2 G:(DE-HGF)POF3-500 |v (Dys-)function and Plasticity |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EUR J NUCL MED MOL I : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b EUR J NUCL MED MOL I : 2015 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|