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Abstract

YFe2O4−δ

The main part of this thesis is dedicated to the determination of the charge order crystallo-
graphic structures of YFe2O4−δ at 160 K and 200 K. YFe2O4−δ is above the charge ordering
transition isostructural to LuFe2O4−δ with the space group R3̄m. The structure is character-
ized by an alternating stacking of triangular Yttrium layers and Fe bilayers each triangular,
with a mean iron valence of 2.5. The arrangement of the Fe2+ and Fe3+ ions on the triangu-
lar lattice leads to frustration which is resolved at lower temperates through charge order.
LuFe2O4−δ was long time the primary example for a charge order driven ferroelectric mate-
rial but was found to be not ferroelectric. The isostructural YbFe2O4−δ is indicated to show
ferroelectricity by one recent report, although much weaker than predicted for LuFe2O4−δ. In
the series of the RFe2O4−δ ferrites YFe2O4−δ is of special interest because it is the upper end
member in regard of the ionic radius of the rare earth ion, which determines the intra and
inter Fe bilayer spacing and therefore interaction strengths and ultimately the charge order.

The charge order of YFe2O4−δ at 160 K is described by a propagation vector of
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with

a symmetry reduction from R3̄m to P1̄. The charge order is found to be bimodal in contrast to
previous results. The charge order at 200 K is incomplete with a seven times enlarged supercell
based on a propagation vector of
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again with spacegroup P1̄ in contrast to a previously

suggested monoclinic cell.
Based on this charge ordered cell possible magnetic structures are evaluated using single

crystal neutron diffraction. In contrast to the observation of well separated phases in X-ray
diffraction, in neutron diffraction at 200 K and 160 K a superposition of the two CO-phases is
observed, although the phases observed in X-ray diffraction are dominant. This is most likely
due to the larger sample volume and different cooling times. The magnetic cell based on the
200 K charge-order structure is characterized by a propagation vector of
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hex. The

magnetic cell based on the 160 K charge order cell is based on a propagation vector of
(
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)

CO. Both cells have the magnetic spacegroup Ps1̄. The magnetic phases show no metamagnetic
transitions up to 24 T in contrast to LuFe2O4−δ.
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Ni0.42Mn0.58TiO3

The smaller part of the thesis is dedicated to another mechanism of multiferroicity, a vortex
like arrangement of spins having a toroidal moment breaks both space and time inversion and
is intrinsically magnetoelectric. Such an toroidal moment can be induced in specific materials
by the application of crossed electric and magnetic fields.

Ni0.42Mn0.58TiO3 is of particular interest because it is so far the only material in which
a toroidal moment can be induced in absence of long range magnetic order, since it is an
XY-spin glass. Single crystals of Ni0.42Mn0.58TiO3 were grown by the optical floating zone
method and the the Ni/Mn-ratio was confirmed by powder and single crystal X-ray diffrac-
tion. The spin glass behavior is proved by a magnetic memory test and the observation of
a frequency shift in the AC-susceptibility. A magnetoelectric effect as reported in the litera-
ture could not be reproduced after magnetoelectric field cooling. Neutron diffraction shows
diffuse magnetic scattering along (00ℓ) with enhanced intensity at the positions expected for
NiTiO3 and MnTiO3. Polarization analysis confirms the spin direction in the chex-plane but
an evaluation of the toroidal state could not be performed due to experimental problems.
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Zusammenfassung

YFe2O4−δ

Die Bestimmung der Ladungsordnungsstruktur von YFe2O4−δ bei 200 und 160 K bildet den
Hauptteil dieser Arbeit. Oberhalb der Ladungsordnungstemperatur ist YFe2O4−δ isostruktu-
rell zu LuFe2O4−δ, beide kristallisieren in der Raumgruppe R3̄m.

YFe2O4−δ kann als eine Schichtstruktur beschrieben werden, in der sich Schichten von
Yttrium, das in einem Dreiecksgitter angeordnet ist, abwechseln mit Doppelschichten von
Eisen, welches ebenfalls innerhalb einer Schicht ein Dreiecksgitter bildet. Die Verteilung von
Fe2+ und Fe3+ im Dreiecksgitter mit einer durchschnittliche Eisenvalenz von 2.5 führt zu
Frustration, welche bei tiefen Temperaturen durch Ladungsordnung aufgelöst wird.

LuFe2O4−δ war lange Zeit das primäre Beispiel für ein Ferroelektrikum, in dem die Fer-
roelektrizität durch Ladungsordnung erzeugt wird, später stellte sich heraus, dass es nicht
ferroelektrisch ist, wohingegen YbFe2O4−δ eine schwache Ferroelektrizität zeigt, gemäß einer
vor kurzem veröffentlichten Studie. YFe2O4−δ ist besonders interessant, da Yttrium die sel-
tene Erde mit dem grössten Ionenradius in der RFe2O4−δ-Familie ist. Der Ionenradius bes-
timmt das Verhältnis der Abstände innerhalb der Eisen-Doppelschicht und zwischen ver-
schiedenen Doppelschichten. Jenes Verhältnis entscheidet welche Art von Ladungsordnung
realisiert wird.

Die Ladungsordnung von YFe2O4−δ bei 160 K ist gekennzeichnet durch den Propaga-
tionsvektor
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und einer Symmetrieverringerung zur triklinen Raumgruppe P1̄. Die von

uns bestimmte Ladungsordnung weist nur zwei verschiedene Eisen-Valenzen auf.
Im Gegensatz dazu ist die Ladungsordnung bei 200 K unvollständig und besteht aus einer

7-fach vergrösserten Zelle, basierend auf dem Propagationsvektor
(
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)
wiederum mit der

Raumgruppe P1̄ im Gegensatz zur vorher vorgeschlagenen monoklinen Symmetrie.
Basierend auf diesen beiden Ladungsordnungen habe ich mittels Neutronenstreuung mögliche

magnetische Strukturen untersucht. Im Gegensatz zu den wohl separierten Phasen, welche
mittels Röntgenstreuung beobachtet werden, fand ich dabei eine Superposition der 160 K
und 200 K Ladungsordnungen, wobei die jeweilige Phase, welche in der Röntgenstreuung
beobachtet wurde, dominant ist. Dies ist wahrscheinlich durch das sehr viel grössere Proben-
volumen und die unterschiedliche Abkühlrate bedingt.

Die magnetische Zelle bei 200 K basiert auf dem Propagationsvektor
(
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hex, wohinge-

gen die magnetische Zelle bei 160 K auf dem Propagationsvektor
(
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)
CO basiert, in der No-

tation der 160 K Ladungsordnungszelle. Beide Zellen haben die magnetische Raumgruppe
Ps1̄. Die magnetischen Phasen weisen in Feldern bis 24 T keine metamagnetischen Phasenüber-
gange auf im Gegensatz zu LuFe2O4−δ.
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Ni0.42Mn0.58TiO3

Der kleinere Teil der Arbeit beschäftigt sich mit einem anderen Prinzip das Multiferroizität
erzeugen kann. Eine Anordnung von Spins in einem Wirbel erzeugt ein toroidales Moment,
welches weder unter Paritätstransformation noch Zeitumkehr invariant und intrinsisch mag-
netoelektrisch ist. Solch ein toroidales Moment kann in bestimmten Materialien durch die
Anwendung von gekreuzten magnetischen und elektrischen Feldern induziert werden.

Ni0.42Mn0.58TiO3 ist interessant, weil es bist jetzt das einzige Material ist, in dem ein
toroidales Moment induziert werden kann, obwohl es keine langreichweitige magnetische
Ordnung aufweist, denn unterhalb von 10 K ist Ni0.42Mn0.58TiO3 ein XY-Spin-Glas.

Ni0.42Mn0.58TiO3 Einkristalle wurden mittels Zonenschmelzverfahren gezüchtet und das
Ni/Mn-Verhältnis mittels Einkristall- und Pulverröntgendiffraktometrie bestimmt. Die Spin-
Glas Eigenschaft wurde mittels eines magnetischen Memory-Test und der Frequenzverschiebung
der AC-Suszeptibilität verifiziert. Ein magnetoelektrischer Effekt, wie er in der Literatur beobachtet
wurde, ließ sich nach Kühlung in gekreuzten magnetischen und elektrischen Feldern nicht re-
produzieren.

In Neutronendiffraktometrie zeigen sich diffuse Linien entlang (00ℓ) mit erhöhter Inten-
sität an den Positionen, welche man für NiTiO3 und MnTiO3 erwartet. Durch Polarisation-
sanalyse wurde bestätigt, dass die magnetischen Momente in der chex-Ebene liegen. Eine
toroidale Phase konnte wegen Problemen mit dem Instrument nicht untersucht werden.
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1
Introduction

Multiferroic materials showing more than one ferroic order offer a rich range for possible
applications [1]. For example magnetoelectric multiferroics can be used to switch the magne-
tization with an electric field instead of an electric current [2]. This would be very beneficial
for the miniaturization process of data storage. Unfortunately, materials being at the same
time ferromagnetic and ferroelectric are rare, and materials having these properties at room
temperature are even rarer. Ferroic orders are deeply connected to symmetry breaking [3]. A
requirement for ferroelectricity is the breaking of spatial inversion symmetry while ferromag-
netism needs the breaking of time inversion.

The reason for the small amount of magnetoelectrics lies in the conflicting mechanisms
for ferroelectricity and ferromagnetism. A ferromagnet is characterized by a phase transition
between a phase without magnetic order and a low temperature phase, which shows a spon-
taneous magnetization in the absence of a magnetic field [4]. The spontaneous magnetization
is created by alignment of spins through exchange coupling, which is prevented at higher
temperature due to the thermal energy. In the classical picture with localized moments as
suggested by Weiss in 1907 [5] below the Curie Temperature Tc the molecular field, i.e. ex-
change energy, is so strong that it leads to a parallel alignment of the localized spins [6] and
the thermal behavior is well described by the Curie-Weiss law χ = C

T−Tc
.

In a bandview picture, necessary to described non-localized electrons in classical ferromag-
nets like Fe or Ni, the energy necessary to elevate electrons from bands where all electrons are
paired to non-full bands, conquers ferromagnetism [6]. In Fe the Fermi energy lies in a region
where the 4s and 3d band overlap, the high density of states of the 3d band at the Fermi level
lowers the band energy necessary to reverse a spin direction to a level where the gain by ex-
change energy is enough to polarize the band leading to a spontaneous magnetization [6]. In
completely filled bands this is not possible.

A ferroelectric material on the other hand has a phase transition from a paramagnetic
state to one with a spontaneous magnetization. Ferroelectrics have to be insulators, which is
incompatible with metallic ferromagnets. It is further found that the occupation of the d-shells
destroys the tendency for a distortion, which removes the inversion symmetry, which is the
driving force in classical perovskite ferroelectrics like BaTiO3 [6, 7]. This has led to a search
for novel mechanism for ferroic orders.
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CHAPTER 1. INTRODUCTION

LuFe2O4−δ was one candidate for a ferroelectric antiferromagnetic material, where the
ferroelectricity was suggested to be due to charge ordering [8]. While LuFe2O4−δ was found
to be not magnetoelectric [9–12], the mechanism could be applicable to other compounds.
Magnetite seems to be an example where charge order creates switchable polarization states
[13–16].

There exist several isostructural compounds to LuFe2O4−δ using different rare earth ions
instead of Lu. And the mechanism suggested for LuFe2O4−δ could be applicable to them
and it seems that the isostructural YbFe2O4−δ shows a weak ferroelectricity [17], although
it is unclear if it is based on the charge order mechanism. Beside a possible application as a
ferroelectric, recently the application of LuFe2O4−δ in gas sensing has been suggested, due
to the strong dependence of magnetic and electrical properties in regard to the oxygen off-
stoichiometry δ [18]. Considering other members of the RFe2O4−δ-family Yttrium is inter-
esting considering it has the strongest deviation of the rare earth ion size from Lu. The rare
earth ion size changes the spacing between Fe-layers inside the bilayer and between differ-
ent bilayers and the ratio seems to be responsible for establishing different charge orders [19].
YFe2O4−δ is after LuFe2O4−δ one of the better studied compounds, but all the studies so far
were based on powders or tiny crystallites retrieved from powder. During my diploma thesis
I have grown highly stoichiometric single crystals of YFe2O4−δ, showing for the first time 3D-
charge-ordering in X-ray diffraction and also 3D-magnetic-ordering [20]. While the samples
were characterized, by macroscopic measurements, X-ray diffraction and neutron diffraction,
the structure of the charge ordered phases and also the magnetic structure were not solved.
The main part of this thesis, Section 4.7 and 4.8, focuses on the establishment of the complex
low temperature charge order structures of YFe2O4−δ.

The smaller part of this thesis is dedicated to another ferroic order and mechanism for
multiferroicity. A vortex arrangement of spins obeying a toroidal moment breaks both space
and time inversion and is intrinsically magnetoelectric [21]. That such an arrangement cannot
only exits in magnetically order systems like Co3B7O13Br [22] or Cr2O3 [23], was shown
by Yamaguchi et al. [24] who proved the existence of toroidal moments below 10 K in the
spin glass Ni0.42Mn0.58TiO3 with the room temperature space group R3̄. Ni0.42Mn0.58TiO3

is an XY-spin glass, where the spins lie in the chex plane and shows a toroidal order and a
magnetoelectric effect [24]. A linear magnetoelectric effect in a spin glass is also observed in
BaCo6Ti6O19 although it can not be explained by toroidal moments due to the direction of the
induced polarization [25]. A more detailed introduction into Ni0.42Mn0.58TiO3 and toroidal
moments is given in Chapter 3.

2



2
Experimental Techniques & Theory

This chapter explains the experimental methods used to synthesize and study YFe2O4−δ and
Ni0.42Mn0.58TiO3 and gives some theoretical background necessary to understand the scat-
tering experiments.

2.1 Synthesis

2.1.1 Powder synthesis

The powders, used in this thesis mainly to obtain polycrystalline rods for single crystal growth,
were all synthesized by solid state reactions between stoichiometric ratios, in regard to the
metal ions, of the starting materials, which are Ye2O3 and Fe2O3 for YFe2O4−δ and NiO,
MnO2 and TiO2 Ni0.42Mn0.58TiO3. The starting materials were dried for several days at
120 ◦C to remove moisture, which would lead to false amounts while weighting in stoichio-
metric ratios. The stoichiometric mixture was then ball milled to reduce the grain size and
obtain a homogeneous mixture of the powders. Afterwards it was calcined in a tube furnace
with a flow of CO2/CO for YFe2O4−δ and a flow of air for Ni0.42Mn0.58TiO3. Following the
calcination the powders were again ball milled to reduce the grain size before forming rods
for single crystal growth, which were hydrostatically pressed at 30MP and had a size of 8mm
diameter and typically 10 cm length. These were sintered again and then used for both feed
and seed during crystal growth.

2.1.2 Single crystal growth

All single crystal growths reported in this thesis were done with the floating zone method [26,
27] in an optical four mirror furnace (Model FZ-T-10000-H-VI-VP0 Crystal Systems Corpora-
tion, Japan), which is shown in Figure 2.1b. The floating zone method was previously used
for YFe2O4−δ [20, 28] and as well for the isostructural RFe2O4−δ members, most prominent
LuFe2O4−δ [29–31] and YbFe2O4−δ [32–34] and also for the synthesis fo Ni0.42Mn0.58TiO3

[35, 36]. In the furnace four halogen lamps (1000 or 1500 W) are focused by ellipsoidal mirrors
to create a hot zone.

Two polycrystalline rods are arranged on top of each other as shown in Figure 2.1a inside a

3



CHAPTER 2. EXPERIMENTAL TECHNIQUES & THEORY
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gas control
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Figure 2.1: Mirror furnace (Model FZ-T-10000-H-VI-VP0), in the schematic view only 2 lamps are shown.

quartz glass tube. The rods are moved into the hot focus of the lamps and connected through
the melt. The seed and feed rod are rotating in opposite directions to mix the material, form
the solidification surface and equalize the heat distribution. Afterwards both rods move ver-
tically through the focus point, creating a floating zone of molten material. As the lower shaft,
the seed, is moved out of the focus material crystallizes at the solidification surface, since
it is energetically favorable for the atoms to form a crystal lattice the growth of crystallites
is enhanced. Over the time larger crystallites may suppress smaller crystallites and a single
crystal is obtained, this can be enhanced for example through necking, where the size of the
grown part is continuously decrease until only one crystallite propagates along the growth
direction, but this was not used in this thesis. The convex crystallization front also suppresses
crystallites on the outside of the seed. YFe2O4−δ is reported to solidify at 1398K1 [37] while
for Ni0.42Mn0.58TiO3 the melting point is not reported. For the pure compounds, which were
also grown for comparison, the melting points lie at 1633 K for MnTiO3 [38] and at 1962 K for
NiTiO3 [39].

The quartz glass tube seals the growth environment and allows to apply a specific atmo-
sphere at the molten zone, for YFe2O4−δ the growth is performed in a flow of a CO2/CO-
mixture to fine tune the oxygen stoichiometry, while the growth of Ni0.42Mn0.58TiO3 is per-
formed in air.

The detailed procedure for the growth of YFe2O4−δ can be found in my diploma thesis
[20] and is published in [40], a quick summary is given in Section 4.2, while the procedure for
Ni0.42Mn0.58TiO3 is given in Section 3.2.

1This is not the melting point since, there exist a thermal hysteresis between melting and solidification.
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2.2. MACROSCOPIC METHODS

2.2 Macroscopic methods

2.2.1 DC Magnetometry

The Magnetization measurements presented in this thesis were either performed with the
Vibrating sample Magnetometer (VSM) option of a Quantum Design PPMS [41] or the Re-
ciprocating Sample Option (RSO) of a Quantum Design MPMS [42]. Both options are based
on the induction a magnetic sample creates following Faradys law [43] if it is moved in a
static magnetic field. In contrast to the PPMS, in the MPMS the induced current is transfered
through superconducting wires to coils to create a magnetic field whose flux is detected by a
superconducting quantum interference device (rf-SQUID), the details can be found in [44].

2.2.2 AC Magnetometry

The PPMS AC Susceptibility option is used to test whether the magnetization of the sample
shows a time dependent response to magnetic fields, as for example the frequency dependent
freezing temperature in spin glasses [45]. It allows to apply an oscillating magnetic field of up
to 10 Oe with a frequency between 10 Hz and 10 kHz. The measurements yield an in-phase
real part susceptibility χ ′ and an out of phase susceptibility χ ′′. A short introduction to AC
magnetization measurements can be found in [46].

2.2.3 DC Magnetometry in electric fields

Measurements with applied electric field were performed using the DC option of the MPMS
where the sample does not vibrate in the magnetic field but is moved in discrete steps. For
measurements with AC electric field Liming Wang and Markus Schmitz [47] modified the
MPMS ACMS option. They disconnected the AC excitation coils and connected their power
supply to an amplifier, which could output a Voltage up to 200 V, which is applied to the
sample and can be controlled by the normal ACMS measurements commands, details can
be found in [47]. To apply a DC electric field to the sample I have written a Delphi program
for the External Device Control Option of the MPMS, which gives out a constant current on
the AC coil connections to the amplifier, which produces a voltage that can be set with the
normal MultiVu programming interface of the MPMS. The voltage is applied to the sample
trough silver paste contacts on opposing surfaces.

2.3 Scattering Theory and Experiments

Scattering is an unique tool to explore the microscopic properties of materials. In this the-
sis single crystal X-ray diffraction is used to determine the crystallographic structures of
YFe2O4−δ and Ni0.42Mn0.58TiO3. Neutron diffraction is used to explore the spin structures
of YFe2O4−δ. Inelastic scattering is not relevant for the experiments in this thesis and will not
be discussed.
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CHAPTER 2. EXPERIMENTAL TECHNIQUES & THEORY

2.3.1 General scattering Theory

To understand the basic principles of the scattering experiments in the later part of this thesis,
a recapitulation of the theory behind an elastic scattering process of a neutron is given in
this section. This approach is not valid for X-ray scattering, since the particle number is not
conserved, but the received results also apply to X-ray scattering. The general Schrödinger
equation is:

i h
∂

∂t
Ψ(x, t) = HΨ(x, t) (2.1)

where Ψ(x, t) is the probability density amplitude of the neutron presence and H the Hamilton
operator:

H(x, t) = −
 h2

2m
∆+ V(x, t) (2.2)

for a time independent potential V(x, t) = V(x) there exist separated solutions with

Ψ(x, t) = φ(x)Ω(t) (2.3)

Ψ(x, t) = φ(x) exp
(
−
i
 h
Et

)
(2.4)

we get the Schrödinger equation for a time independent potential:

EΨ(x) =

[
−

 h2

2m
∆+ V(x)

]
Ψ(x) (2.5)

or with E =
 h2k2

2m
and k the wave vector in vacuum

(
∆+ k2

)
Ψ(x) =

2m
 h2

V(x)Ψ(x) (2.6)

if we assume there exists a function, the Green’s function, solving:

(∆+ k2)G(x, x ′) = δ(x − x ′) (2.7)

then a formal Solution of Eqn. (2.6) is

Ψ(x) = Ψ0(x) +
2m
 h2

∫

d3x ′G(x, x ′)V(x ′)Ψ(x ′) (2.8)

with Ψ0(x) a solution of the homogeneous equation:

(∆+ k2)Ψ0(x) = 0 (2.9)

This is nothing but the incident plane wave

Ψ0(x) = ϕ0 exp(ikx) (2.10)

It can be shown [48] that

G±(x − x ′) =
1

4π

exp(±ik|x − x ′|)

|x − x ′|
(2.11)
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2.3. SCATTERING THEORY AND EXPERIMENTS

0
k =

p
 h

2θ

x ′

x − x ′

|x − x ′| ≈ |x|− x
|x|x

′

x ≫ x ′

Sample

Detektor

k ′ :=
|k|x
|x|

elastic: |k ′| = |k|

Q := k ′ − k

Figure 2.2: Sketch of the different vectors and relations used for the Born and Fraunhofer Approximation.

fulfills Eqn. (2.7). The general solution is a linear combination of G+ and G−, corresponding
to outgoing and incoming spherical waves.

If we consider a weak potential as perturbation of the force-free case Eqn. (2.8) can be
solved iteratively [49]. First we rename x in x ′ in Eqn. (2.8) and restrict ourself to the case of
an outgoing wave G+.

Ψ(x ′) = exp(ikx ′) +
2m
 h2

∫

d3x ′′G+(x
′ − x ′′)V(x ′′)Ψ(x ′′) (2.12)

we now insert this in Eqn.(2.8 )

Ψ(x) = eikx +
2m
 h2

∫

d3x ′G+(x − x ′)V(x ′)eikx′

+

∫

d3x ′

∫

d3x ′′G+(x − x ′)V(x ′)G+(x
′ − x ′′)V(x ′′)Ψ(x ′′)

(2.13)

or in a symbolic form, including higher orders of (n-fold) multiple scattering:

Ψ = Ψ0 +GVΨ0 +GVGVΨ0 +GVGVGVΨ0 + ... =

∞∑

n=o

(GV)nΨ0 (2.14)

All new terms will consist of increasing powers of the scattering potential V and can be inter-
preted as multiple scattering at the same potential.
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CHAPTER 2. EXPERIMENTAL TECHNIQUES & THEORY

In the first Born Approximation, which is the kinematical scattering theory, the series is
stopped after the first substitution, i.e. multiple scattering is neglected.

Ψ1(x
′) =eikx +

2m
 h2

∫

d3x ′ G+(x − x ′)V(x ′)eikx′

(2.15)

with an elastic scattering potential |k ′| = |k| and with finite range lim
r→∞

|x| · V(|x|) = 0, with the

wavevector of the scattered wave k ′ := kx
|x| and the scattering vector (the momentum transfer)

Q := k ′−k (see Fig. 2.2). If x is much larger than x ′, i.e. if the detector is far away from a small
sample, we can replace |x − x ′| ≈ |x|− x

|x| · x ′ leading to the Lippmann-Schwinger-equation,

Ψ1(x) =eikx +
eikx

|x|

2m

4π h2

∫

d3x ′ V(x ′)e−iQx′

︸ ︷︷ ︸
F(Q)

(2.16)

which describes the scattered beam as a stationary spherical wave. The scattering amplitude
F(Q) is therefore in the first Born approximation the Fourier transformation of the potential
in regard to the momentum transfer.

F(Q) =
2m

4π h2

∫

d3x ′ V(x ′)e−iQx′

(2.17)

And the differential elastic scattering cross section per solid angle element is the square of the
absolute value of the scattering amplitude [50]:

dσ(Q)

dΩ
= |F(Q)|2 (2.18)

The kinematic scattering theory has several shortcomings, which are treated in the dynam-
ical scattering theory, a nice review can be found in [51]. Multiple scattering is intrinsically
neglected, which is less of a problem for imperfect crystals with higher mosaicity and small
samples. Extinction, the weakening of the incident beam by diffraction is also not consid-
ered but can be attributed empirically, it is also small for smaller crystals and in our X-ray
experiments the extinction corrections has only a marginal influence. For neutron diffraction
extinction is more important since the crystal has a larger volume and the wavelength, as well
as the bandwidth is larger, which lowers the sensitivity for crystals imperfections. This also
makes multiple scattering more likely but the effect is strongly reduced by the small scattering
cross sections for neutrons.

Back to the kinematical theory, we now follow [52] and consider a crystalline system with a
periodic arrangement of unit cells, which have the scattering density ρu(r) and are connected
by direct lattice vectors R = ua + vb +wc, where u, v,w are restricted to integer values.
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2.3. SCATTERING THEORY AND EXPERIMENTS

The total scattering density ρt is the sum of ρu(r) over all unit cells:

ρt(r) =
∑

uvw

ρu(r − Ruvw) (2.19)

=
∑

uvw

∫

ρu(r
′) · δ(r − Ruvw − r ′)d3r ′ (2.20)

=

∫

ρu(r
′) ·

∑

uvw

δ(r − Ruvw − r ′)d3r ′ (2.21)

= ρu︸︷︷︸
basis

⊗
∑

uvw

δ(r − Ruvw)

︸ ︷︷ ︸
lattice

where ⊗ denotes convolution. (2.22)

The scattering amplitude in the first Born approximation is the Fourier transform of the scat-
tering density:

F(Q) =

∫

ρt(r)e
iQr d3r = F

[
ρu ⊗

∑

uvw

δ(r − Ruvw)

]
(Q) (2.23)

which can be rewritten using the convolution theorem to

F(Q) = F [ρu] (Q)
︸ ︷︷ ︸

structure factor Fhkℓ

·F

[
∑

uvw

δ(r − Ruvw)

]
(Q)

︸ ︷︷ ︸
∑

hkℓ

δ(Q−Ghkℓ)

(2.24)

consisting of the Fourier transform of the scattering density of the unit cell, which is the struc-
ture factor and the Fourier transform of the direct lattice, which is the reciprocal lattice which
corresponds to the Bragg condition.

For a cell with discrete atomic positions the structure factor is:

Fhkℓ =
∑

j

fj(Qhkℓ) exp (iQhkℓ · rj) (2.25)

with fj the atomic form factor and rj the position of the j-th atom in the unit cell. Since the
neutron scatters on the point like core and not the electron cloud, the form factor for neutrons
is a constant and not Q dependent. The atomic form factor for X-rays is the Fourier transform
of the charge distribution of a single atom:

f(Q) =

∫

atom

d3r ρ(r) exp (iQ · r) (2.26)

This derivation is only valid for static electron densities. In reality the atoms in a crystal
move due to their thermal energy.

Again following [52] the structure factor Fhkℓ for a time dependent electron density is
following Eqn. (2.25):

Fhkℓ =
∑

j

F(〈ρatom(r)〉time︸ ︷︷ ︸
ρatom(r)⊗R(r)

) · exp
(
iQ 〈rj〉

)
(2.27)
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CHAPTER 2. EXPERIMENTAL TECHNIQUES & THEORY

k

k ′

Q =k ′-k

2θ

0recip

k=2π
λ

direct beam

Figure 2.3: Ewald construction

where 〈〉 stands for the thermal average and T(r) desribes the temperature smearing. With the
convolution theorem this gives

Fhkℓ =
∑

j

F
(
ρatom(r)

)
· F (〈T(r)〉)

︸ ︷︷ ︸
Debye-Waller factor

· exp (iQ 〈rj〉) (2.28)

If the motion is desribed as rj(t) = 〈rj〉 + uj(t), the Debye-Waller factor can after Taylor
expansion of the exponential function be expressed as

F (〈T(r)〉) = exp
(
−
1

2
〈(Q · uj)

2〉

)
(2.29)

where uj(t) describes the thermal displacement. The Debye-Waller factor therefore describes
the decrease of the measured intensity with increasing atom movement along Q with in-
creased temperature and also a decrease of the intensity with increasing amplitude of the
scattering vector Q.

This derivation of Eqn. (2.17) and Eqn. (2.18) has several shortcomings. First of all it is only
valid for scattering probes with a rest mass such as neutrons or electrons, so it excludes X-rays.
The latter scattering probe has to be described as a quantized field. Even in a semiclassical
description where the atom is described in the first quantization, through conventional space
and momentum operators the deviation of the scattering cross section requires second order
time dependent perturbation theory. Since the quantum field theory approach leads to the
same result in the first Born approximation, the deviation is omitted here, it can be found in
[53, 54].

The Ewald construction is a helpful sketch to understand the basic scattering conditions,
see Fig. 2.3. If one draws a sphere with the radius |k| = 2π

λ
and the origin of the reciprocal

lattice 0recp is placed at the end of k on the intersection of the direct beam with the sphere,
the Laue condition, Q = G, with G a reciprocal lattice vector, is fulfilled for any reciprocal
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2.3. SCATTERING THEORY AND EXPERIMENTS

lattice point lying on the sphere. To observe different reflections one has therefore to rotate
the crystal.

Following [55] we can write a direct-lattice vector r and a reciprocal-lattice vector G as:

R = ua + vb +wc (2.30)

G = ha∗ + kb∗ + ℓc∗ (2.31)

The fundamental relation between reciprocal- and direct-lattice can then be written as:

x · y∗ =






2π if x = y

0 else
with x,y ∈ {a,b, c} (2.32)

Braggs law describes the dependence of the scattering angle 2θ and the spacing of lattice
planes d(hkℓ) = 2π

|Q(hkℓ)|
. From the geometry in Fig. 2.3, with |k| = |k ′| = 2π

λ
, one derives

|Q|

2
= |k| sin θ, which finally leads to:

nλ = 2d(hkℓ) sin θ with the wavelength λ and n ∈ Z (2.33)

For the hexagonal lattice the relation between d(hkℓ), the Miller indices h, k, l and the lattice
parameters a, b, c is:

1

d2
(hkℓ)

=
4

3

h2 + hk+ k2

a2
+

ℓ2

c2
(2.34)

2.3.2 Laue X-ray Diffraction

In contrast to monochromatic single crystal X-ray diffraction in Laue X-ray diffraction a spec-
trum of different wavelengths is used. Figure 2.4 shows on the right side the Ewald construc-
tion for this case, it is obvious that the Laue condition is fulfilled simultaneously for a lot
of reflections. The Laue symmetry of the Laue pattern is characteristic for the symmetry of
the chosen reflection plane, this can be used to orient single crystals and to check crystals for
second grains. The left part of the Figure 2.4 shows a schematic of the back-reflection Laue
pattern with the chex axis of YFe2O4−δ aligned along the beam path, which has a threefold
symmetry. The image was measured on a MWL120 real time Laue system from Multiwire
Laboratories Ltd., which has a 30x30 cm proportional wire chamber area detector. The X-ray
generator uses a tungsten target and the inset of Figure 2.4 shows the Bremsstrahlungs spec-
trum for different electron Energies on this target assuming a flight path of 20 cm and ignoring
the tails from the Lα1/2

emission lines above 8.5keV. A camera system in combination with a
mirror attached to the collimator allows to capture images of the sample and align the sample
in the X-ray beam. A three axis goniometer offers the possibility to orient the sample under
live feedback from the continuously updated Laue image. The Laue system was used to pre-
align the YFe2O4−δ single crystals for neutron diffraction experiments and especially for the
experiment in a 30 T magnet where alignment of the sample was critical due to the small
magnet opening (cf. Section 2.5).
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2.3.4 Structure solution and refinement

In a scattering experiment only the intensity is measured and the phase information is lost,
which is the crystallographic phase problem [57]. There exist several methods to overcome
this, for example classical direct methods [58] as used in SIR92 [59] or charge flipping [60–62].
The latter is used in this thesis by use of the program Superflip [63]. The basic idea is that one
knows that the real electron density is nowhere negative. So one starts with random phases
fulfilling Friedel’s law, then calculates the electron density by inverse Fourier transformation
[60]. Wherever the density is negative, the sign will be flipped to positive, therefore the name
chargeflipping [60]. In the Fourier transform of the new electron density the absolute values
of structure factors observed in the experiment, are replaced with their measured values [60].
Based on this a new electron density is calculated and the cycle starts again [60]. Then atom
positions are identified by their corresponding electron density, from which also the isotropic
thermal displacement is estimated.

JANA2006 was used for merging reflections and structural refinement [64]. The refinement
can either be based on the structure factors Fobs and Fcalc or the square of the structure factors.
For a refinement based on F the minimized function in Jana2006, as defined in [65], is:

P =
∑

ω(|Fcalc|− |Fobs|)
2 with the weighting factor ω(hkℓ) =

1

σ(|Fobs|) + (uFobs)2

(2.35)

where u is an instability factor and is chosen to be 0.01 in all refinements in this thesis.
For a refinement based on F2 the minimized function is:

P2 =
∑

ω ′(F2calc − F2obs)
2 with weights ω ′ =

ω

4F2obs
=

1

4F2obs · (σ(|Fobs|) + (uFobs)2)

(2.36)

Crystallographic R-values are useful to judge the quality of refined structures.
The experimental R-values which are received before refinement directly from the experi-

mental intensities, give a first impression of the quality of a measured dataset, and validity of
the chosen spacegroup. The two used values are Rσ which is based on the standard deviation
and the internal residual Rint, which are defined as

Rσ =

∑
i σ(Fi)∑

Fi
and Rint =

∑

i

∑

j

F2j − 〈F2i 〉

〈F2i 〉
(2.37)

where i is running over all independent reflections and j over all equivalent reflections and

for a specific i and 〈F2i 〉 =
∑

j=1..n

F2
j

n
.

To judge the quality of the refinement, several different residuals R are in use and one
has to distinguish between R factors of refinements based on F or F2. The factor R1 gives
the normed difference between observed and calculated structure factors. The R1-values for
an entirely wrong structure based on a set of random intensities would be 0.83 for a cen-
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CHAPTER 2. EXPERIMENTAL TECHNIQUES & THEORY

trosymmetric and 0.59 for a non-centrosymmetric structure [66]. The factor based on squared
structure factors is R2 and we follow the definition in [67]:

R1 =

∑
j ||Fobs|− |Fcalc||
∑

j |Fobs|
R2 =

∑
j |F

2
obs − |F2calc|

∑
j F

2
obs

(2.38)

The weighted ωR2 value is normally two to three times higher than R1, it directly gives the
weighted and normed deviation of the squared structure factors, as used in the refinement.

ωR =

√∑
jω(|Fobs|− |Fcalc|)2
∑

jω(Fobs)2
ωR2 =

√∑
jω(F2obs − F2calc)

2

∑
jω(F2obs)

2
(2.39)

The goodness of fit (Goof) considers also the number of used reflections n and parameters p,
here Goof2 is based on a refinement on F2.

Goof =

√∑
jω(Fobs − Fcalc)2

n− p
Goof2 =

√∑
jω(F2obs − F2calc)

2

n− p
(2.40)

A refinement based on F2 is more intrinsic since F2 is the measured quantity. It avoids
problems with reflections with near zero or negative intensity and resolves the difficulty to
estimate σ(F) from σ(F2) [68]. It also reduces the risk to run in local minima during the refine-
ment [69]. In regard to the obtained standard deviations and parameters a refinement on F2 or
F will lead to the same result, if the appropriate weights are used [70]. Including the weaker
reflections F2 < 3σ(F2) prevents a bias in the determination of the thermal parameters and
has been found to reduce the standard deviations [71, 72].

To validate anisotropic displacement parameters the Hirshfeld test can be used, which
tests if the displacement parameters of two ions in a bond have similar values along the bond-
ing direction [73].

2.3.5 Resonant Scattering

Experiments using resonant X-ray scattering will not be covered in this thesis, but results on
resonant X-ray diffraction on YFe2O4−δ are discussed here shortly since the results obtained
in my diploma thesis [20] are relevant for this work. The Thompson scattering approach is
only valid for energies away from abortion edges, at those anomalous atomic scattering oc-
curs which can give information about the local electronic structure [74]. It was used to probe
orbital order in LuFe2O4−δ [9, 75, 76] where no anisotropy in dependence of polarization
or azimuthal angle was found in the resonant scattering, which was attributed to an orbital
glass state [76, 77]. For the high temperature phase of LuFe2O4−δ orbital order was excluded
by XMCD measurements due to the presence of an orbital moment [9]. Theoretically orbital
order is expected for the RFe2O4−δ system [78, 79]. For YFe2O4−δ a small anisotropy is ob-
served for resonances at the Fe K-edge for (1

2
1
2
3
2
)-type reflections at 120 K, an orbital contri-

bution could not be excluded, but if it exists it will be small [20]. As for LuFe2O4−δ [75] no
additional reflections, to the charge order reflections, belonging to orbital order are observed
in YFe2O4−δ [20].
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2.3.6 Bond Valence Sum analysis

The X-ray scattering cross sections of Fe2+ and Fe3+ cannot be directly distinguished by labo-
ratory X-ray diffraction, since the atomic form factors of Fe2+ and Fe3+ are too similar, as can
be seen in Figure 2.6a. The electrostatic force between the iron and oxygen ions depends on
the oxidation state of the iron.

Fe2+ has one electron more than Fe3+ in the 3d-orbital, which leads to a larger coulomb
force shrinking the Fe2+-O bond distance in comparison to the Fe3+-O bond. The bond va-
lence sum analysis allows the differentiation between Fe2+ and Fe3+ through analysis of the
bonding distances to the ligand atoms. The bond valence sum method is based on two prin-
ciples. First the valence of the atom is the sum of the valences of its bonds and secondly both
atoms contribute equally to the bond [80]. The valence of an atom can following [81, 82] be
described as,

Valence =
∑

i

exp
d0i − di

0.37
(2.41)

where di is the experimental bond length to the neighboring ions and d0i is a tabulated [83,
84] characteristic bond length between two specific ions. The tabulated bond length is de-
termined from experimental structures, which makes the BVS method a rather empirical ap-
proach. Since d0i also depends on the valence state of the ion and its environment, the method
is not quite exact. And the normal approach to distinguish different Fe valences is to calculate
the valence with the d0i parameter for Fe2+ and Fe3+ respectively and take the one which is
significantly closer to the corresponding integer valences. The sum of all valences in a given
cell should be zero, which can be used as a validity test. Nevertheless this assumes full charge
disproportion of the Fe, which is still under discussion [76, 85, 86].

In the literature three studies [83, 87, 88] are found with systematic determinations of the
characteristic bond lengths from published crystal data for Fe2+ and Fe3+, the values are
given in Table 2.1 together with the values for Y3+ determined empirically [83, 84].

d0i(Fe2+) d0i(Fe3+)

[83] 1.734(3) 1.759(3)

[87] 1.713 1.751

[88] 1.700 1.765

mean 1.716(10) 1.758(4)

d0i(Y3+)

[83] 2.019(9)

[84] 2.014

[89] 2.028 1

mean 2.0165(20)

Table 2.1: Characteristic bond lengths d0i of Fe2+, Fe3+ and Y3+.
1 uses 0.35 instead of 0.37 in the denominator of (2.41), not part of the mean

In this thesis the BVS method is used to deduce the charge order from the refined crystal
structure in the two low temperature phases of YFe2O4−δ, see Section 4.7.5 and 4.8.4.
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2.3.7 Nuclear neutron scattering

Neutrons carry a magnetic moment in contrast to photons and are therefore directly influ-
enced by the magnetic moments of the sample. Therefore neutron scattering is the best method
to determine the magnetic structures of YFe2O4−δ. At the structural phase transitions de-
scribed in Chapters 4.7 and 4.8 also a change of the magnetic structure is observed which is
already expected from the magnetization curve shown in Figure 4.6. The interaction of the
neutron with the core of the atom in a crystal trough the strong force leads to nuclear scat-
tering. Since the core is more than four orders of magnitude smaller than the typical neutron
wavelength (order of Å) which is from the same size as the electron cloud, the scattering
source is well described as a point source. The nuclear neutron form factor is therefore a
constant and does not decrease at higher |Q|. The definition of the scattering amplitude for
nuclear scattering is similar to the one in X-ray diffraction Eqn. (2.25) but instead of the atomic
form factor fj(Q) the Q-independent length b is used which is related to the total scattering
cross section over σ = 4π|b|2 (see Eqn. (2.42)). The neutron scattering lengths from different
elements and isotopes vary strongly and measured values are tabulated [90].

F(h,k,ℓ) =
∑

j

bj exp
(
iQhkℓ · rj

)
(2.42)

The basis for the scattering length is the isotropic Fermi pseudo-potential:

V(r) =
2π h2

m
bδ (r − rj) (2.43)

Considering that the scattering lengths bj for different isotopes in the crystal vary, we have
to average over this random distribution of isotopes. This is also the case for a random nuclear
spin distribution. The differential cross section in the first born approximation is the square
of the scattering amplitude Eqn. (2.18):

dσ(Q)

dΩ
= |F(Q)|2 =

〈
∑

i

bi exp (iQri) ·
∑

j

b∗
j exp

(
−iQrj

)
〉

(2.44)

Calculating the average leads to a coherent part which contains the phase information and
therefore the information about the crystal structure and an incoherent part which originates
from superimposed scattering from a single atom which does not carry a phase information
and is for us only an isotropic background,

dσ(Q)

dΩ
= 〈b〉2

∣∣∣∣∣
∑

i

exp (iQri)

∣∣∣∣∣

2

︸ ︷︷ ︸
coherent

+N
〈
(b− 〈b〉)2

〉

︸ ︷︷ ︸
incoherent

(2.45)

where N is the number of atoms [50].
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Figure 2.6: X-ray and magnetic neutron form factors for the atoms in YFe2O4−δ (Data from [91, 92]).

2.3.8 Magnetic neutron scattering

Since the neutron carries a magnetic dipole moment µ it interacts with external magnetic
fields or the electrons in the sample via the potential:

V = −µ · B (2.46)

where for the interaction of the neutron with the sample both the dipole field of the electron
spin Bs = ∇ × µe×r

r3
and the field from the orbital motion of the electron BL = −e·ve×r

c·r3
have

to be considered. The scattering cross section for a neutron changing the projection of the
spin on the z-axis (spin quantization axis defined by a small guide field) from Sz to S ′

z can be
derived [50, 93, 94] as

(
dσ

dΩ

)

mag
= (γnr0)

2

∣∣∣∣
1

2µB
〈S ′

z|σ̂ · M⊥Q|Sz〉

∣∣∣∣
2

(2.47)

where γn is the gyromagnetic ratio for the neutron, r0 the classical electron radius and σ̂ the
neutron spin operator for a definition see Appendix A.1. Here M (Q) is defined as

M (Q) =

∞∫

−∞

M (r) exp (iQ · r)dR (2.48)

and only the component M⊥Q perpendicular to Q can be observed:

M⊥Q = Q̂ × M (Q)× Q̂ = M − (Q̂ · M)Q̂ with Q̂ =
Q

|Q|
(2.49)

With factorizing the form factor over the atoms and introducing the total angular momentum
J = L + S the scattering cross section can be written as

(
dσ
dΩ

)

mag
= (γnr0)

2

∣∣∣∣∣
gJ

2
fm (Q)

∑

k

〈Ĵk⊥〉 exp (iQr)

∣∣∣∣∣ (2.50)
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bank position without interpolation. The DNS instrument does not allow to efficiently collect
integrated intensities from different planes, since the crystal would have to be reoriented
by hand for every plane. Also through the large resolution ellipsoid axis perpendicular to
the scattering plane, the exact position of the peaks is not know. Therefore we went to four-
circle diffractometers to obtain the integrated intensities necessary for magnetic structural
refinement. DNS was also used for neutron diffraction on Ni0.42Mn0.58TiO3, see Section 3.6.

2.3.10 The D10 instrument

D10 was used to collect integrated intensities of the magnetic structure of YFe2O4−δ at 200 K,
see Section 4.10.3. D10 is the single-crystal four-circle diffractometer at the Institute Laue-
Langevin (ILL) in Grenoble, which can alternatively be used as a three-axis instrument with
energy analysis As a monochromator either pyrolytic graphite or a Cu (200) crystal can be
used, offering wavelengths between 1.1 and 6Å. It offers a flux of up to 5 · 106 neutrons

cm2·s . For fast
reciprocal space mapping a 8x8 cm2 two-dimensional microstrip detector is available which
was used also to collect integrated intensities. The four circle has Euler geometry. A point 3He
detector with higher efficiency is available but was not used due to broad magnetic peaks
which have to be separated from near charge order peaks. The general layout of the beamline
is shown in Figure 2.8, where non-used detectors are omitted. Not shown is the Helium flow
cryostat, which allows to control the sample temperature between 1.6 and 450K [95]. The
beam-path of the non-diffracted beam to the beamstop is also not shown.
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diaphragm
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colimator
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evaquated tube

Figure 2.8: Schematic view of the D10 instrument at the Institut Laue-Langevin, reduced to the used
components [96].

2.3.11 The TriCs instrument

TriCs is an instrument similar to D10, a four circle diffractometer at SINQ at the Paul-Scherrer-
Institute in Villingen Switzerland. In contrast to the reactor at the ILL, SINQ is a spallation
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source. The general layout can be found in [97] and differs only slightly from the D10 lay-
out, one specialty are the detectors. TriCs has both a single tube and a 16x16 cm area detec-
tor with a radial collimator and it is possible to tilt the detectors out of the horizontal plane
adding an additional degree of freedom. The tilting is not used in the four-circle mode, since
one can reach every reflection with four degrees of freedom, but it is used if the four-circle
cannot be used because of a mounted magnet, furnace or dilution cryostat. The instrument
offers two monochromators either Germanium (311) with a wavelength of 1.18Å or pyrolytic
graphite (002) with a wavelength of 2.32Å. The Euler four circle can be equipped with dif-
ferent cryostats to cover a temperature range from 5 to 800 K. The flux is up to 106 neurons

cm·s . In
the meantime the instrument is now renamed to ZEBRA. It was used to collected integrated
intensities of the magnetic reflections of YFe2O4−δ at 160 K, see Section 4.10.5. The TriCs area
detector is larger than the D10 detector, which covers a larger portion of reciprocal space. The
main disadvantage is the much lower average flux of the spallation source in comparison to
the reactor at the ILL.

2.4 X-ray magnetic circular dichroism

X-ray magnetic circular dichroism (XMCD) is the difference between the scattering of left
and right circularly polarized X-rays in the presence of a magnetic field, first theoretically
predicted in 1965 by Bennett and Stern [98] and experimentally observed 22 years later by
Schütz et al. [99]. The polarization vector is either parallel or antiparallel to the applied mag-
netic field, which breaks the time inversion symmetry, allowing dichroism. For Fe ions the
effect in the soft X-ray regime is based on electric dipole transitions from 2p core states to the
3d valence states, which determine the magnetism of the so called 3d-elements in our case the
iron. A small contribution of the 2p to 1s transitions is also given for L-edge transitions, but
it is found to be a factor of 20 smaller than contributions from the 2p to 3d transitions [100].
XMCD is measured at element specific absorption edges and even can distinguish between
different valences [101]. For 3d elements the 2p core states are split by spin orbit coupling into
one state with mj =

3
2

from which transitions are responsible for the L3-edge and one state
with mj =

1
2

, which corresponds to the L2-edge. [102] Circularly left polarized light (LCP) or
circularly right (RCP) polarized light carries its own angular momentum which is transfered
to the photoelectron in the absorption process. For left polarized light ml = 1 and for right
polarized light ml = −1. Through spin-orbit-coupling (ℓ+ s at L3 and ℓ− s at L2), a part part
of this angular momentum is converted to a spin moment [103], the other part is transfered
as orbital moment.

The selection rules for the absorption process at the L3 edge for the magnetization antipar-
allel to the photon wave vector are

∆ℓ = ±1 , ∆ms = 0 and ∆ml =

{
1 for RCP

−1 for LCP
. (2.52)

The XMCD process can be described as a two step process, first a photon excites a pho-
toelectron from a 2p state and then this electron has to find an empty 3d valence state. The
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density of states of empty 3d states both depends on the spin polarization and the orbital
polarization and any imbalance in the occupation of the 3d states leads to a dichroic signal
[103].

The sign of the XMCD signal is a matter of definition and as de Groot et al. [104] we follow
the definition of Baudelet et al. [105]:

∆µ(B) = µ+(B) − µ−(B) (2.53)

µ+(B) and µ−B) are the X-ray absorption spectra, for right and left polarized photons, respec-
tively [98]. The XMCD signal ∆µ can be measured either by switching the polarization of the
incoming photon or by inversion of the magnetic field [106].

ms
-2 -2 -1 -1 0 0 1 1 2 2

-1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2

ml

mj -3/2 -1/2 1/2 3/2 -1/2 1/2
p3/2 p1/2

60%

7.5% 2.5%

15%
15%

10%

15% 15%

15%

Figure 2.9: Absorption probability for the L2 and L3 dipol transitions for 3d elements for right-polarized
light. [75, 106, 107].

Figure 2.9 shows the possible transitions for circularly right polarized light ∆ml = 1 to-
gether with the transition probabilities for both the L3 and L2 edges with the sample mag-
netized antiparallel to the photon wave vector [106]. The magnetic field does not only split
the L2 and L3 edges, which are non-degenerate by spin orbit coupling, through the Zeeman
effect [108], it also leads to a polarization of the spin states. As shown in Figure 2.10 the pop-
ulation of states with a spin parallel to the external field is preferred and therefore there are
less free 3d states available to which a photon can be excited in comparison to an antiparallel
spin polarization. The Figure 2.10 furthermore shows the transition probabilities for a right
circular polarized photon for the L2 and L3 edge as derived from Figure 2.9. The total spin J

for the p3/2 orbital is ℓ + s and for the p1/2 orbital ℓ − s, therefore the L2 and L3 edge show
opposite spin orbit coupling and following the transition probabilities an opposite sign of the
XMCD signal between these edges is expected. So for an ideal one electron model with a spin
orbit split and no orbital magnetic moment the XMCD signal at the L2 and L3 edge should
have the same size but opposite sign, but this is rarely observed [109] and without spin orbit
splitting of the L2 and L3 edge no XMCD signal would be observed [110]. For a left circular
polarized photon the probabilities would be exchanged.

Through the application of sum rules based on the integrated XMCD signal, orbital and
spin contributions to the XMCD signal can be separated. The sum rules for XMCD over the
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L3 and L2 edges of 3d transition metal ions, originally derived by Thole et al. [111] and Carra
et al. [112] confirmed by others [113, 114] can following [104, 115], under neglect of the spin
quadrupole coupling, be written as:

morb = −
4q

3
∫

L3+L2
(µ+ + µ−)dω

〈N3d〉µB (2.54)

mspin = −
6p− 4q

∫

L3+L2
(µ+ + µ−)dω

〈N3d〉µB (2.55)

with 〈N3d〉 the number of 3d holes and:

p =

∫

L3

(µ+ + µ−)dω (2.56)

q =

∫

L3+L2

(µ+ + µ−)dω (2.57)

By division of Eqn. (2.54) with Eqn. (2.55) one can obtain the ratio between orbital morb =

− 〈Lz〉
µB
 h

and spin moment mspin = −2 〈Sz〉
µB
 h

:

morb

mspin
=

2q

9p− 6q
(2.58)

To exclude any non-field dependent part in the XMCD signal, which can be caused e.g.
by sample charging or a chiral crystal structure, also the XMCD signal with negative field
direction is measured, where we receive:

∆µ(−B) = µ−(−B) − µ+(−B) (2.59)

The component of the XMCD signal which is induced by the magnetic field is received as,

2∆µ = ∆µ(B) − ∆µ(−B) (2.60)

while the part of the XMCD signal not influenced by the magnetic field, and which is therefore
an artifact or structural, can be received as:

art = ∆µ(B) + ∆µ(−B) (2.61)

For an ideal instrument and a centrosymmetric structure, this therm should vanish, or be at
least significantly lower than the XMCD signal.

2.4.1 The 4-IDC-C beamline at APS

Our experiment at the Fe L2/3 edge of YFe2O4−δ (see Sec. 4.4) was conducted at the soft X-ray
beamline 4-ID-C at the Advanced Photon Source (APS), where also the previous experiment
on LuFe2O4−δ [9, 75] was performed. Figure 2.11 gives a schematic overview of the beamline.
The instrument has an undulator which allows rapid switching (0.5Hz) between right and
left circular polarized light, this allows to switch the polarization at every point of the energy
scan to reduce low frequency artifacts [116]. The three mirrors in front of the spherical grating
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Figure 2.10: Shematic sketch showing the L2 and L3 edge with the absorption probabilities for right-
polarized light and a photon wave vector antiparallel to the magnetic field.

monochromator and the slits in front and after the monochromator are not shown. A Kirk-
patrick and Baez mirror pair [117] is used for focusing the beam. The energy can be tuned in a
range of 500 − 2800 eV with the spherical grating monochromator, with an energy resolution
of ∆E/E = 2× 10−4 and a photon flux of 1.8× 1012 photons/second at 1350 eV. The absorption
is measured either with total electron yield (TEY) or fluorescence (TFY). In TEY the current
created by detached photoelectrons is measured through the electrically contacted sample,
this is very surface sensitive because emitted electrons can only pass through the first 25 to
50 Å of the sample [118] and can only be used if the sample is not too isolating. TFY detects
the emission by the relaxation of, through the photon beam, excited electrons. A magnetic
field up to 6.5T can be applied parallel or anti-parallel to the X-ray beam.
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Figure 2.11: Schematic view of the 4-ID-C beamline at the Advanced Photon Source [75, 119, 120].
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2.5 High magnetic field measurements

In contrast to LuFe2O4−δ the antiferromagnetic state of YFe2O4−δ cannot be switched to a
ferrimagnetic state with fields up to 9 T. Non-stoichiometric YFe2O4−δ is ferrimagnetic and
shows metamagnetic transitions above 16T [121].

With a high magnetic field it should be possible to switch the antiferromagnetic state of
YFe2O4−δ to a ferrimagnetic state and trough spin-charge coupling this may affect the charge
ordering. In LuFe2O4−δ such a magneto structural transition is observed at 170 K [31, 122] al-
though the metamagnetic fm-AFM transitions directly below 240 K shows no structural com-
ponent [123].

To test if a magneto structural transitions exists in YFe2O4−δ we conducted an experiment
at the 6-ID-C station of the Advanced Photon Source in pulsed magnetic fields up to 30T.

Hmagnet

sample10◦

magnet opening

incident beam

detektor

translation

2413 mm

[110]

[001]

Q

Figure 2.12: Sketch of the horizontal scattering plane at 6-ID-C (0.5◦ tilt is ignored for clarity).

The sample setup at 6-ID-C consists of a single large-bore solenoid cooled by a liquid
nitrogen bath and a second liquid helium cryostat with a coldfinger to control the sample
temperature [124]. The magnetic field lies in the horizontal scattering plane mostly parallel to
the incident beam. But since the whole magnet is moved to rotate the sample, also the angle
between the field and the incident beam is changed between 0 and 10◦. With a discharge
of the 40 kJ capacitance bank the magnet creates a 30T pulse, with 10ms total pulse width
and a repetition time of 12 minutes [124]. The incoming and outgoing beam is restricted by
the magnet opening to ±10◦ [125, 126]. The sample cannot be rotated independently of the
magnet, the magnet rotation ω and the detector angle 2θ are the only degrees of freedom in
the experiment. Either a Pilatus 100k Si or a Pixirad CdTe detector were used to detect the time
resolved diffraction. The sample was prealigned using Laue X-ray diffraction. The sample was
used in transmission geometry with [001] and [110] building the horizontal scattering plane.
The [001]-axis was tilted 12◦ away from the field direction towards [110], to be able to access
(1
2
1
2
3
2
) at 160K, taking into account the ±10◦ magnet opening (cf. Fig. 2.12). There was an

additional 0.5◦ vertical offset, instead of tilting the magnet with the sample, the detector was
moved accordingly. The results of the experiment can be found in Section 4.9.
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3
Ni0.42Mn0.58TiO3

3.1 Introduction

3.1.1 Ni0.42Mn0.58TiO3 an XY-spin glass

The smaller part of this thesis is dedicated to Ni0.42Mn0.58TiO3, which is an XY-spin glass,
where the spins are restricted to the chex plane and obey only x and y-components and the
vector spin chirality κ = S1 × S2 [127] has only a z-component [128]. A spin glass is a ran-
dom system with, in our case, competing ferromagnetic and anti-ferromagnetic interactions,
which lead to a disordered spin distribution at higher temperates. Below the so called freezing
temperature the system is characterized by a random, yet cooperative freezing of spins and
obeys no long-range order [129]. Recently it was shown by neutron diffraction, that the cor-
relations in Ni0.42Mn0.58TiO3 are 2-dimensional with an intralayer correlation length of 21 Å
and in-plane correlation length of 73 Å at 1.5 K [130]. By inelastic neutron scattering it was
shown that the XY-spin glass state in Ni0.42Mn0.58TiO3 obeys antiferromagnetically ordered
short-range clusters with short lifetime [130]. In this XY spin glass state of Ni0.42Mn0.58TiO3

a toroidal moment can be induced by cooling below 10 K in crossed magnetic and electric
fields [24, 35]. Ferrotorodicity is a fourth ferroic order, beside ferromagnetism, Ferroelectric-
ity and ferroelasticity, breaking both space and time reversal symmetry, as shown in Figure
3.2 [3]. Ferrotoroidic materials are intrinsically magnetoelectric [21, 131]. Both NiTiO3 and
MnTiO3 crystallize in the R3̄ space group, in the following in-plane is always in regard to
the c-plane in the hexagonal representation of R3̄. The spin glass state at low temperatures
in Ni0.42Mn0.58TiO3 is created by competing ferromagnetic Ni in-plane interactions and anti-
ferromagnetic Mn interactions [24, 132]. Both NiTiO3 and MnTiO3 are antiferromagnetically
ordered out of plane at sufficient low temperatures, as can be seen in the phase diagram
in Figure 3.1 [24, 132]. By neutron diffraction it was shown, that for Ni0.33Mn0.67TiO3 the
spins show a deviation from the orientation along chex, which is both field and temperature
dependent (14◦ at 20.5 K and 80◦ at 4 K) [133]. The compound NixMn1−xTiO3 changes the
direction of the effective spin anisotropy from weak Ising-type to weak planar-type [134]. The
phase diagram (Figure 3.1) shows that the XY-spin glass phase, with single ion easy-plane
type magnetic anisotropy [134], exists only for a Nickel fraction x between and 0.4 and 0.5

and at a temperature below 10K. Ni0.42Mn0.58TiO3 is so far the only example of a toroidal
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Figure 3.1: Phase diagram of NixMn1−xTiO3 (reproduced after [24]). The data is either from magnetiza-
tion measurements or neutron diffraction and is taken from [24, 135, 136]. RSG stands for reentrant spin
glass, and is a mixture of the neighboring AFM-phase and the spin glass phase (SG). Spin structures
reproduced from [24] based on [132]. (Reprinted with permission from Y. Yamaguchi et al., Phys. Rev.
Lett. 108, 057203 (2012) Copyright (2012) by the American Physical Society [24])

spin system in a disordered state [24, 35]. To realize a toroidal state in a spin glass bot space in-
version and time inversion symmetry have to be broken. A precise control of the Ni-Mn-ratio
in NixMn1−xTiO3 is essential, to reach the spin glass state.

3.1.2 A brief introduction to toroidal moments

Ferrotorodicity is a fourth ferroic order, beside ferromagnetism, ferroelectricity and ferroelas-
ticity, breaking both space and time reversal symmetry, as shown in Figure 3.2 [3].

A toroidal moment t can be created by a vortex array of spins. For a discrete arrangement
of magnetic moments mα the toroidal moment t is defined as:

t =
1

2

〈
∑

α

rα × mα

〉
(3.1)

where mα is the magnetic moment and rα its position vector. Analog to the magnetization,
the toroidization T, is defined as toroidal moment t per volume V .

T =
t

V
(3.2)

Figure 3.3 shows four different spin systems. The antiferromagnetic spin arrangement in Fig-
ure 3.3a is the simplest example for a toroidic system with a toroidal moment t = 1

2
asez
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Figure 3.2: Ferroic orders and their symmetry conditions in regard of space and time. (Adapted by
permission from Springer from B. Van Aken et al. “Observation of ferrotoroidic domains”, Nature 449,
702 (2007) [137])

pointing out of plane, here s is the spin moment and a
2

is the distance of the spin from the
origin. In contrast to this the antiferromagnetic spin structure in Figure 3.3b has no toroidal
moment since m ‖ r. In Figure 3.3c the classical vortex like spin array is shown with a toroidal
moment t = asez pointing out of the drawing plane. By space or time-reversal this structure
can be transformed into Figure 3.3d, where the toroidal moment is pointing in the reverse
direction t = −asez.
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Figure 3.3: One non-toroidal (b) and three toroidal (a),(c),(d) spin configurations. (Adapted by permission
from Springer from [131] )

As is obvious from Figure 3.3 the definition of the toroidal moment in Eq. 3.1 clearly de-
pends on the choice of the origin. If one changes the origin r → r + R0 the toroidal moment is
changed t → t ′ = t + 1

2
R0 × m with m =

∑
mα, this is the case because higher multipole mo-
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ments are not necessarily extensive for non-vanishing magnetic moments [21]. As described
in [131], this can be resolved by separation the magnetization in a fully compensated part

m(0)
α = mα −

m

N
with

∑

α

mα(0) = 0 (3.3)

and an uncompensated part:

m̃α =
m

N
with m =

∑

α

mα (3.4)

The compensated part leads to an origin independent toroidal moment

t0 =
∑

α

1

2
tα × mα (3.5)

while the uncompensated part is origin dependent in general

t̃ =
1

2
R̄ × m with R̄ =

1

N

∑

α

rα (3.6)

If one chooses R̄ as origin, t̃ vanishes, of course this is a problematic choice for structural tran-
sitions, since one would like to keep the origin the same for both phases. On the other hand
for non-localized moments the homogeneous magnetization density of the uncompensated
part cannot create a macroscopic toroidal moment because it cannot break inversion symme-
try, which allows a complete separation between dipole and toroidal contributions [131]. For
infinite systems there exits a multi-valueness because one could shift the origin by a lattice
vector without chaining the moment arrangement [131]. The solution for bulk periodic solids
is the same as for the polarization, only differences of the toroidization are meaningful mea-
surement quantities [131].

3.2 Single crystal growth

Single crystals of Ni0.42Mn0.58TiO3 were grown with the floating zone method (cf. Sec. 2.1.2).
Polycrystalline Ni0.42Mn0.58TiO3 was prepared from a stoichiometric mixture of NiO, MnO2

and TiO2. NiO is hygroscopic and tends to oxidize to Ni2O3, therefore the compound la-
beled as NiO was heated for 10 h in Air at 1000 ◦C and was afterwards cooled in an Argon
atmosphere to create NiO, during this procedure the color of the composition changed from
gray-green to bright green, and powder X-ray diffraction confirmed NiO.

The MnO2 and TiO2 were dried at 120 ◦C for several days to remove moisture. In contrast
to [35] we used MnO2 instead Mn3O4, due to availability, it decompose above 600 ◦C to
Mn3O4. The powder mixture was ball-milled and afterwards calcined at 1000 ◦C for 30 h
in air. The received powder was ball-milled again and hydrostatically pressed at 30 MP into
rods of 8 mm diameter and typically 10 cm length, which were used for both feed and seed. In
subsequent growths crystalline seeds were used. For the floating zone growth an optical four
mirror furnace was used, with a continuous flow of air. The feed and seed rods were counter
rotating with 25 and 15 rpm and were moving through the lamp focus by 1.5 and 1.0 mm/h

respectively. Ni0.42Mn0.58TiO3 melts incongruently as it is reported for MnTiO3 [36], but a
stable zone could be established through self flux.
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(a) Boule of Ni0.42Mn0.58TiO3.
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Figure 3.4: Boule grown width the floating zone method, Laue images perpendicular [001] and [100] and
X-ray precession image of the hk0-plane.

3.3 Chemical composition - Powder X-ray diffraction

Powder X-ray diffraction of ground crystals confirmed a single phase of NixMn1−xTiO3. Parts
from the boule right from the begin of the growth, where the self flux is not stable, show a
small contamination of TiO2. The ratio between Ni and Mn can also be determined from
an evaluation of the lattice parameters. Liferovich et al. [138] have reported the structures of
NiTiO3, MnTiO3 and Ni0.5Mn0.5TiO3. Since the lattice constants between different instru-
ments can be strongly influenced by calibration errors of the diffractometers, we have also
synthesized powder of the end compounds NiTiO3 and MnTiO3. The a lattice parameter is
almost linear to the Ni fraction x in NixMn1−xTiO3. The c lattice parameter shows a deviation
from the linear behavior, we used the lattice parameters of Ni0.5Mn0.5TiO3 given in [138] to
correct for this nonlinearity. To further strengthen the determination of the Ni fraction x, we
have also grown single crystals of NiTiO3 and MnTiO3 and determined the lattice constants
through single crystal X-ray diffraction, again the Ni0.5Mn0.5TiO3 data from [138] was used to
correct for the nonlinearity. Figure 3.5 shows the lattice parameters from powder X-ray diffrac-
tion and to which Ni fraction x they correspond. For the powdered single crystal Z1 (Figure
3.4a) the fraction is 0.403 calculated from the a lattice parameter and 0.413 calculated from
the c lattice parameter. The comparison with the fractions from the feed, which was used to
grown Z1, shows that the composition does not change during the growth. The single crystal
X-ray diffraction gives fractions of 0.432 and 0.426 from the a and c lattice parameter respec-
tively. Under consideration of the statistical deviations these compounds can be considered
to be Ni0.42Mn0.58TiO3 and will be called Ni0.42Mn0.58TiO3 in the following discussion. All
these Ni-fractions lie in the zone in the phase diagram of NixMn1−xTiO3 (Figure 3.1) where
the spin glass phase can be reached below 10K.
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the Ni0.5Mn0.5TiO3-data from [138]. Z1 is from a ground single crystal, and the dotted lines give the
corresponding Ni fraction received from single crystal x-ray diffraction.

The grown crystal was oriented using Laue X-ray diffraction and cut plate-like so that
[11̄0] is the surface normal. Figures 3.4b and 3.4c show Laue-images perpendicular [001] and
[100] respectively of the middle part of the boule in Figure 3.4a, while Figure 3.4d shows the
procession image of the hk0-plane received from single crystal X-ray diffraction data. The
latter was used to confirm the sample orientation after cutting, since it is difficult to use back
reflection Laue on the small side of a plate.

3.4 Magnetization measurements

To confirm the establishment of the spin glass-phase below 10 K frequency dependent AC
susceptibility measurements were performed on a Quantum Design PPMS (cf. Sec. 2.2.2).
Figure 3.6a shows the magnetic susceptibility at different frequencies, the shift of the tran-
sition temperature around 10 K is characteristic for a spin glass system [45, 139] and was
also reported in the supplement of [24]. As in [24] the frequency dependence cannot be de-
scribed by an Arrhenius law, but is well described by a Vogel-Vulcher law [140–142] with
f = f0 exp

(
−Ea

kB(Tf−T0)

)
. For comparison with [24] we restrict the characteristic frequency f0 to

1014, since the fit is not very sensitive to this parameter. With this we get a Vogel–Fulcher tem-
perature of T0 = 40.6 ± 1K and Ea

kB
= 9.35 ± 0.04K, which is similar to the values Yamaguchi

et al. reported T0 = 34∼37K and Ea
kB

= 8.4∼8.7K.
The spin glass freezing temperature of Ni0.42Mn0.58TiO3 shows an anisotropic behavior.

The spin component in the chex planes freezes at 10 K while the component perpendicular
freezes at 6 K [24]. Figure 3.7 shows the DC-magnetization of Ni0.42Mn0.58TiO3 measured
along the [1, 1, 0] ,

[
1, 1̄, 0

]
and [0, 0, 1] axes, all measured during warming, either with previ-

ous field cooling (FW) or without (ZFC). The magnetization along [1, 1, 0] and
[
1, 1̄, 0

]
show

the same behavior with a spin glass freezing point at 10 K as observed for the
[
1, 1̄, 0

]
di-
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Figure 3.7: Magnetization measurement of Ni0.42Mn0.58TiO3 with different field directions. All curves
are measured in a field of 100 Oe either with previous applied cooling field (FW) or without (ZFC).

rection in [24]. Both in-plane directions were measured to have a confirmation of the crystal
orientation in addition to single crystal X-ray diffraction. The magnetization in the direction
perpendicular to [1, 1, 0] and

[
1, 1̄, 0

]
, therefore [0, 0, 1] shows a freezing point at 6 K. The small

difference between the field warming and zero-field-cooling curve above 6 K is most likely
given by a small in-plane contribution from a non-perfect sample alignment.

One of the most convincing tests for a spin glass is a memory test [143]. Yamaguchi et al.

[24] have shown that the polarization induced in Ni0.42Mn0.58TiO3 obeys a magnetoelectric
memory effect. In the magnetoelectric memory test not only a time halt during cooling is
made, but also the electric field is altered. The classic memory test of the magnetization char-
acteristic for a spin glass, has not been reported on any member of the NixMn1−xTiO3 class.
For our memory test the sample was cooled in a field of 1Oe at a rate of 1K/min to 2.5K with
1 h waits at 60 K and 18 K to to create a homogeneous temperature over the whole sample
chamber. 18K is well above the spin glass transition around 10K [24]. A field of 1Oe was
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Figure 3.8: Magnetic memory test magnetization measurement of Ni0.42Mn0.58TiO3 in H ‖ chex. The
blue curve is field warming after cooling in zero field from 18 to 2.5 K, while the red curve is measured
during warming with a break of 10000 s at 5 K in the previous ZFC. The green curve is the difference of
both multiplied by a factor of 5 for visibility.

chosen to have a reproducible very small field instead of a random field one gets due to the
remanent magnetization of the MPMS superconducting magnet, which persist of the field is
set to zero. Afterwards the magnetization was measured during warming with 0.5K/min to
18K in a field of 100Oe parallel chex. After the field was turned to 1Oe the sample was kept for
1h at 18 K to have the same starting conditions. During the following cooling with 1K/min
to 2.5 K the sample was held at 5 K for 10000 s. Afterwards the magnetization was measured
during warming with 0.5K/min in a field of 100Oe. Figure 3.8 shows both magnetization
measurements and the difference between the field warming without and with a break at 5 K
in the previous zero field cooling. Ni0.42Mn0.58TiO3 shows a very clear magnetic memory
effect (Fig. 3.8) characteristic for a spin glass. The small dip in the magnetization around 4.2K
originates from the change of the cooling-mode of the MPMS while passing the boiling point
of Helium-4.

Overall we can conclude, that the frequency shift of the AC susceptibility, the magnetic
anisotropy and the memory test confirm that our sample is indeed an XY spin glass below
10 K and all these results are consistent with [24, 35].

3.5 The Magneto-electric effect in Ni0.42Mn0.58TiO3

By cooling in crossed magnetic and electric fields below the spin glass transition a toroidal
moment is induced in Ni0.42Mn0.58TiO3 [35]. The toroidal moment t is coupled to the mag-
netization over M ∝ −t × E with application of an electric field as it is shown in Figure 3.9.

To reproduce this measurement we have cut a single crystal of Ni0.42Mn0.58TiO3 to a
0.5mm thick plate with face normal [11̄0]. A voltage of 200V, the maximum possible voltage in
our setup, was applied along [11̄0] giving an electric field strength of 0.4MV/m. Additionally
a magnetic field of 9T was applied along [110] in a Quantum Design MPMS (cf. Sec. 2.2.3)
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cooling in µ0H[110] = 7T and E[1−10] = 1MV/m. (Reprinted by permission from Springer Nature:
Yamaguchi et al. Nature Communications 4, 2063 (2013) [35]).

and the sample was cooled down to 6.4K. A lower temperature could not be stabilized likely
due to joule heating of the sample. At this temperature both the electric and the magnetic
fields were turned off and the remanent magnetization was measured. An alternating voltage
with an maximum amplitude of 200V was applied to the sample to switch the magnetization.
Figure 3.10 shows the time dependence of the remanent magnetization and its first derivative,
together with the applied voltage pulses. The switching behavior observed by Yamaguchi et al.

[35] (Figure 3.9) could not be observed. The peaks in the first derivative of the magnetization
are measurements artifacts since they are positive for both an increase or decrease of the
voltage.

The applied voltage and the corresponding electric field is lower than the one used in [24].
The electric field corresponding to 200 V is applied during the magnetoelectric field cooling of
the sample and during the measurement an alternating electric field with the same maximum
strength is used. Therefore the reduction of the electrical field has an quadratic influence on
the magnetization changes following M ∝ −t×E and t ∝ Ecooling. Nevertheless even a 10 times
smaller signal than that in (Figure 3.9) would be observable, so that this cannot explain the
observations. The influence of the different measurement temperature is discussed in Section
3.7. Ni0.42Mn0.58TiO3 has two glass transitions, the first one at 9.5 ± 0.5K is the freezing
temperature for the moment parallel to the hexagonal [100]-axis, while only below 6 ± 1K
the moment along [001] freezes [134]. As observed by Yamaguchi [24], the higher temperature
8 ∼ 10K is the magnetoelectric transition temperature.
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3.6 Neutron diffraction

The main idea for the synthesis of Ni0.42Mn0.58TiO3 was to examine the diffuse magnetic
scattering related to the spin glass phase with neutron diffraction by full polarization analysis
and under the influence of an electric field. During the two experiments at the DNS instru-
ment at MLZ (cf. Sec. 2.3.9), the 5 T magnet was not operational. Due to this no magnetic field
could be applied and following t ∝ E × H no toroidal moment could be induced and no mag-
netoelectric effect could be observed. Nevertheless we could perform neutron diffraction on
the spin glass state of Ni0.42Mn0.58TiO3. Figure 3.11 shows the reciprocal h0ℓ-plane received
from neutron diffraction. The neutron polarization was chosen pointing to the end of the de-
tector array, so roughly parallel to the average scattering vector Q̄. With this polarization ori-
entation all magnetic scattering, regardless of the orientation of the magnetic moment will be
in the spin-flip channel, since M ⊥ Q → M ⊥ P. This is just a very raw approximation, since it
is only valid for reflections lying in the center of the detector array. The spin-flip channel (Fig-
ure 3.11a) shows diffuse scattering, expected in a spin glass [144], at the positions expected for
pure NiTiO3 and MnTiO3, the latter matching the positions of nuclear reflections. The polar-
ization analysis shows that the moments are lying in the c-plane. The non-spin-flip channel
(Figure 3.11b) shows beside the structural reflections also λ/2-contaminations from imperfect
monochromatization of the incoming beam. In contrast to MnTiO3 where non-magnetic su-
perstructure reflections were observed recently by neutron diffraction [145], we observe only
reflections compatible with the R3̄ space group.
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could be due to Joule heating during the magnetoelectric field cooling, because of an imper-
fectly insulating sample. NiTiO3 is a semiconductor [153]. Our sample was slightly larger than
the one used in [35] but the applied field was significantly smaller 0.4MV/mm to 1MV/mm,
so a possible joule heating should be similar. On the other hand the resistivity depends on the
temperature, which reduces the Joule heating at 2 K. Also if the sample is the heating source,
it might well be, that the temperature given by the thermometer of the MPMS is below the
temperature in the sample. From Figure 3a in [35] it is clear, that the influence of the reduced
electric field during cooling is linear, so we could expect a 0.16 times smaller magnetoelectric
effect. Under the assumption, that the temperature dependency of the magnetoelectric effect
is analog to the induced polarization (Figure 1 in [35]), the effect is reduced by a factor of 1.3
between 2K and 6.4K, giving a total reduction by 0.12. Even with this reduction the magne-
toelectric effect would be observable in Figure 3.10. Another explanation would be that the
toroidal moment leading to the magnetoelectric effect can only be induced below the spin
freezing of the c-component below 6K, but this is in contradiction to the temperature depen-
dence of the polarization (Figure 1 in [35]). The most likely explanation is the destruction
of the toroidal state by heating the sample over the spin glass transition due to joule heating
caused by a conducting sample, to avoid this a smaller sample could be used or the sample
could be isolated from the contacts in future measurements.
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4
YFe2O4−δ

The main part of this thesis in the following chapters is dedicated to the establishment of the
charge and spin structures of stoichiometric YFe2O4−δ.

4.1 A brief history of YFe2O4−δ

YFe2O4−δ was first synthesized in 1975 by Kimizuka et al. [154] in a non-stoichiometric form
in a CO2/CO atmosphere. YFe2O4−δ is only metastable below 1100 ◦C and normally decom-
poses to YFeO3 and FeO [154–157] during cooling. The first non-stoichiometric single crystals
were grown in 1976 by Shindo et al. [28]. At room temperature YFe2O4−δ shows a rhombo-
hedral crystal structure with space group R3̄m [154], with the lattice constants as given in
Table 4.1. The structure can be understood as a stacking of triangular layers along the hexag-
onal c-axis (Fig. 4.1). Triangular layers of Y alternate with bilayers of Fe. A single Fe layer is
again triangular and each Fe-ion is in a trigonal bipyramidal oxygen environment, while the
oxygen environment for the Yttrium is octahedral. The arrangement of bi- and trivalent Fe
ions on the triangular lattice leads to frustration.

The magnetization of the crystals from Shindo et al. [28] is characterized by a broad transi-
tion around 200K and a strong difference in the low temperature magnetization between field
warming after cooling in a field or without a field, a behavior named parasitic ferrimagnetism
[158].

The first stoichiometric powder samples were prepared by Nakagawa et al. [161] in 1979
at room temperature they show the same R3̄m structure as non-stoichiometric samples. They
undergo two antiferromagentic transitions with onsets at 245 and 220K on warming, which
are shifted 20K to lower temperatures on cooling and are also structural transitions. It is re-
ported from powder X-ray diffraction that the symmetry is lowered to monoclinic and on
further cooling to triclinic [161], although a structure solution was not given. The frustra-
tion of the arrangement of Fe2+ and Fe3+ on the triangular lattice is resolved by long range
charge order. The Fe2+ and Fe3+ charge ordering in stoichiometric YFe2O4−δ was analyzed
in the past by electron diffraction on micro crystallites, and several different propagation vec-
tors were suggested for different temperatures [159, 162–169]. Figure 4.3 gives an overview
of the suggested phases and the propagation vectors describing them. All samples show dif-
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fuse scattering at room temperature, sometimes accomplished by superstructure reflections
at

(
1
3
1
3
1
2

)
[163, 168] or incommensurate modulations of it [166, 167].

Lately Blasco et al. [170] reported structure solutions for the charge order superstructure of
stoichiometric YFe2O4−δ at 210 and 80 K based on Rietveld refinement of synchrotron powder
X-ray diffraction data. Structure solution from powder diffraction is highly nontrivial without
any starting point. Blasco et al. [170] used the room temperature structure and ISODISTORT
[171] from the ISOTROPY Software Suite [172] to receive a distorted structure, the used group
theory approach seems questionable, which we will discuss later.

Several Mössbauer spectroscopy studies on YFe2O4−δ are reported [160, 173–177]. At room
temperature in the paramagnetic state the Mössbauer spectrum consists of two quadrupole
doublets, originating from Fe2+ and Fe3+ as identified by the isomer shift [160, 173, 174].
At 373K these lines merge to one quadrapole doublet, originating from Fe2.5+, which is ex-
plained by an electron hopping faster than 108 Hz, the characteristic frequency of the Möss-
bauer effect [160, 174]. Below room temperature the spectra differ strongly for stoichiometric
[160, 174, 175] and non-stoichiometric [173, 175, 176] YFe2O4−δ. Non-stoichiometric YFe2O4−δ

shows a Zeeman split into six broad lines [173] at 90K, while the spectrum below 220K of stoi-
chiometric YFe2O4−δ consists of four sextets, originating from charge order of Fe2+ and Fe3+

[160, 174]. On warming at 220K a new phase occurs with one sharp Fe2+ and Fe3+ sextett
each and an additional broad line attributed to Fe3+ [174]. The fast decrease of the hyperfine
field at 240 K indicates the Néel temperature [174]. Inazumi et al. [160] found that the intensity
ratio of the Fe2+ and Fe3+ Mössbauer lines is 0.9, less than expected for a stoichiometric sam-
ple, while Tanaka et al. [174] found a ratio of 0.7. They also found that the state of the sample
depends on the cooling rate, if the sample was cooled faster than 0.25 K/min between 230 and
100 K, stoichiometric YFe2O4−δ shows the same Mössbauer spectrum as a non-stoichiometric
sample. During cooling the resistivity of a stoichiometric sample increases at both transitions
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by 1-2 orders of magnitude [178–180]. This abrupt change shows the same thermal hysteresis
as the magnetization [181] and is suppressed with decreasing stoichiometry [178]. By applica-
tion of pressure the transition temperatures of the structural and magnetic transition can be
moved to lower temperatures, Siratori et al. [182] found a rate of −2.6 and −10.5K/kbar for
the high and low temperature transition respectively, while Matsumoto et al. [183] determined
a rate of -1.2 and -3 K/kbar. The lower temperature transition is suppressed above 6 kbar [183]
while the higher temperature transition vanishes above 10 kbar [182]. A substitution of Y with
Lu leads to a similar effect, where a 1% substitution of Lu corresponds to a pressure of 1 kbar
[182].

Neutron diffraction on non-stoichiometric single crystals below 230 K shows diffuse scat-
tering along (1

3
1
3
ℓ) with no fine structure [184–186]. On non-stoichiometric samples with a

lower oxygen deficit, the onset of three dimensional magnetic ordering is observed below the
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Néel temperature and full 3D ordering is expected for the stoichiometric compound [185].
The magnetic structures are reported to be complex and incommensurate by neutron powder
diffraction, but are supposed to be based on the lower symmetry charge order superstructures
[185, 187].

Temperature (K) 290 222 77

a (Å) 3.513 3.534 3.574

b (Å) 3.513 3.513 3.540

c (Å) 24.779 24.771 24.505

α (deg) 90 90.23 90.43

β (deg) 90 89.54 88.82

γ (deg) 120 120.20 120.62

V (A3) 264.83 265.74 266.78

Table 4.1: Lattice parameters of stoichiometric YFe2O4−δ from [161] and also given in [160].

4.2 Single crystal growth

The YFe2O4−δ samples used in this thesis were grown by the optical floating zone method
(see Sec. 2.1.2). The procedure is published [40] and more details can be found in my diploma
thesis [20]. Powdered YFe2O4−δ was synthesized following the procedure described by Shin-
do et al. [28], from a stoichiometric mixture of Fe2O3 (99.945%) and Ye2O3 (99.99%). This
mixture was calcined at 1250◦ C for 24 h in a CO2/Ar-H2(4%) atmosphere with a CO2/H2-
ratio of 3. The polycrystalline YFe2O4−δ was hydrostatically pressed at 30 MPa into rods,
which were used both for the feed and seed in the floating zone growth using an optical
four mirror furnace (Model FZ-T-10000-H-VI-VP0 Crystal Systems Corporation, Japan). A
CO2/CO-atmosphere was used and a growth rate of 1 mm/h with seed and feed rods counter-
rotating with 10 and 20 rpm. YFe2O4−δ is only metastable below 1100 ◦C, therefore the grown
YFe2O4−δ partly decomposes to YFeO3 and FeO during cooling [155]. The decomposed part
can be easily distinguished from crystalline YFe2O4−δ by optical microscopy.

Figure 4.4a shows a grown boule, with decomposed and crystalline YFe2O4−δ, while 4.4b
shows a small single crystal on a nylon wire used for X-ray diffraction.

The stability limit in regard to the oxygen off-stoichiometry δ in YFe2O4−δ is given by
Kimizuka et al. [154] as δ = 0.095 to δ = 0.000, while Jakobs et al. [156] give a slightly higher
lower border δ = 0.0885.

X-ray powder diffraction is used to check the phase purity of polycrystalline and single
crystalline powdered samples. Powder diffractograms of two polycrystalline samples and a
ground non-stoichiometric (δ > 0.05) single crystal are shown in Figure 4.5. The inset shows
the variation of the in-plane lattice parameter of polycrystalline YFe2O4−δ with different syn-
thesis gas ratios, already presented in [20]. The given off-stoichiometries δ are from compari-
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Figure 4.4: a) Grown boule, consisting of crystalline YFe2O4−δ and material decomposed to YFeO3 and
FeO during cooling. The last grown part (right side) was quenched, through the separation of the seed
and feed rod at the end of the growth. Strong variations are observed in the oxygen off-stoichiometry δ.
The given oxygen off-stoichiometry δ is determined from comparison of the magnetization with [160].
b) Tiny separated single crystal on a nylon string used for single crystal X-ray diffraction. Figure from
own published work [40].

son of magnetization data with those in [160], the relation to the gas-ratio is nonlinear [156].
The decrease of the in-plane lattice parameter is also observed in LuFe2O4−δ [188, 189] and
also predicted from theory [78, 79], although it is in contradiction to [160], where a small
(< 0.1%) volume increase is observed.
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stoichiometric powder (0.03 < δ < 0.04) (S P), with the two step transition as in Fig. 4.6 but a difference
at low temperatures between FC and ZFC. In light blue the reflection positions for the R3̄m structure
reported in [183] are given.
Inset: Dependency of the R3̄m a/b-lattice parameter on the synthesis gas mixture. The given δ is
determined from comparison of the magnetization data with those from [160], the correlation to the gas
ratio is nonlinear [156]. For the single crystal the gas ratio was interpolated from the lattice parameter
and the powder data, since it was synthesized in a CO2 / CO mixture. Figure from own published work
[40].
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4.3 Macroscopic characterization

Most samples used in this thesis were already macroscopically characterized during my di-
ploma thesis [20], where the details can be found.

4.3.1 Magnetization

The magnetization of YFe2O4−δ is very sensitive too small changes of the oxygen stoichiom-
etry. By comparison of the magnetization with the one measured on polycrystalline samples
and reported in [160], one can estimate the stoichiometry of a given sample.

Figure 4.6 shows the magnetization of a stoichiometric YFe2O4−δ single crystal, which is
characterized by two sharp first order transitions with onset at 228.5 and 180 K on cooling,
which are shifted 20 K to higher temperatures on warming. There exists no difference in the
field warming curve between previous cooling in a field and cooling without a field. This is in
contrast to the magnetization of non-stoichiometric YFe2O4−δ (Inset of Fig. 4.6), where cool-
ing in a field of 0.4 T, creates a 40 times larger magnetization at 20 K compared to the zero field
cooled sample. The magnetization of the non-stoichometric crystal is further characterized by
a broad glassy transition around 200 K without any thermal hysteresis. The magnetization of
the stoichiometric and non-stoichiometric single crystals are both conform with the results on
powders [158, 160, 161, 173].

0

1

0 50 100 150 190 228.5 270 300

FC
FW after FC
FW after ZFC

~H = 0.4 T ‖ ~chex

∆T

∆ t
= ±2 K

min

247214175
δ > 0.05

δ = 0.00Powder FW
δ = 0.03

M
ag

ne
tiz

at
io

n
(1

0−
1
µ

B
/f

.u
.)

Temperature (K)

0

1

2

0 100 200 300

Figure 4.6: Magnetization of a 52 mg stoichiometric YFe2O4−δ single crystal (0.00 ≈ δ ≪ 0.03) grown in a
CO2 / CO-ratio of 2.9±0.1, measured during field cooling (FC), field warming (FW) after cooling in a
field and after cooling without a field (ZFC). The powder data measured after 0.397 T FC for δ = 0.00

and δ = 0.03 is scaled by a factor of 2 for clarity and taken from [160].
Inset: Magnetization of a non-stoichiometric YFe2O4−δ single crystal, which was grown in a CO2 / CO-
ratio of 2.6±0.1. Figure from own published work [40].
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4.3. MACROSCOPIC CHARACTERIZATION

Figure 4.6 shows also the magnetization of the two most stoichiometric powders from
[160]. From comparison the off-stoichiometry δ of our single crystal can be estimated to be
close to 0.00 and better than 0.03. Assuming a linear behavior between the transition tem-
perature of non-stoichiometric samples and the off-stoichiometry δ reported in [160], the off
stoichiometry δ of the best crystals reported in literature [158] would be 0.5, which is much
higher than the stability limit of 0.095 reported in [154].

Frequency dependent AC susceptibility measurements are not reported for YFe2O4−δ. The
diffuse scattering observed at room temperature indicates a partial order, where the system
is ordered in the chex-plane but the stacking of the Fe-layers is random. If the transition tem-
perature between the magnetic states is frequency dependent, this would indicate a not fully
ordered system, as it is for example observed in a spin glass transition. This can be probed
with AC susceptibility measurements. Figure 4.7a shows the AC susceptibility of YFe2O4−δ

along chex measured with frequencies between 13 and 9311 Hz, in Figure 4.8 the same data is
shown zoomed in on the transition at 232 K. While the lower transition temperature shows
no frequency dependence, a small shift is observed at the higher temperature transition, with
an increased transition temperature at higher frequencies. On cooling the high temperature
transition shows a small non-zero imaginary component χ ′′ (Fig. 4.7b) accompanied by a de-
crease of the real part χ ′ (Fig 4.7a). This indicates some dissipative processes in the sample,
for example due to induced currents because of the reduced resistivity.
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Figure 4.7: Real and imaginary part of the AC magnetic susceptibility of YFe2O4−δ at different frequen-
cies.
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Figure 4.8: Zoom in of Fig. 4.7a, Real part χ ′ of the AC magnetic susceptibility of YFe2O4−δ at different
frequencies.

4.3.2 Heat capacity

The specific heat was measured with a Quantum Design PPMS with Apiezon N-grease on a
part of the stoichiometric sample used for X-ray and neutron diffraction. The specific heat of
stoichiometric YFe2O4−δ shown in Figure 4.9 shows two peaks at 214K and 254K on warm-
ing. The presence of latent heat confirms the first order character of the transitions, which is
also in accordance with Mössbauer spectroscopy [174]. In comparison with the powder data
from [178] the transitions are more separated and there exists a strong difference at the lower
temperature transition with a small peak in the single crystal data and a large continuous
drop in the powder data.
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Figure 4.9: Specific heat of a stoichiometric YFe2O4−δ single crystal, measured during warming. For
comparison the powder data from [178] is shown (in arbitrary units). Figure from own published work
[40].
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4.4. X-RAY MAGNETIC CIRCULAR DICHROISM

4.4 X-ray magnetic circular dichroism

X-ray magnetic circular dichroism (XMCD) is the difference between the scattering of left
and right circularly polarized X-rays in the presence of a magnetic field. The XMCD signal
depends on the valence of the interacting ion and also on its magnetic moment, therefore it
gives direct information about the spin states of Fe2+ and Fe3+. The experimental setup and
some theoretical background can be found in Section 2.4.

Figure 4.10 shows the X-ray absorption spectrum of non-stoichiometric YFe2O4−δ, which
is ferrimagnetic, for both left µ+ and right µ− polarized light measured with total electron
yield. The difference between both ∆µ is the XMCD signal shown in green scaled by a factor
of four for visibility. The light blue curve is the numerical integration of the XMCD signal.
The inset of Figure 4.10 shows also the XAS and XMCD spectra but measured with total
fluorescence yield, which is is less surface sensitive.
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Figure 4.10: XMCD spectrum over the L2 and L3 edge of non-stoichiometric ferrimagnetic YFe2O4−δ at
160 K, measured with total electron yield. The inset shows the same signal received from fluorescence.
For comparison the spectrum of LuFe2O4−δ is reproduced from [9] (shifted for clarity).

For the off-stoichiometric ferrimagnetic YFe2O4−δ the XMCD signal is similar to the one
observed in LuFe2O4−δ [9]. At the L3 edge it shows a larger downward peak, which belongs
to the Fe2+ contribution and a smaller upward peak belonging to Fe3+. Therefore the net mag-
netic moment of the Fe2+ ions is pointing parallel to the external field and is larger than that
of the Fe3+ ions, which is antiparallel to the external field. Since the absolute of the dichro-
ism belonging to Fe2+ is larger and the single ion moment of Fe2+ (S = 2) is smaller than
that of Fe3+ (S = 5

2
), more Fe2+ than Fe3+ spins must be aligned parallel to the field [76].

In comparison to LuFe2O4−δ the Fe3+ dichroism signal is slightly suppressed in YFe2O4−δ,
which is in agreement with the observations in Y0.5Lu0.5Fe2O4 [190]. It is surprising, that in
contrast to the Y substitution, the substitution of half the Lu in LuFe2O4−δ by Er, leads to
a full suppression of the dichroism signal at the Fe3+ white-line. Erbium is closer to Lu in
regard of the ionic radius than Y, which also results in a smaller deviation of the ratio of the
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intralayer Fe–Fe distance to the bilayer thickness [19]. Differences in the oxygen between the
Er and Y substituted samples in [190] could explain the stronger deviation of the Er XMCD
signal, since the oxygen stoichiometry can have a huge influence on the magnetic order at
least in YFe2O4−δ. Another group [191] found no suppression of the XMCD signal at the
Fe3+ position in either ErFe2O4 or TmFe2O4, which supposes that this is not an ion-sizing
effect but rather generated by oxygen defects. It is also not observed in our YbFe2O4−δ sam-
ple [32, 34, 192]. Lafuerza et al. [193] did also not observe a supression in YbFe2O4−δ, but one
in TmFe2O4. They also reported a temperature dependence of the ratio of the Fe2+ and Fe3+

XMCD signal. To evaluate orbital and spin contributions to the XMCD signal sum rules as
given in Eqn. (2.58) can be applied. From the numerical integration

∑
∆µ of the XMCD signal

in Fig. 4.10 p = −0.24 and q = −0.2 can be received, which lead, following Eqn. (2.58), to a
ratio of orbital to spin magnetic moment of:

morb

mspin
= 0.42

This is similar to the ratios observed in LuFe2O4−δ by de Groot 0.3 [9], Kuepper 0.38 [194–
197], Ko 0.34 - 0.38 [198], Lafuerza 0.3-0.5 [193] and No 0.34 [190] or 0.28 for Y0.5Lu0.5Fe2O4

[190]. By analyzing the XMCD signals of compounds with pure Fe2+ or Fe3+ Lafuerza et al.

[193] estimated the error on the sum rule for the absolute orbital or spin moment to be as large
as 40%, questioning the usefulness of the sum rules in case of LuFe2O4−δ.

The orbital magnetic moment is pointing in the same direction as the spin magnetic mo-
ment as indicated by the negative q value [198].
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Figure 4.11: XMCD spectrum over the L2 and L3 edge of stoichiometric antiferromagnetic YFe2O4−δ at
160 K, measured with total electron yield. The inset shows the same signal received from fluorescence.
µ+ and µ− are the XAS for left and right polarized light respectively. ∆µ is the sum of the XMCD signal
for positive and negative field directions. Art stands for artifact and is the difference between the XMCD
signal for positive and negative field direction.

The Fe2+ absorption peak is much smaller than the Fe3+ peak in the TEY, for an equal
valence distribution one would expect equal intensities. This can be explained by surface
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4.4. X-RAY MAGNETIC CIRCULAR DICHROISM

oxidization of the sample. The fluorescence signal in the inset in Fig. 4.10 shows a much
smaller difference, since fluorescence is less surface sensitive than TEY. This is also observed
in LuFe2O4−δ [9, 194, 198] and is strongly reduced if the samples were prepared in situ in
vacuum [190, 191, 193, 199] .

The XMCD signal of the stoichiometric YFe2O4−δ is totally field induced, because stoi-
chiometric YFe2O4−δ is antiferromagnetic in contrast to the ferrimagnetic non-stoichiometric
YFe2O4−δ. The expected XMCD signal is therefore much smaller.

While the signal strength at 160 K is too weak to apply sum rules, both features at the L3
edge are negative indicating, that the nett magnetic moment of both Fe2+ and Fe3+ is parallel
to the applied field (cf. Fig. 4.11).
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Figure 4.12: XMCD spectrum over the L2 and L3 edge of stoichiometric antiferromagnetic YFe2O4−δ at
200 K, measured with total electron yield. The inset shows the same signal received from fluorescence.
µ+ and µ− are the XAS for left and right polarized light respectively. ∆µ is the sum of the XMCD signal
for positive and negative field directions. Art stands for artifact and is the difference between the XMCD
signal for positive and negative field direction.

At 200 K the XMCD signal of stoichiometric YFe2O4−δ shown in Figure 4.12 has a similar
form as the non-stoichiometric sample at 160 K in Figure 4.10, the Fe3+ peak is suppressed in
contrast to the non-stoichiometric sample. Although it was not measured it is likely that the
XMCD signal of non-stoichiometric YFe2O4−δ is the same at 200 K and at 160 K not consider-
ing signal strength. The yellow line in Figure 4.12 is the difference between the XMCD signal
measured in positive or negative magnetic field, as defined in Eqn. (2.61), this is an artifact
and should vanish. This artifact is not induced by the magnetic field and is much larger than
the XMCD signal, therefore the XCMD signal at 200 K is not trustworthy, even tough its form
is reasonable. Such an artifact can also be induced by a chiral structure, which would mean
that the crystal structure at 200 K must be one of the Sohncke groups [200, 201] and cannot
have a center of symmetry.
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4.5 The room temperature structure

At room temperature our YFe2O4−δ single crystals, measured on the SuperNova diffractome-
ter (cf. Sec. 2.3.3), show only reflections corresponding to the already reported R3̄m structure,
with additionally diffuse lines along

(
1
3
1
3
ℓ
)

(cf. Fig. 4.13a), which are not accounted in the
model. The structure was refined with Jana2006 [64] after structure solution using Superflip
[63], see also Section 2.3.4. Table 4.2 shows the structure solution at 295 K in comparison to
the one refined from powder data by Matsumoto et al. [183]. While the residuals Robs and Rall

given in Table 4.2 are acceptable, the goodness of fit is slightly away from the ideal value of
one. Considering an obverse reverse twinning (twin matrix in (4.1)), leads to a second twin
component with a volume fraction less than 0.001. Reflections fulfilling h − k + ℓ = 3n for
example in the (hk1)-plane are not observed and such twinning can therefore be exclude. The
mixed valence model does not account for the two-dimensional valence order inside single Fe
layers, which is still present at room temperature, observed as diffuse scattering along

(
1
3
1
3
ℓ
)
.

The low R-value is confirmed by the good match between the observed and calculated struc-
ture factors as shown in Figure 4.14b. Table 4.3 shows the corresponding atomic positions and
the thermal displacement factors. While the atomic positions found in this work are the same
as in [183] there are differences observed in the thermal displacement parameters. Because of
the symmetry restrictions only two of the anisotropic displacement parameters U11 and U33
are independent, the others ar given by U22 = U11 , U13 = U23 = 0 and U12 = 1

2
U11 [202,

203]. Figure 4.14a shows the room temperature structure of YFe2O4−δ, as in LuFe2O4−δ [204]
the rare earth ions shows a very strong anisotropy, where U33 is unreasonable large, which is
an elongation along chex. The diffuse lines along

(
1
3
1
3
ℓ
)

are at h = 0.333(16), this can be well
seen in Figure 4.13b, which shows the along ℓ integrated intensity. The position of the lines
will be relevant for the discussion in Section 4.11.

Parameter this work Matsumoto et al. [183]

Spacegroup R3̄m R3̄m

a (Å) 3.5153(1) 3.5136(1)

c (Å) 24.789(1) 24.7781(6)

V (Å 3) 265.29(4) 264.91(1)

Rint/Rσ 5.5/4.4 Rp 4.26

Robs/wRobs 4.0/5.0 Rwp 4.26

Rall/ wRall 4.3/5.1 RF 4.86

GOFobs/ GOFall 1.6/1.55 2.37

Measured Reflections 1804 powder

ρcalc (g/cm3) 4.968(7) 4.975(2)

Table 4.2: Refinement parameters at 295 K (for the definition of the powder R-values see [205])
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Figure 4.13: (a) XRD precession image of the hhℓ-plane at room temperature
(b) along ℓ integrated intensity (region around beamstop omitted).

Tobv/rev =




−1 0 0

0 −1 0

0 0 1


 (4.1)

Param. this work [183]

Y:

z 0 0

U11 0.0044(7) 0.010(1)

U33 0.065(1) 0.061(4)

Fe:

z 0.21439(2) 0.2141(1)

U11 0.0182(2) 0.0153(8)

U33 0.010(1) 0.010(1)

Param. this work [183]

O1:

z 0.2920(8) 0.2920 (2)

U11 0.015(7) 0.015(1)

U33 0.010(1) 0.005(2)

O2:

z 0.1285(1) 0.1279(2)

U11 0.029(1) 0.026(2)

U33 0.031(1) 0.038(4)

Table 4.3: Refinement parameters at 295 K
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Figure 4.14: (a) YFe2O4−δ structure at 295 K along the [10,40,1]-axis (b) Plot of the observed
structure factors Fobs versus the calculated Fcalc of the R3̄m structure at 295 K.

4.6 The crystallographic low temperature phases of YFe2O4−δ

At room temperature YFe2O4−δ shows only two dimensional charge order, which is in con-
trast to LuFe2O4−δ, which shows three dimensional charge order below 320 K. Below room
temperature we have found several different phases in YFe2O4−δ, as reported in my diploma
thesis [20]. Below 228.5 K on cooling the charge order becomes 3D and sharp superstructure
peaks are observed. Below the low temperature magnetic transition at 175 K the propagation
of the charge order changes. The next part of this thesis is dedicated to the determination of
these two charge order structures (Sec. 4.7 and 4.8), a common discussion if given in Section
4.11. All structure determinations are based on single crystal X-ray diffraction measured with
the SuperNova diffractometer (cf. Sec. 2.3.3). Together with the CO also magnetic order is
observed with the same transition temperatures. The magnetic ordering is described in Sec-
tion 4.10.3 for 200 K and in Section 4.10.5 for 160 K. Additionally to these two phases if the
sample is cooled directly to 100 K it is possible to get a superposition of the 200 K and 160 K
phases. This seems not to be a phase on its own, if the cooling rate is slow enough, only the
160 K phase is present at 100 K. Although due to a lack of data we cannot give values for the
cooling times. In one sample at 10 K a charge order with a (1

3
1
3

half-integer)-propagation was
observed, which is similar to the low temperature ground state of LuFe2O4−δ [9]. Since this
was never reproducible and in neutron diffraction no structural transition was found between
160 K and 4 K, this phase is no further analyzed. The existence of the superimposed phase and
the additional low temperature structure are indications how close the different charge orders
must be in regard of energy minimization.
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4.7 The crystallographic structure at 160 K

4.7.1 A 4-fold propagation charge order

As already suggested in my diploma thesis [20], YFe2O4−δ has a commensurate charge order
at 160 K. With a single propagation vector of

(
1
4
1
4
3
4

)
the observed reflection pattern cannot be

indexed. It is likely that as in LuFe2O4−δ [9, 75] the threefold symmetry is lost in the charge
ordered phase. Figure 4.15a shows a projection image of the reciprocal hhℓ-plane at 160 K. In
Figure 4.15b this image is overlaid with the lattice corresponding to a propagation vector of(
1
4
1
4
3
4

)
in red. There are several reflections on the

(
1
4
1
4
ℓ
)
-line, which are not described by the

red lattice. Assuming that the threefold symmetry is lost does not help to index them, since
the propagation vectors belonging to the 120◦ rotations

(
2̄10

)
and

(
12̄0

)
do not lay in the hhℓ-

plane. The reflections in the hhℓ-plane which cannot be indexed by
(
1
4
1
4
3
4

)
can be indexed by

the blue lattice corresponding to a propagation vector
(
1
4
1
4
3̄
4

)
. Which is the vertically mirrored

red lattice, corresponding to a loss the 2-fold rotation around [110]. Beside the structural re-
flections of R3̄m there are some reflections e. g.

(
1
2
1
2
3
2

)
belonging to both lattices, due to this

they show a higher intensity than the first order superstructure-reflections, although they are
second order.
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Figure 4.15: Both images show the same region of the reciprocal hhℓ-plane at 160 K. (b) shows addition-
ally an overlay of the two twin lattices visible in hhℓ.

4.7.2 Representation analysis and basis transformations

For a k point in the first Brillouin zone of
(
1
4
1
4
3
4

)
representation analysis using ISODISTORT

[171] from the ISOTROPY Software Suite [172] leads to only one compatible irreducible rep-
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resentation GP1 assuming a single propagation vector this leads to three structures, two with
spacegroup P1̄ and one with P1.

The transformations between the R3̄m structure and the superstructure without distor-
tions can be described by the following basis transformations B and origin shifts p:

P1̄ : B =




1 −1 0

−2 −2 0

1
3

2
3

−1
3


 and p =




0

0

0


 or




−2
3

−1
3

1
6


 (4.2)

the P1 structure has the same basis just lacks the inversion symmetry

P1 : B =




1 −1 0

−2 −2 0

1
3

2
3

−1
3


 and p =




0

0

0


 (4.3)

The basis vectors (a,b, c) of the orginal direct lattice transform in the new basisvectors
(a ′,b ′, c ′) by, the linear transformation:




a ′

b ′

c ′


 = B ·




a

b

c


 (4.4)

The Miller indexes h,k,ℓ are covariant and transform like the lattice vectors:



h ′

k ′

ℓ ′


 = B ·




h

k

ℓ


 (4.5)

The basis vectors of the reciprocal lattice (a∗,b∗, c∗) are transformed by the inverse matrix B−1

with B−1 · B = 1 as given in Eqn. (4.6), where
[
B−1

]t stands for the transpose of B−1.



a∗ ′

b∗ ′

c∗ ′


 =

[
B−1

]t
·




a∗

b∗

c∗


 with B−1 =




1
2

−1
4

0

−1
2

−1
4

0

−1
2

−3
4

−3


 (4.6)

This transformation rule is also valid for directions in direct space (u, v,w). The affine
transformation of coordinates (x, y, z) is the only one affected by the origin shift in direct
space p:




x ′

y ′

z ′


 =

[
B−1

]t
·




x

y

z


−

[
B−1

]t
p (4.7)

In the transformation from R3̄m to P1̄ the threefold symmetry and the mirror planes are
lost. Writing R3̄m as R3̄ 2

m1, one sees that they correspond to 120◦ rotations around c and
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additional 180◦ rotations, around [1, 0, 0], [0, 1, 0] or [−1,−1, 0]. The lost symmetry elements
are twinning operations of the P1̄ superstructure, leading to six twin domains.

The Millier indices of the triclinic cell transform between different twins following Equa-
tion 4.8 with the transformation matrices given in Eqn. (4.12) and (4.14).




ht

kt

ℓt




tric

= Ti ·




h

k

ℓ




tric

with i ∈ {1, 2, 3, 4, 5} (4.8)

The twinning matrices transform from the hexagonal base to the triclinic base following
Eqn. (4.9)

Ttric = B · Rhex · B−1 (4.9)

Considering the nonorthogonal coordinate system the 120◦ rotation in reciprocal space in
R3̄m is presented by:




ht

kt

ℓt


 = R120 ·




h

k

ℓ


 with R120 =




0 1 0

−1 −1 0

0 0 1


 (4.10)

Since chex ‖ c∗hex ‖ c∗tric the 120◦ rotation around chex is also a 120◦ rotation around c∗tric. The
indices of directions in direct space transform following Eqn. (4.6), so the chex-axis is trans-
formed as,




0

0

1




hex

=̂




−1
2

−3
4

−3




tric

(4.11)

Applying Eqn. (4.9) leads to the first three twin matrices for identity, 120◦ and 240◦ rota-
tions around chex:

T1 =




1 0 0

0 1 0

0 0 1


 T2 =




−1
2

−3
4

0

1 −1
2

0

0 1
2

1


 T3 =




−1
2

3
4

0

−1 −1
2

0

1
2

1
4

1


 = T−1

2 (4.12)

The twofold axes in R3̄ 2
m1 are [1, 0, 0]hex, [0, 1, 0]hex and [−1,−1, 0]hex, in the triclinic base

they correspond 180◦ rotations around the vectors given in Eqn. (4.13).




1

0

0




hex

=̂




1
2

−1
4

0




tric

and




0

1

0




hex

=̂




−1
2

−1
4

0




tric

and




−1

−1

0




hex

=̂




0

1
2

0




tric

(4.13)
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The 180◦ rotations can be express by the following matrices

R
(21̄0)
180 =




1 −1 0

0 −1 0

0 0 −1




hex

=̂




1
2

−3
4

0

−1 −1
2

0

0 0 −1




tric

= T4 = T2 · T6 = T3 · T5 (4.14)

R
(2̄1̄0)
180 =




−1 −1 0

0 1 0

0 0 −1




hex

=̂




1
2

3
4

0

1 −1
2

0

−1
2

−1
4

−1




tric

= T5 = T2 · T4 = T3 · T6

R
(010)
180 =




0 1 0

1 0 0

0 0 −1




hex

=̂




−1 0 0

0 1 0

0 −1
2

−1




tric

= T6 = T2 · T5 = T3 · T4

The twinning in the non-distorted case is called twinning by reticular merohedry.
If the point group of the individual is P1, there is also the possibility for type I twinning

by meohedry which would be an inversion twin, where the Laue group is P1̄ but the point
group of the individual is P1.

For a distorted structure, which no longer has the R3̄m symmetry but is close to these,
one has to distinguish two cases which can also occur together, first a general distortion of
the hexagonal lattice along the hexagonal axes and second individual distortions of the twins
along the axes of the twin components. For the first case, the twinning matrices are the same
as for the undistorted case but the lattice parameters are different for each twin. Reflections
belonging to the R3̄m lattice show perfect overlap, as well as reflections belonging to the
second harmonic of

(
1
4
1
4
3
4

)
.

For the second case, where each twin has its individual distortion, the lattice parameters of
all twins are the same but the twinning matrices have to be modified according to these distor-
tions, here the twin operations belong to pseudo symmetries of the parent lattice. This case is
twinning by reticular pseudo-merohedry. For this case a splitting of the structural reflections
from the R3̄m structure will be observed. With the resolution of our in-house diffractometer
the splitting of the reflections is observable but the reflections of different domains could not
be separated for integration, as can be seen for example in Figure 4.15. Therefore intensity con-
tributions of the different twins to the splitted R3̄m reflections, were integrated together, so a
full overlap for all these reflections was realized by a large enough integration mask. This was
also done for the reflections of the second harmonic of

(
1
4
1
4
3
4

)
which belong to two domains.

In this case it is possible to use the undistorted twin matrices as given in Eqn. (4.12) and (4.14).
This will create a perfect overlap for the reflections, which were integrated together for the
refinement.

4.7.3 Indexing the X-ray pattern

Using the transformation matrices T1 to T6 as given in Eqn. (4.12) and (4.14) the observed re-
flections at 160 K can be indexed with 6 twin domains. Figure 4.16 shows the view along the
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Figure 4.16: Reflections observed at 160 K view along c∗hex with the three domains arranged in a 120°
pattern that are distinguishable in this view.

c∗hex-axis with the three domains distinguishable in the a∗hex-b∗
hex-plane. The CrysAlisPro soft-

ware [56] automatically indexed the strongest domain with the triclinic structure we received
from representation analysis for a

(
1
4
1
4
3
4

)
propagation vector, which validates the approach

to consider only single-q structures in representation analysis. Tables 4.4 gives the lattice pa-
rameters of this charge order cell. The CrysAlisPro software [56] can only index and integrate
4 twin components together. As for LuFe2O4−δ [9, 75], we searched for a crystal in which
one domain is stronger populated than the other domains but no true single domain crystal
could be found, although we scanned well above 100 crystals. Figure 4.16 shows the indexa-
tion of the reflections observed at 160 K, with four domains, the maximum the CrysAlisPro
Software [56] allows, 93.5% of the reflections could be indexed with a hkℓ-integer tolerance of
0.125, with only one domain 67% could be indexed.

Only the strongest domain was integrated and used both for structure solution and refine-
ment, under consideration of the twin rules.

a (Å) b (Å) c (Å) α (◦) β(◦) γ (◦)

6.0949(5) 7.1548(5) 8.4664(6) 103.277(6) 96.388(6) 90.223(6)

Table 4.4: Lattice parameters of the P1̄ cell at 160 K

This cell has a 4 times enlarged volume 356.94(4) Å 3 compared to the primitive rhombo-
hedral cell, which has one third of the volume of the hexagonal cell 265.29(4) Å 3.

For the integration for the refinement in P1̄ Friedel mates were considered equal, which
is true even in presence of resonant scattering when a center of symmetry is present. The
redundancy of 2.0 was in this case used to correct for measurement outliers following [206].
The integration mask sizes were checked visually during the integration. With the inversion
center as the only symmetry element, the internal residual Rint defined in (4.15) only depends
on the intensity differences between Friedel mates and differences between multiple measure-
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ments of the same reflection with different angles, which can have a different intensity due to
absorption and partial twin illumination.

Rint =

∑ ∣∣F2o − 〈F2o〉
∣∣

∑
|F2o |

(4.15)

The internal residual Rint is minimal for an integration mask that integrates the same intensity
on the Friedel pairs and multiple measurements of the same reflection. As long as the integra-
tion mask size is reasonable (not 0 or ∞) the Rint value can therfore give an information about
the optimum choice of the integration mask size. The reflections which are structural in R3̄m
are very broad at 160 K, because they have contributions from all 6 twin components. They
could not be fully separated even using Cu-Kα-radiation and the detector placed 75 mm away
from the sample, the maximum possible distance on the SuperNova diffractometer. Therefore
an integration mask was chosen large enough to integrate the contributions of all domains
to this R3̄m-reflections together. The CrysAlisPro Software [56] uses a dynamical integration
mask which can, additionally to the used change of the mask-size with the incident angle, be
enlarge or reduced by a constant factor. Table 4.5 gives an overview of the internal residuals
obtained with different integration mask sizes obtained by introducing a constant factor. The
integration masks decreased by a multiplication with 0.5, were clearly too small to account for
the intensities even on reflections from only one domain. For the enlarged masks, the number
of outliers rejected increases and the Rint shows no decrease as would be expected. Therefore
beside the small changes in the residual the non-modified integration mask was used. The
detector was placed at 54.8 mm and the Mo-source λ = 0.71073Å was used to decrease the
splitting of structural reflections of the room temperature structure. This increases both the
number of accessible reflections and the number of reflections per detector image which short-
ens the data collection time. The shorter wavelength compared to Cu reduces the absorption
from µ ≈ 63mm−1 to µ ≈ 24mm−1. The Cu-Kα wavelength is also close to the Fe absorption
edge around 7.1keV which would add a strong fluorescence background.

integration mask size 0.5 1.0 1.5 2.0 2.5

internal residual Rint 0.052 0.033 0.036 0.039 0.033-0.040

rejected reflections 57 15 47 43 36-39

Table 4.5: Influence of different integration mask sizes on the internal residual.

The received type of charge order in the refinement was not different for the data set with
the regular integration mask or by 2.5 enlarged mask.

4.7.4 Structural refinement

Based on the integration of Twin 1 a structural solution was performed using Superflip [63].
For the structure refinement with Jana2006 [64] reflections closer than 0.05◦ were considered
to be totally overlapped, since the ideal twin matrices are used structural reflections from
R3̄m have perfect overlap. Table 4.7 gives the atomic positions and thermal displacement
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parameters received from the refinement of the 160 K superstructure of YFe2O4−δ. The R-
values and refinement parameters are given in Table 4.6, the good R-value is confirmed by
the match between the observed and calculated structure factors as shown in Figure 4.20b.

Parameter this work

Spacegroup P1̄

Rint/Rσ (%) 3.1/4.0

Robs/wRobs (%) 3.0/3.5

Rall/ wRall (%) 3.7/3.7

GOFobs/ GOFall 1.38/1.32

unique Reflections obs / all 1420 / 1657

parameters 132

diff. peak and hole (e/Å 3) 1.3 / -1.1

ρcalc (g/cm3) 4.9238

Twin population (%)

1 0.831(18)

2 0

3 0.012(5)

4 0.034(5)

5 0.144(5)

6 0.010(1)

Table 4.6: Refinement parameters at 160 K

Site x y z U11 U22 U33 U12 U13 U23

Y1 .24412(9) .36547(8) .46517(8) .0052(2) .0057(3) .0032(4) -.0010(2) .0001(2) -.0009(2)

Y2 -.25818(9) .12405(8) .48322(7) .0087(2) .0071(3) .0131(4) -.0008(2) .0013(2) .0020(2)

Fe1 .34544(14) .02463(13) .13467(10) .0063(3) .0071(4) .0047(4) .000 .0007(3) -.0011(3)

Fe2 -.11895(15) .33013(14) .14226(10) .0077(3) .0087(5) .0042(4) .0021(4) .0002(3) -.0012(3)

Fe3 .60374(16) .50152(14) .84772(10) .0083(3) .0106(5) .0040(4) -.0028(4) .0008(3) -.0006(3)

Fe4 .14546(14) .21057(13) .84664(10) .0066(3) .0071(4) .0057(4) .000 .0011(3) -.0008(3)

O1 .5831(7) .3920(6) .6172(4) .0066(13) .005(2) .005(2) .000) .000 .0018(16)

O2 .3897(7) .0694(6) .3708(5) .0065(13) .006(2) .004(2) -.0018(17) -.000 .000

O3 .0964(7) .1650(6) .6165(5) .0075(13) .008(2) .006(2) .000 .000 .000

O4 .3420(6) .0197(6) .8836(5) .0106(14) .012(2) .012(2) .0022(18) .000 .0024(18)

O5 -.1236(7) .3567(6) .3750(4) .0063(13) .006(2) .005(2) .000 .0025(16) .000

O6 -.1413(6) .1859(6) .9076(5) .0083(13) .010(2) .005(2) -.0018(17) .0018(16) .000

O7 .2128(6) .2726(6) .1630(5) .0076(13) .006(2) .009(2) .000 .000 .000

O8 .2970(6) .4530(6) .9082(5) .0069(13) .010(2) .004(2) -.0019(17) .000 .0024(17)

Table 4.7: Atomic positions and thermal displacement parameters of the refined 160 K structure. Values
given as .000 have errors on the third decimal larger than the value.

Figure 4.17 shows the Fe environments of the 4 distinct sites in the 160 K P1̄ structure.
The view is centered on the Fe atoms shown in green for Fe2+ and red for Fe3+ with the
chex-axis pointing upwards and

[
5, 2̄, 2

]
tric as projection vector. The surrounding Oxygens of

the distorted trigonal bipyramidal environment are shown in blue. For comparison, the Fe
displacement ellipsoid of the room temperature R3̄m structure is shown in light gray and the
Oxygen atoms in yellow. The most obvious observation is the strong reduction of the thermal
displacements of both Oxygen and Fe ions.
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Figure 4.17: The iron environments for the four distinct Fe-positions with two different valences in the
160 K structure of YFe2O4−δ. The yellow balls show the Oxygen positions of the room-temperature cell,
if the Fe ion are superimposed.
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Figure 4.18: View along the chex-axis with [1, 10]tric pointing upwards of the distinct Fe environments at
160 K.

In the case of Fe2+ there exists a very strong distortion of the trigonal bipyramidal en-
vironment in the plane perpendicular to chex. This is most obvious in the projection along
chex, as shown in Figure 4.18. The Fe2+-ion is moved away from the triangle center. This can
also be seen in the distortion of the bonds of a single Fe layer, which form a hexagon in the
undistorted case, as shown in Figure 4.19.

If one has a look at the bond distances between Fe and O in Table 4.10, there are three bonds
Fe2-O4, Fe3-O6 and Fe4-07 significantly longer than the typical Fe-O distance of 2.036 Å. Two
of them are on the Fe2+-ions. These Oxygens are so far away that their contribution to the BVS
is marginal (0.06). The displacement of the Oxygen ion further comes along with a movement
of the Fe ion closer to the other two Oxygens out of the center of the Oxygen triangle, as can
be seen in the projection along chex shown in Figure 4.18. The long bond resulting in the small

Site bond angle (◦) δ (◦)

Fehex 118.7(1) (O2h-O2h) 1.3

Fe1 114.6(2) (O7-O6) 120.1(2) (O6-O4) 124.7(2) (O7-O4) 3.4

Fe2 106.0(1) (O7-O4) 117.5(1) (O8-O4) 135.0(2) (O8-O7) 10.5

Fe3 105.4(2) (O8-O6) 113.3(1) (O7-O6) 136.0(2) (O7-O8) 12.4

Fe4 109.1(2) (O8-O4) 109.6(2) (O8-O6) 115.5(2) (O6-O4) 8.6

Table 4.8: Bond angles of O-Fe-O in the triangle of the distorted triangular bipyramidal Fe environment
with δ = 1

3

∑
|120◦ − αbond|.
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Site bond angle (◦) mean (◦)

Fehex

O2h-O2h

83.5(3)
O1h-O2h

96.5(3) 90.0(2)

Fe1
O4-O4

81.7(2)
O2-O7

87.4(2)
O4-O7

88.3(2)
O2-O4

92.4(2)
O4-O6

92.8(2)
O2-O6

98.2(2) 90.1(1)

Fe2
O6-O4

72.4(2)
O5-O4

84.0(2)
O6-O7

88.4(2)
O5-O7

90.8(2)
O6-O8

93.6(2)
O5-O8

104.4(2) 89.7(1)

Fe3
O8-O6

71.0(2)
O8-O8

85.3(2)
O1-O6

89.9(2)
O8-O7

90.0(2)
O1-O7

94.2(2)
O1-O8

104.2(1) 89.9(1)

Fe4
O7-O4

76.2(2)
O7-O6

76.6(2)
O7-O8

76.8(2)
O3-O8

103.3(2)
O3-O6

103.4(1)
O3-O4

103.7(1) 92.8(1)

Table 4.9: Bond angles of O-Fe-O out of plane.

Site bonding distance (Å) Mean

Fehex

O1hex

1.927(6)
O2hex

2.042(1)
O2hex

2.042(1)
O2hex

2.042(1)
O2hex

2.135(9) 2.070(1)

Fe1
O2

1.938(4)
O4

2.116(4)
O4

1.950(4)
O6

1.893(4)
O7

1.928(4) 1.965(2)

Fe2
O5

1.939(4)
O6

2.007(4)
O7

2.062(4)
O8

1.996(4)
O4

2.796(4) 2.160(2)

Fe3
O1

1.919(4)
O8

2.038(4)
O6

2.855(4)
O7

1.987(4)
O8

2.041(4) 2.168(2)

Fe4
O3

1.889(4)
O7

2.598(4)
O4

1.877(4)
O6

1.896(4)
O8

1.897(4) 2.031(2)

Table 4.10: Fe-O bond distances at 160 K, the gray colored distances are out-of-plane in regard to chex.
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contribution to the bond valence sum, makes one think about a change of the coordination
of the Fe ion. The in-plane O-Fe-O angle, as given in Table 4.8, shows a strong deviation
up to 15◦ from the 120◦ of the ideal trigonal bipyramidal environment. The most common
molecular environment for a coordination of four is the tetrahedral environment, but the in-
plane angles and especially the out-of-plane angles (Table 4.9) are still much closer to the ideal
values of the trigonal bipyramid than to the tetrahedral angle of ≈ 109.5◦, not considering the
angles from the atom excluded in the tetrahedral case. Also less common environments with
coordination number four like the square planar geometry or even the Seesaw geometry do
not match better than the trigonal bipyramid.

P1̄

c

b

a

unit-cellFe3+
1

Fe3+
1

Fe2+
2

Fe2+
3

Fe3+
4

O

Figure 4.19: Projection of theYFe2O4−δ structure at 160 K along the chex-axis, light blue Oxygens are
below and dark above the Fe plane.

A refinement of the structure without the inversion center in spacegroup P1 was also
tried. For this Friedel mates were not considered equal in the integration. The refinement was
started based on the refinement results in P1̄ the atomic positions were transformed using the
inversion center and an inversion twin was introduced. To reduce the amount of free parame-
ters the anisotropic displacement parameters of the atoms connected by inversion were kept
the same this reduced the parameters from 259 to 181 in relation to 2235 unique reflections.
The ratio of parameters to reflections is just on the limit where a refinement is reasonable. The
limit of the ratio is often considered to be 8 for non-centrosymmetric and 10 for centrosym-
metric spacegroups [207]. With the inversion twin introduced 6 of the 12 twin components
refined to negative values. Therefore the twinning by inversion was removed.

Compared to a refinement in P1̄ with the same set of reflections, the refinement in P1
converges with only minimal improved Robs 3.66 vs 3.73, and the slightly worse wRall of 5.03
vs 4.65. Overall the dataset is probably not large enough to directly determine if the structure
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Figure 4.20: (a) YFe2O4−δ structure at 160 K along the [1, 0, 0]tric-axis in relation to the R3̄m structure
(b) Plot of the observed structure factors Fobs versus the calculated Fcalc of the R3̄m structure at 295 K.

has an inversion center or not. If one has a look at the refined domain populations given
in the right part of Table 4.6, one can see that the crystal used for the refinement at 160 K is
almost single domain with a volume fraction of 83% for the first domain. One domain volume
fraction was fixed to zero because it refined to a small (< 3%) negative value.

4.7.5 Bond valence sum analysis at 160 K

The atomic form factors of Fe2+ and Fe3+ are too similar to be directly distinguished by lab-
oratory X-ray diffraction (cf. Fig. 2.6a). Bond valence sum analysis (see Sec. 2.3.6) was used
to determine the Fe valence of the specific sites of the P1̄ structure at 160 K. For the bond
valence sum calculations Oxygen atoms up to 3.05 Å away from the central Fe atom were con-
sidered. This corresponds to the atoms building the trigonal bipyramidal environment of the
R3̄m structure at room temperature, which are shown in Figure 4.17. Since the characteristic
bond length d0i in Eqn. (2.41) depends on the valence of the Fe ion, which is not known yet,
the calculations were done with the d0i values for both valence states. We used the values
from Brown et al. [83], which are considered the most reliable, as given in the green colored
row of Table 4.11. The values of d0i given by other authors [87, 88] were used to estimate
the systematic error on the bond valence calculation, which is larger than the statistical error
received from the uncertainty of the experimental bond lengths as given in Table 4.10. The
bond valence sum was calculated both for the largest and smallest d0i from Table 4.11 and
the difference was taken as systematic error. Table 4.11 compares the results for the different
Fe-sites for the calculations with the d0i of Fe2+ and Fe3+. The green colored rows are the
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values closer to Fe2+ or Fe3+. This leads to the sites Fe1 and Fe4 being Fe3+ and Fe2 and Fe3
sites being Fe2+, conserving the mean Fe valence of 2.5. One should also mention that even
using the wrong d0i values e. g. the one for Fe2+ for site Fe1, leads to a valence higher than
the mean Fe valence of 2.5. Considering a non-full charge separation as it was suggested for
LuFe2O4−δ [85, 86] in contradiction to [9, 76] leads with a mixed d0i value corresponding to
Fe2.5+ to valences of 2.83(06) for Fe1 or 2.10(05) for Fe2. Considering that we used a d0i for
Fe2.5+ this is the lowest and highest border for the possible valence. Therefore a strong devi-
ation from full charge separation in YFe2O4−δ is very unlikely and we are convinced of the
received valence distribution Fe13+, Fe43+, Fe22+ and Fe33+. For comparison we also applied
the bond valence sum analysis to the rhombohedral structure at room temperature. The bond
valence sum analysis leads to valences of 2.23(07) for d0Fe2+ , 2.39(04) for d0Fe3+ and 2.31(05)
for d0Fe2.5+ . The value is lower than one would expect, the ideal value is more than three stan-
dard deviations higher, this is also observed in LuFe2O4−δ where a valence of 2.38(3) [9] is
found for the R3̄m structure. This might be explained by a partial order of the Fe, which is still
present at room temperature as indicated by the presence of diffuse scattering along

(
1
3
1
3
ℓ
)
,

lowering the crystal symmetry. In [75] this was attributed to the rare trigonal bipyramidal Fe
environment for which the tabulated d0i [83] might not match [208], since the coordination
number of the Fe ion has a huge influence on d0i [87]. The non-standard d0i could be resolved
in the low temperature structure, through the strong distortions.

The refinement of the non-centrosymmetric structure in P1, given in Appendix A.4, shows
the same charge order pattern (Tab. A.5), which still has an inversion center. The ions con-
nected by inversion in P1̄ have the same nominal valence in P1, the deviations for Fe1, Fe2,
Fe3 and Fe4 to their counterparts connected by inversion are 0.01, 0.15, 0.13 and 0.05. Also
the introduction of an inversion twin or independent harmonic displacement parameters for
ions connected by inversion in P1̄ does not change the charge order pattern. From bond va-
lence sum analysis it is therefore very likely that not only the charge order pattern but also
the triclinic crystallographic structure has an inversion center.

Site T (K) BVS (2+) BVS (3+) Multiplicity

Fe1 160 2.74(8) 2.92(4) 2

Fe2 160 2.02(6) 2.16(3) 2

Fe3 160 2.04(6) 2.17(3) 2

Fe4 160 2.72(8) 2.91(4) 2

Fehex 300 2.23(7) 2.39(4) 6

Table 4.11: Fe Bond valence sum calculations, the standard deviation is propagated from the standard
deviation of the mean of d0i as given in Table 2.1 and from the uncertainties of the bond lengths.

The structural refinement at 160 K also confirms that the charge modulation in YFe2O4−δ

is bimodal in contrast to [209] who proposed it to be tri- or fourmodal based on XANES mea-
surements on LuFe2O4−δ. The Fe bond valence sums in YFe2O4−δ are much clearer bimodal
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than the ones for LuFe2O4−δ found by X-ray diffraction 2.91(2), 2.75(2), 2.10(1) and 1.92(1) [9],
where also multimodal arrangements were suggested [85, 86]. As a validity test of our bond
valence sum analysis we also calculated the BVS for Yttrium and Oxygen, for the latter the
different Fe valences have to be taken into account.

Site BVS Site BVS

O1 2.05(3) O5 2.04(3)

O2 2.15(3) O6 1.92(4)

O3 2.00(2) O7 1.84(4)

O4 1.83(3) O8 2.06(5)

Site BVS

Y1 3.04(3)

Y2 3.06(3)

Table 4.12: Bond valence sum calculation for Oxygen and Yttrium using the different Fe-valences

As can be seen in Table 4.12 the Oxygen valences are close to the ideal value of 2 and the
Yttrium valences are close to 3, further strengthening the model.

Theoretically by use of a spin-less fermion V − t model [210–213], with an Hamiltonian
with one contribution from electron hopping and one from Coulomb interaction, a four fold
charge order has been proposed as the one which minimizes the Coulomb Energy [214]. For
the model at T = 0 they use mean-field calculations and at finite temperature multicanonical
Monte Carlo calculations. They considered a single triangular bilayer with a per site fermion
number of 1

2
. For the model of RFe2O4−δ where the two Fe layers are shifted in plane to each

other they assumed no phase difference between the upper and lower layer, which leads to a
propagation of (1

4
1
4
1
2
).

The fourfold charge order with this propagation [214] is not the one which is realized in
YFe2O4−δ at 160 K.

Figure 4.21 shows the comparison of the structure reported by [79, 214] and the one de-
termined by X-ray diffraction in this work. In the theoretically found structure a majority of
Fe2+ in a triangle of the upper layer leads to a placement of Fe3+ in the center of this triangle
on the lower layer and vice versa, reducing the Coulomb energy. This is not the case in the
structure found in experiment, which can be well seen in the view along

[
1, 1̄, 0

]
in the lower

part of Figure 4.21b. A more detailed discussion will follow in Section 4.11.

4.7.6 Mode decomposition

While we have so far described the low temperature structure trough a new distorted cells,
it is also possible to consider the modulation of the room temperature structure. To analyze
the contributions of different irreducible representations to the modulated structure mode
decomposition is performed using the ISOTROPY Software Suite [172].

Table 4.13 shows the result of the mode decomposition of the distorted structure.
To analyze which modes are responsible for the expected charge order, the valence pattern

found in the experiment can be decomposed into orthogonal modes corresponding to the
propagation vector, its higher harmonics and the identity operation.
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For the propagation vector of the 160 K phase
(
1
4
1
4
3
4

)
the third harmonic is equivalent to

the negative of
(
1
4
1
4
3
4

)
, therefore n = 2 in Eqn. (4.16). The possible modes from Eqn. (4.16) can

be expressed in terms of sine and cosine, shifting the phase φi into different amplitudes for
sine and cosine, as followed:

Val = A · sin(2πp · r) + B · cos(2πp · r) + C · sin(2π · 2p · r) +D · cos(2π · 2p · r) + E (4.18)

Where E corresponds to the identity operation j = 0 in Eqn. (4.16).
For the 4 Fe positions this leads to the equation system:




1

−1

−1

1




=




−0.531776 0.846885 −0.900706 0.43443 1

0.846885 0.531776 0.900706 −0.43443 1

0.531776 −0.846885 −0.900706 0.43443 1

−0.846885 −0.531776 0.900706 −0.43443 1




·




A

B

C

D

E




(4.19)

Solving the equation system will give the following mode contributions (A, B, C, D, E) E = 0

and C = 0.482 · D, B = 0.315 and A = −1.379. So, there does not exist a single solution but
D or C stays undetermined. It is reasonable to set C and D to zero, to get the most simple
solution otherwise one would simply introduce a mode to compensate for another.

Mode A is the first harmonic of
(
1
4
1
4
3
4

)
, which is GP1 in Table 4.13. The distortion is mostly

determined by the GP1 mode, although there is a significant contribution of L-modes, as
shown in Table 4.13. Since the CO pattern can be described purely with the GP1 mode, the L-
modes should have no effect on it. The bond valence sum analysis reveals that the L-modes do
not influence the charge order pattern, the received bond valence sums for a structure where
the amplitudes of the L1- and L2- modes are set to zero are 2.15, 3.10, 3.16, 1.86 for Fe1, Fe2, Fe3
and Fe4 respectively, in accordance with the charge order pattern of the distorted structure
which includes the L-modes. We can therefore conclude that the charge order pattern at 160 K
is based on a single mode GP1

(
1
4
1
4
3
4

)
.
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4.8 The crystallographic structure at 200 K

4.8.1 A 7-fold propagation charge order

The charge order at 200 K can be described with a commensurate propagation vector of
(
1
7
1
7
9
7

)

if higher orders and twinning are considered in contrast to the incommensurability suggested
in my diploma thesis [20]. With this propagation vector the second order reflections in the
hhℓ-plane would be stronger than the first order reflections (Fig. 4.22a), which is physically
unlikely. The reflections can also be described with a propagation vector of

(
2
7
2
7
18
7

)
then the

reflections of
(
1
7
1
7
9
7

)
are third order reflections of

(
2
7
2
7
18
7

)
, which better accounts for the in-

tensity distribution observed in Figure 4.22a. The three propagation vectors
(
2
7
2
7
18
7

)
,
(
1
7
1
7
9
7

)

and
(
2
7
2
7
3
7

)
give the same reciprocal lattice and the latter one will be used in the rest of this

thesis to describe the CO at 200 K. As for the 160 K phase already in the hhℓ-plane not all re-

(
2
7
2
7
1̄8
7

)

(
2
7
2
7
18
7

)

(000)(000)

(1̄1̄3)

[110]

[001]

a) 200 K b) 200 K

Figure 4.22: Both images show the same region of the reciprocal hhℓ-plane at 210 K. (b) shows addition-
ally an overlay of the two twin lattices visible in hhℓ.

flections can be described with a single propagation vector and twinning has to be taken into
account. The additional reflections can be described by a propagation vector with inversed
ℓ-coordinate

(
2
7
2
7
3
7

)
, corresponding to the loss of the 2-fold rotation around [110] as in the

160 K phase. To describe all observed reflections also the twins corresponding to a loss of the
threefold axis have to be considered, which reduces the symmetry to triclinic.

The CrysalisPro software [56] automatically indexed the strongest domain with the tri-
clinic structure we received from representation analysis for a

(
2
7
2
7
3
7

)
propagation, with the

lattice parameters as given in Table 4.14. Again only the intensities from this domain are
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used for the integration and structure refinement. With 4 domains the maximum the software
allows 81% of the reflections could be indexed from which 57% can be indexed with one
domain.

a (Å) b (Å) c (Å) α (◦) β(◦) γ (◦)

6.0810(2) 9.8365(4) 11.0621(5) 105.387(4) 100.495(3) 95.803(3)

Table 4.14: Lattice parameters of the P1̄ cell at 200 K

4.8.2 Representation analysis and basis transformations

For a k point in the first Brillouin zone of
(

2
7
2
7
3̄
7

)
representation analysis using ISODISTORT

[171] from the ISOTROPY Software Suite [172] leads also to only one compatible irreducible
representation with point groups 1 or 1̄. Assuming a single proagation vector this leads to
two structures, one with spacegroup P1̄ and one with P1. All other possibilities would be
based on multiple propagation-vectors belonging to different elements of the star of

(
2
7
2
7
3
7

)
.

The only two structures with a single propagation vector both have the same basis as given
in Eqn. (4.20). Any other possible structure is at least seven times larger than this seven times
enlarged cell.

P1,P1̄ : B =




−1 1 0

5
3

4
3

1
3

7
3

5
3

−1
3


 and p =




0

0

0


 (4.20)

Since chex ‖ c∗hex ‖ c∗tric the 120◦ rotation around chex is also a 120◦ rotation around c∗tric,
which is given in real space in Eqn. (4.21).




0

0

1




hex

=̂




−1
7

12
7

−9
7




tric

(4.21)

The two fold axes in R3̄ 2
m1 are [1, 0, 0]hex, [0, 1, 0]hex and [−1,−1, 0]hex, in the triclinic base

they correspond 180◦ rotations around the vectors given in Eqn. (4.22).



1

0

0




hex

=̂




−3
7

1
7

1
7




tric

and




0

1

0




hex

=̂




4
7

1
7

1
7




tric

and




−1

−1

0




hex

=̂




−1
7

−2
7

−2
7




tric

(4.22)

The 120◦ rotations around c∗hex lead to the following two twin matrices:

T1 =




1 0 0

0 1 0

0 0 1


 T2 =




−5
7

−3
7

−3
7

5
7

3
7

−4
7

8
7

−5
7

2
7


 T3 =




−2
7

3
7

3
7

−6
7

2
7

−5
7

−1 −1 0


 = T−1

2 (4.23)
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While the rotations around [1, 0, 0]hex, [0, 1, 0]hex and [−1,−1, 0]hex lead to:

R
(1̄2̄2̄)
180 =




0 1 0

1 0 0

0 0 −1




hex

=̂




−1 0 0

3
7

−1
7

6
7

4
7

8
7

1
7




tric

= T4 = T2 · T6 = T3 · T5

R
(3̄11)
180 =




1 −1 0

0 −1 0

0 0 −1




hex

=̂




2
7

−3
7

−3
7

−6
7

−5
7

2
7

−9
7

3
7

−4
7




tric

= T5 = T2 · T4 = T3 · T6 (4.24)

R
(411)
180 =




−1 −1 0

0 1 0

0 0 −1




hex

=̂




5
7

3
7

3
7

4
7

−6
7

1
7

4
7

1
7

−6
7




tric

= T6 = T2 · T5 = T3 · T4

4.8.3 Structural refinement

Considering the twin overlap at 200 K there are only totally overlapping reflections or com-
pletely separate reflections present. In contrast to the 160 K phase, reflections belong either
to all domains or only one domain. The ideal twin matrices in Eqn. (4.23) and (4.24) lead to
perfect superposition of the reflections belonging to all domains, these are the ones from the
rhombohedral structure. In reality a peak splitting is observed but it can hardly be resolved
with the SuperNova diffractometer. The integration mask size was changed automatically at
higher angles. Visual inspection of the mask size during the integration process did not reveal
any partial covered reflections. Increasing the integration mask by a factor up to 1.75, did not
lead to a significant change of the internal R-value confirming that the assumption of a total
overlap of the twin domains is justified.

The structure solution using Superflip [63] sets Yttrium Y4 at the inversion center of the
P1̄ structure, as one would also expect from representation analysis. In contrast to the 160 K
phase there exists no P1̄ structure compatible with a single propagation vector

(
2
7
2
7
3
7

)
, where

the inversion center lies not on the Yttrium. Refining the structure with Y4 at the inversion
center lead to Robs values above 10%. For the case with Y4 placed in the inversion center at
(0,0,0) the difference Fourier of Fobs-Fcalc is shown in Figure 4.23. The map is centered at Y4
and the green color indicates too much charge while the red color indicates missing charge.
From this it is clear that Y4 is not placed in the inversion center and has to be splitted, which
is also confirmed by the strong reduction of the R-value from around 10% down to 5%. This
is an indication for a still present grade of disorder in the 200 K structure, where 50% of the
Yttrium occupies one peak and 50% the other.

The only way to resolve the split position would be to remove the center of symmetry.
Lowering the symmetry to P1 will double both the amount of atomic coordinates as well
as the anisotropic displacement parameters (ADP), which creates a challenging amount of
parameters.
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Figure 4.23: Difference Fourier map Fobs-Fcalc in electrons where Y4 is placed at (0,0,0), which is the
inversion center in the P1̄ 200 K structure. The contours are in steps of 5 electrons and red is missing
charge and green is too much charge.

To avoid this the ADP were handled with a pseudosymmetry, where atoms symmetry
equivalent in P1̄ were restricted to have the same ADP, while only the coordinates were re-
fined, as suggested in [68, 216]. This was based on a dataset, which does not assume the
Friedel mates to be equivalent, since the difference contains the information about the cen-
trosymmetry [217]. Without the split position the P1 structures refines with an R-value above
7% and the same elongated anisotropic displacement parameters for Y4, which indicated the
split position in P1̄. Also the map of the observed structure factors Fobs shows two peaks for
the Yttrium at the origin, so the disorder is not resolved by a symmetry lowering. Splitting
the position in P1 leads again to an decrease of the R-value to a similar value as for the P1̄
structure not justifying the lowering of the symmetry.

If the atomic form factors are real it is only possible to determine the Laue groups and
not the point group of the system, since in this case Fridels law is fulfilled and the diffraction
pattern is always centrosymmetric even if the point group of the crystal is non-centrosymetric
[218]. If the atomic form factors have an imaginary part due to anomalous scattering, F(hkℓ)
can be distinguished from F(h̄k̄ℓ̄) [219, 220], although it is difficult to separate this effect from
absorption correction, especially for a twinned crystal where the intensity each domain re-
ceives from the incident beam is not clear.

If the decision between centrosymmetric and non-centrosymetric cannot be clearly cho-
sen, one should always choose the higher symmetry system [221]. One possibility to enhance
anomalous scattering would be to change the wavelength from Mo to Cu to increase absorp-
tion, although this is very problematic since the analytical absorption correction does not
work for a twinned crystal due to random illumination of domains. It would also induce Fe
fluorescence adding substantial to the CCD background. The refinement would benefit from
higher intensities since there are a lot of reflections considered unobserved due to their bad
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I/sig(I) ratio. There are a lot of weak reflections because the experiment was also performed
on very high scattering angles with a resolution limit of 0.38 Å

−1
. If one sets a resolution

limit of 0.78 Å
−1

the amount of unobserved reflections is drastically decreased together with
a decrease of the crystallographic residuals as shown in Table 4.15. A measurement on a larger
crystal is not suitable due to increased absorption and extinction. Long enough counting times
would increase the measurement time to unreasonable times, like several months and also in-
crease the background on the CCD. Measurements on an instrument with a Pilatus detector
and evacuated beam path would avoid the background accumulation. Ideal to observe all
orders of the weak superstructure reflections would be a measurement at a synchrotron.

Table 4.16 gives the atomic position refined using Jana2006 [64, 222] and Table 4.15 gives
the corresponding refinement parameters. The corresponding out-of-plane bond angles are
given in Table 4.18, while the in-plane angles are given in Table 4.18. In comparison to the
160 K phase the deviation from the ideal bond angles of the R3̄m phase seem to be slightly
smaller although a broad distribution is observed.

The refinement of the 200 K structure was done on a different crystal, than the 160 K refine-
ment since the previously used sample was lost. Form table 4.15 it is obvious, that this sample
shows a much broader domain population where 3 domains obey volume fractions over 20%.

Parameter this work

Spacegroup P1̄

Rint/Rσ (%) 11/7.7

Rint/Rσ (%) (resol.lim. 0.78) 4.1/1.6

Robs/wRobs (%) 5.2/8.7

Rall/ wRall (%) 22/14

GOFobs/ GOFall 1.27/1.13

unique Reflections obs / all 6059 / 19543

parameters 230

diff. peak and hole (e/Å 3) 1.6 / -1.3

ρcalc (g/cm3) 4.9578

Twin population (%)

1 0.287(12)

2 0

3 0.203(7)

4 0.291(6)

5 0.040(5)

6 0.180(5)

Table 4.15: Refinement parameters at 200 K

Figure 4.24 shows the Fe environment of the seven distinct Fe sites in the 200 K structure,
together with the bonding distances. The blue atoms are the Oxygen atoms of the triclinic
structure at 200 K, while the yellow atoms are the Oxygens for the rhombohedral structure at
room 295 K. The bond distances with uncertainties are also given in Table 4.17. As in the the
160 K phase some of the Fe-O bond lengths are much larger than typical Fe-O distances and
their contribution to the bond valence sum is marginal.
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Site occ. x y z U11 U22 U33 U12 U13 U23

Y1 1 .71863(8) .42763(6) .42799(5) .0038(2) .0181(3) .0141(2) -.0003(2) .0021(2) -.0075(2)

Y2 1 .13893(8) .29935(6) .27332(5) .0041(2) .0096(2) .0093(2) .000 .0020(2) -.0007(2)

Y3 1 .56956(7) .12134(5) .15828(5) .0043(2) .0066(2) .0069(2) .0005(1) .0012(1) .0026(1)

Y4 0.5 -.00203(15) .02213(11) -.01537(10) .0040(3) .0102(5) .0099(4) .0006(3) .0012(3) .0001(3)

Fe1 1 .67616(13) -.20910(9) .14200(8) .0096(3) .0087(3) .0077(3) .0018(2) -.0018(2) .0000(2)

Fe2 1 .11731(13) .65441(11) .00825(9) .0071(3) .0216(4) .0089(3) .0003(3) .0024(2) .0018(3)

Fe3 1 .39872(12) .23367(9) .58430(8) .0084(3) .0080(3) .0094(3) -.0006(2) .0009(2) .0006(2)

Fe4 1 .96614(12) .36246(9) .73041(9) .0074(3) .0082(3) .0123(3) .0010(2) .0018(2) .0005(2)

Fe5 1 .84488(16) .06188(10) .41565(9) .0256(4) .0138(4) .0168(4) -.0108(3) -.0112(3) .0112(3)

Fe6 1 .2669(2) -.04880(12) .31163(13) .0445(6) .0191(5) .0480(7) .0205(4) .0392(5) .0241(5)

Fe7 1 .47073(17) .48553(11) .13363(10) .0278(4) .0117(4) .0159(4) .0050(3) .0072(3) .0099(3)

O1 1 .4827(6) .3498(4) .2307(4) .0062(12) .0077(14) .0110(14) .0019(11) .0030(11) .0038(12)

O2 1 .8352(6) .2204(4) .3457(4) .0063(12) .0082(15) .0096(14) .0011(10) .0015(11) .0033(12)

O3 1 -.1248(6) .2078(5) .0874(4) .0069(13) .0162(18) .0088(14) -.0049(12) .000 .0031(13)

O4 1 .2227(6) .0755(5) .2022(5) .0104(15) .0079(15) .0230(20) .000 .0111(14) .000

O5 1 .6649(6) -.0834(4) .0352(4) .0146(15) .0091(15) .0063(13) .0041(10) .000 .000

O6 1 .3833(6) .3568(5) .4770(4) .0073(13) .0109(16) .0093(14) .0021(11) .0012(11) .0045(12)

O7 1 .4382(6) .6378(4) .0384(3) .0117(13) .0081(14) .0098(14) .000 .0015(11) .0034(12)

O8 1 .8994(7) .5114(5) .8763(5) .0128(17) .0101(19) .0440(30) .000 .0066(19) .0019(18)

O9 1 .0125(7) .2350(5) .8578(5) .0182(19) .0138(19) .0350(30) .0038(14) .0187(18) .0094(19)

O10 1 .2905(6) .3409(4) .7265(4) .0116(14) .0112(16) .0114(15) .000 .0016(12) .0038(13)

O11 1 .5925(6) -.0659(4) .2746(3) .0110(13) .0119(16) .0104(14) .000 .000 .000

O12 1 .9579(6) .4917(5) .6215(4) .0094(14) .0089(16) .0122(15) .000 .0018(12) .0052(13)

O13 1 .1934(6) .0701(4) .4766(3) .0110(14) .0072(14) .0091(13) -.0021(10) -.0028(10) .0027(12)

O14 1 .7109(7) .2220(4) .6206(4) .0132(15) .0121(17) .0173(17) .000 -.0036(13) .0065(15)

Table 4.16: Atomic positions and thermal displacement parameters of the refined 200 K structure. Values
given as .000 have errors on the third decimal larger than the value.

Site bonding distance (Å) Mean

Fehex

O1hex

1.927(6)
O2hex

2.042(1)
O2hex

2.042(1)

Fe1
O5

1.923(5)
O10

2.190(5)
O7

1.928(3)
O9

1.936(5)
O11

1.928(4) 1.994(2)

Fe2
O3

1.931(5)
O8

1.923(4)
O7

1.950(4)
O8

2.330(6)
O9

1.936(5) 2.055(2)

Fe3
O6

1.907(5)
O11

2.554(4)
O10

1.913(4)
O13

1.899(3)
O14

1.890(4) 2.030(2)

Fe4
O8

2.006(5)
O9

2.123(5)
O10

2.013(4)
O12

1.970(5)
O14

1.946(3) 2.022(2)

Fe5
O2

1.918(5)
O13

2.007(4)
O11

2.017(3)
O13

2.091(4)
O14

2.707(4) 2.134(2)

Fe6
O4

1.943(6)
O13

2.042(4)
O9

2.480(4)
O11

2.108(4)
O14

2.043(5) 2.084(2)

Fe7
O1

1.923(5)
O7

2.054(4)
O7

2.168(4)
O8

2.237(5)
O10

2.168(3) 2.100(2)

Table 4.17: Fe-O bond distances at 200 K, the gray colored distances are out-of-plane in regard to chex.
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Site bond angle (◦) mean (◦)

Fehex

O2h-O2h

83.5(3)
O1h-O2h

96.5(3) 90.0(2)

Fe3+1
O9-O10

82.3(2)
O7-O10

84.0(2)
O10-O11
87.9(2)

O5-O11
90.2(2)

O5-O9
95.6(2)

O5-O7
100.2(2) 90.0(1)

Fe3+2
O7-O8

82.8(2)
O8-O9

82.8(2)
O8-O8

84.2(2)
O3-O8

95.3(2)
O3-O9

96.4(2)
O3-O7

98.4(2) 89.9(1)

Fe3+3
O11-O13
77.6(2)

O11-O10
78.3(2)

O11-O14
79.0(2)

O6-O13
101.0(2)

O6-O10
101.5(1)

O6-O14
102.5(2) 91.2(1)

Fe2.5+4

O9-O10
82.2(2)

O8-O9
86.7(2)

O9-O14
90.0(2)

O8-O12
92.2(2)

O10-O12
92.8(2)

O12-O14
96.1(2) 89.9(1)

Fe2+5
O13-O14
75.8(2)

O13-O13
86.4(2)

O2-O14
88.0(2)

O11-O13
89.7(2)

O2-O11
94.0(2)

O2-O13
101.7(1) 89.5(1)

Fe2+6
O9-O14

78.5(2)
O4-O9

87.6(2)
O11-O14
87.6(2)

O4-O11
90.0(2)

O13-O14
92.3(2)

O4-O13
101.6(2) 90.0(1)

Fe2+7
O7-O10

81.6(2)
O7-O8

82.9(2)
O7-O7

84.5(2)
O1-O8

93.1(2)
O1-O10

97.8(2)
O1-O7

99.8(2) 90.1(1)

Table 4.18: Bond angles of O-Fe-O out of plane at 200 K.

Site bond angle (◦) δ (◦)

Fe2.5+hex 118.7(1) (O2h-O2h)

Fe3+1 116.2(2) (O7-O11) 118.6(2) (O7-O9) 122.6(2) (O9-O11) 2.6

Fe3+2 113.6(2) (O8-O9) 121.0(2) (O7-O8) 121.3(0) (O7-O9) 2.9

Fe3+3 114.5(2) (O10-O13) 114.7(2) (O10-O14) 118.9(2) (O13-O14) 4.0

Fe2.5+4 116.7(2) (O8-O14) 119.0(2) (O8-O10) 123.0(2) (O10-O14) 2.4

Fe2+5 105.4(2) (O13-O14) 115.1(2) (O11-O14) 136.9(1) (O11-O13) 12.1

Fe2+6 108.8(2) (O9-O11) 123.7(2) (O9-O13) 126.4(1) (O11-O13) 7.1

Fe2+7 116.2(2) (O7-O8) 118.4(2) (O8-O10) 121.1(2) (O7-O10) 2.2

Table 4.19: Bond angles of O-Fe-O in the triangle of the distorted triangular bipyramidal Fe environment
with δ = 1

3

∑
|120◦ − αbond|.

72



4.8. THE CRYSTALLOGRAPHIC STRUCTURE AT 200 K
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Figure 4.24: The iron environments for the seven distinct Fe-positions with different valences in the
200 K structure of YFe2O4−δ. The blue numbers give the length of the Fe-O bond. (Figure made with
VESTA [223].)

4.8.4 Bond valence sum analysis at 200 K

As already stated, the X-ray contrast between Fe2+ and Fe3+ is too low to be resolved directly,
therefore bond valence sum analysis (see Sec. 2.3.6) is also applied to determine the Fe valence
at 200 K. It is obvious from the 7 times enlarged cell with seven distinct Fe sites and a mean
valence of 2.5 that there cannot be a full charge order of Fe2+ and Fe3+ as long as the structure
is centrosymmetric. So at least one site must have an intermediate valence or a full spectrum
of valences as suggested [170, 209] in the past should be considered.

For the bond valence sum of the Fe sites the oxygen ions building the trigonal-bipyramidal
environment at room temperature were considered and the BVS was calculated for the d0i of
Fe2+ and Fe3+ and since no tabulated values are given for mean Fe valences, the BVS for
Fe2+ and Fe3+ were averaged to account for positions with mixed valence. Table 4.20 gives
the BVS for the seven Fe-sites, the green marked cells give the most likely valence for the
position. Therefore Fe1, Fe2 and Fe3 are Fe3+ while Fe5, Fe6 and Fe7 are Fe2+, Fe4 is the
position with a mixed valence so Fe2.5+. With these valences, the average Fe valence at 200,K
is 2.38(20), which is lower than the expected value of 2.5. On the other hand it is comparable
the Fe valence of the rhombohedral structure at room temperature of YFe2O4−δ and also
LuFe2O4−δ [9]. Even when one considers all positions to be mixed the average Fe valence at
200 K is 2.41(15). Since the errorbar on the BVS is larger at 200 K than at 160 K the values can
still be considered to resemble a mean valence of 2.5.

As a validity test again the BVS for the Yttrium and Oxygen sites was calculated, for the
latter the different Fe valences as given in the green marked cells of Table 4.20 are used. For
Yttrium the eight closest Oxygen neighbors building the octahedral environment were used
for the BVS. The results are given in Table 4.21 and are close to the ideal value of three, but
the deviations are larger compared to BVS at 160 K especially for Y4 with a BVS of 3.20(2). If
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Site T (K) BVS (2+) BVS (3+) BVS (2.5+) Multiplicity

Fe1 200 2.66(23) 2.84(11) 2.75(17) 2

Fe2 200 2.52(22) 2.70(10) 2.61(16) 2

Fe3 200 2.65(23) 2.83(14) 2.74(19) 2

Fe4 200 2.39(21) 2.56(10) 2.48(16) 2

Fe5 200 2.00(18) 2.14(08) 2.07(13) 2

Fe6 200 1.93(18) 2.07(08) 2.00(13) 2

Fe7 200 1.90(17) 2.03(08) 1.96(13) 2

Fehex 300 2.23(07) 2.39(04) 2.31(06) 6

Table 4.20: Bond valence sum of the Fe-sites at 200, K

the Y4 position is not split the BVS is 2.90(2). For the Yttrium and Oxygen valence the given
errors are only the statistical errors from the uncertainties of the atomic positions, they do not
consider the uncertainty of the d0i-parameters. Considering that the uncertainty of d0i will
results in similar error as for the Fe positions, the valences are reasonably close to the ideal
values.

Site BVS

O1 2.06(1)

O2 2.11(1)

O3 2.09(1)

O4 2.07(1)

O5 2.15(1)

O6 2.01(1)

O7 1.96(1)

Site BVS

O8 1.73(1)

O9 1.79(1)

O10 1.81(1)

O11 1.84(1)

O12 2.11(1)

O13 1.98(1)

O14 1.82(1)

Site BVS

Y1 3.12(1)

Y2 3.07(1)

Y3 3.11(1)

Y4 3.20(2)

Table 4.21: Bond valence sum of the Y-sites at 200, K

If the structure is refined without the center of symmetry in spacegroup P1, as given in
Appendix A.5, the received charge order pattern (cf. Tab. A.9) is the same as for the refinement
in P1̄ and still obeys a center of symmetry. All Fe sites connected by inversion in P1 show
similar valences. It is therefore justified to choose P1̄ as spacegroup. The refinement in P1 also
showed large correlations (>0.9) of atomic coordinates from sites connected in P1̄ by inversion,
which also is an indication that the structure has an inversion center.
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Figure 4.25: (a) YFe2O4−δ structure at 210 K in relation to the R3̄m structure view along the hexagonal
[−1, 1, 0]-axis (b) Plot of the observed structure factors Fobs versus the calculated Fcalc of the R3̄m
structure at 210 K.

4.8.5 Discussion

In the past the structure evaluation of YFe2O4−δ was dominated by electron diffraction [159,
162, 163, 165–169] and some powder diffraction experiments focusing mostly on the peak
splitting of the structural reflections of R3̄m [160, 161, 164, 170, 187, 224].

Our propagation vector of
(
2
7
2
7
3
7

)
is the same as the one suggested in [168] at 100 K, al-

though one year later the group [169] changed the propagation vector to ( 1
14

2
7

1
14
). In the

(−2h, h, ℓ)-plane they observe reflections on lines ( 2̄
7
1
7
ℓ). Their diffraction image of the hhℓ-

plane shows reflections on (1
7
1
7
ℓ) lines, although they say that these reflections do not lie

exactly in the hhℓ-plane. It is remarkable that they still only observe 7 lines between (000)

and (110) or (2̄10), the higher harmonics of odd order of ( 1
14

2
7

1
14
) seem to be missing, which

makes it unclear why they change to a 1
14

-propagation. In our X-ray diffraction data regard-
less of whether we choose the hhℓ-plane or some symmetrically equivalent in R3̄m we never
observe reflections which cannot be described with the

(
2
7
2
7
3
7

)
propagation vector, its higher

harmonics and symmetrically equivalent vectors, which correspond to the 6 twins.

The only structural solution suggested in the literature is from Blasco et al. [170] and is
based on Rietveld refinement of synchrotron powder X-ray diffraction data. As we, they ob-
serve two distinct charge ordered phases between 240 and 80 K. For the 210 K structure they
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observe superstructure reflections of the form (h
7

k
7

ℓ
7
) compatible with the propagation vec-

tor of
(
2
7
2
7
3
7

)
we found by single crystal X-ray diffraction. Based on the room temperature

structure they use representation analysis based on ISODISTORT [171] from the ISOTROPY
Software Suite [172] to predict a structural model for the Rietveld refinement. From here their
journey gets somehow strange instead of starting with the most primitive case of the single
irreducible representation GP(1

7
1
7
9
7
) they start with a superposition of two IRs SM(a,−2a, 0)

and LD(0, 0, g) with a = 1
7

and g = 9
7

without saying why it is necessary to introduce a
second primary order parameter [170]. Also one would expect reflections belonging only to
one of these IRs with propagation vectors of (1

7
1
7
0) or (0, 0, 9

7
), which neither they nor we ob-

serve. Their received solutions have extremely large unit cells, the refined cell has a volume
of 4333.924(5)Å 3 with 25 formula units (the volume is falsely given as 43339.24(5)Å 3). The
other solution is so large Fullprof could not handle it, with a volume of 30404Å 3 [170]. From
the 185.000 structures of the Inorganic Crystal Structure Database [225] 5268 structures have a
unit cell volume over 4000Å 3 of which 758 were refined by powder diffraction, none of those
was refined in a triclinic spacegroup.

To handle such a big structure, they refine symmetry adapted modes step by step and
discard all mode amplitudes which are smaller than their uncertainty, in the end they have 72
mode amplitudes [170]. In comparison the triclinic seven times enlarged superstructure, we
use, has 79 free parameters (75 atomic coordinates and 3 displacement parameters and 1 scale
factor (if twinning is not considered). It is hard to justify a separate step by step refinement of
single modes through such a small reduction of the needed parameters.

For the 80 K phase they observe a superposition of two phases, as we do. Their phase is
characterized by a combination of the 200 K phase and additional superstructure peaks of the
form (h

4
k
2

ℓ
4
). Considering only the latter, they present a list of the “simplest cells” compatible

with these reflections, received from ISODISTORT, to me it is unclear how these cells where
received. They end up with a model with 504 fractional coordinates, a similar amount as in
their 200 K structure. They observe the following reflections which cannot be described with
the propagation vector

(
1
4
1
4
3
4

)
: (1

2
, 1, 8), (1

2
, 0, 5) and (1

2
13) [170]. None of these reflections, or

in R3̄m symmetrically equivalent reflections, are observed in our single crystal X-ray data.
If one considers false indexing of the powder pattern, the closest reflections to (1

2
, 1, 8) with

|Q| = 2.70 are (3
4
, 1
4
, 9.25) with |Q| = 2.71 or (3

4
3
4
3
4
) with |Q| = 2.69 and for (1

2
, 0, 5) with

|Q| = 1.64 the closest reflection is (1
4
, 1
4
, 5.25) with |Q| = 1.60. It is unclear if they really

mean (1
2
, integer, integer) reflections, or if this is a mistake, since in their powder pattern no

reflection is marked with such indices. Also (1
2
, integer, integer) reflections cannot be created

with L-propagation (1
2
1
2
1
2
), which they stated they used [170]. Reflections with L-propagation

are equivalent to the second harmonic of
(
1
4
1
4
3
4

)
. Their refinement of the room temperature

structure in R3̄m shows a by 10% too low intensity on all high intensity peaks [170], which
might be an indication for the not accounted 2D charge order, which is still present at room
temperature and is also not accounted in our refinement of the room temperature structure.

Figure 4.26 shows the charge order pattern of our solution at 200 K, where the upper part
of the figure is the view of the Fe bilayer along chex and the lower part a view along the
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Separation of Eqn. (4.16) into sine and cosine terms leads to:

Val = A · sin(2πp · r) + B · cos(2πp · r) + C · sin(2π · 2p · r) +D · cos(2π · 2p · r) (4.26)

+E · sin(2π · 3p · r) +D · cos(2π · 3p · r) +G (4.27)

Choosing one Fe position at the origin chooses the phase so that this Fe atom is not influ-
enced by the mode belonging to the sine, this is also the phase choice used by ISODISTORT
[171].




1

1

1

0

−1

−1

−1




=




−0.781831 0.623490 −0.974928 −0.222521 −0.433884 −0.900969 1

−0.433884 −0.900969 0.781831 0.623490 −0.974928 −0.222521 1

−0.974928 −0.222521 0.433884 −0.900969 0.781831 0.623490 1

0 1 0 1 0 1 1

0.433884 0.900969 −0.781831 0.623490 0.974928 −0.222521 1

0.781831 0.623490 0.974928 −0.222521 0.433884 −0.900969 1

0.974928 −0.222521 −0.433884 −0.900969 −0.781831 0.623490 1




·




A

B

C

D

E

F

G




(4.28)

Since we have 7 equations and 7 variables and the determinant of the matrix in Eqn. (4.28)
is not zero the system can be solved by inverting the matrix and multiplying the inverse
matrix from the left with the column vector on the left side of Eqn. (4.28).

Which leads to: A=−1.21, B = 0, C = 0.14, D = 0, E = −0.35, F = 0 and G = 0. So we
have only modes which leave one point unchanged (sine) with a large contribution from the
first harmonic GP1=

(
2
7
2
7
3
7

)
and a small part from the second harmonic GP2 = (3

7
3
7
1
7
) and a

medium contribution from the third harmonic GP3 = (1
7
1
7
9
7
) .

The mode decomposition using ISODISTORT [171] from the ISOTROPY Software Suite
[172] of the distorted cell is given in Table 4.22.

mode GM1+ GM3+ GP1
(
2
7
2
7
3
7

)
GP2

(
3
7
3
7
1
7

)
GP3

(
1
7
1
7
9
7

)

As 0.09 0.12 1.11 0.71 0.49

Ap 0.03 0.05 0.42 0.27 0.19

exp. As 0 0 1.21 0.14 0.35

Table 4.22: Mode amplitudes (sum) from mode decomposition of the distorted 200 K structure deter-
mined using ISODISTORT [171]. As is the amplitude of the triclinic CO cell and Ap = As ·

√
Vp/Vs where

Vp is the volume of the primitive parent structure and Vs the volume of the primitive CO supercell.

Table 4.23 shows the distortion mode amplitudes along chex for the Fe sites separated for
sine and cosine contributions. It is clear that in contrast to the mode decomposition of the
charge order pattern, the distorted structure leads to non-zero contributions from the cosine
parts of the modes belonging to the general point

(
2
7
2
7
3
7

)
and its higher harmonics. The mode

amplitude for the mode of the general point
(
2
7
2
7
3
7

)
in Table 4.22 is the largest, which confirms

that
(
2
7
2
7
3
7

)
is the preferable as propagation vector instead of

(
1
7
1
7
9
7

)
. The GP3 distortion of
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mode GP1
(
2
7
2
7
3
7

)
GP2

(
3
7
3
7
1
7

)
GP3

(
1
7
1
7
9
7

)

sine As -0.053 -0.1114 -0.019

cosine As -0.111 0.0536 -0.046

Table 4.23: Sine and cosine mode amplitudes (As) for distortions along chex from mode decomposition
of the distorted 200 K structure determined using ISODISTORT [171].

Y and Fe is small, which explains the observed intensity distribution, where the reflections
belonging to GP3 are the weakest. To understand which modes drive the charge order, one
has to analyze the influence of different modes on the the bond valence sum, because only
distortions changing the BVS are correlated with the charge order.

For this we have calculated the BVS for distorted structures based on the modes from the
refined structure with one mode scaled by a factor of 1

2
. For GP2 and GP3 this brings the mode

amplitudes closer to the values calculated from the charge pattern.
Surprisingly the amplitude reductions of either GP1, GP2 or GP3 all have a similar effect

on th BVS. The reduction of GP1, which is the main distortion mode, brings all valences
closer together to 2.5, which is not surprising since it reassembles the rhombohedral case. All
reductions lower the charge on the former mixed Fe4 site to around 2.6 and turn the former
2+ site Fe6 in a clear 3+ site. Fe1 and Fe2 show now a 2.5 valence and Fe3, Fe5 and Fe7 are
identified as 2+. The conclusion is that all three distortion modes collectively determine the
charge order of YFe2O4−δ at 200 K, which is consistent with the valence mode decomposition
(Table 4.22), although the amplitude of GP2 is rather different. The charge order seems to be
very fragile and not completely frozen.
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4.9 Phase stability in magnetic fields

To test if a magneto structural transitions, as in LuFe2O4−δ [31], exists in YFe2O4−δ we con-
ducted an experiment in pulsed magnetic fields up tp 30T. The experimental setup is de-
scribed in Section 2.5. Figure 4.27a shows the raw detector images of the (113)-reflection at
160 K measured with the Pixrad detector for one second. The splitting of the reflection due
to the charge order domain structure can be resolved, which could not be realized with the
laboratory X-ray diffraction. Figure 4.27b and (c) compare the Pilatus Si and the Pixirad CdTe
detectors against each other. The

(
1
2
1
2
3
2

)
reflection is shown measured for 0.40ms at the peak

of a 30T field pulse. The reflection is clearly observable, which indicates that no charge order
phase change was induced through the magnetic field. Due to the high X-ray energy of 20 keV
the CdTe detector obeys a 6 times better quantum efficiency than the Silicon detector.
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Figure 4.27: Detector images at 160 K of (a) (1 1 3) in zero field and (b),(c) (1
2
1
2
3
2
) in 30 T with different

detectors.

Figure 4.28 shows the Intensity of the (1
2
1
2
3
2
) superstructure reflection at 160 K measured

time resolved during a 20 T field pulse. The green curve shows the time dependence of the
magnetic field pulse calculated from the current discharge of the capacitor bank. The red
curve shows the triggers for the Pilatus detector, which was set to measure for 0.4ms every
5ms in such a way that one image is measured exactly during the maximum of the field pulse.
The Pilatus detector had to be used because it was the only detector which had a fast enough
reading time to gather images during the pulse and right before and after the pulse. The Pixi-
rad detector, which has a better quantum efficiency because of the CdTe-sensor instead of
Si used in the Pilatus, is too slow to collect images in close proximity to the peak. To com-
pensate for the bad quantum efficiency of the Si-detector, the Intensities from several pulses
were averaged to gain a better statistics. Since the magnet needs to cool for 12 minutes after
each 30 T pulse, this procedure is quite time consuming and the necessary beamtime could
be drastically reduced if a fast CdTe detector could be used. As can be seen in Figure 4.28 no
field induced decrease of the intensity is observed on the charge ordered superstructure re-
flections. Also if the field was increased to 30 T the reflection did not change its intensity. The
field strength necessary to alter the magnetic state will be reduced close to the Néel tempera-
ture. Therefore we increased the temperature to 205 K, which is in the hysteretic region of the
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Figure 4.28: Average of 10 field pulses of the Intensity of (1
2
1
2
3
2
) measured for 0.4 ms each at at 9 time

positions during a 20 T field pulse.

magnetization (Figure 4.6) but no metamagnetic transition could be induced. The same was
tried on charge order reflections at 225 K during cooling, without any induced transitions.

A further increase of the temperature closer to the Neel temperature during warming
could not be realized since the sample was destroyed in a 30 T field pulse at 205 K. This might
be caused by the increased magnetization, or the sample had a metamagnetic transition to a
ferrimagnetic phase and was then destroyed by the forces from different domains. But this is
speculative. The remains of the sample where checked with single crystal X-ray diffraction,
but no changes to the state before the experiment were observed.

Considering that the magnetic moment of the sample was not perpendicular to the mag-
netic field but tilted 12◦ in field direction, the effective field is reduced by a factor 1− sin (12◦).
Therefore we can state that YFe2O4−δ shows either no metamagnetic transitions up to 24 T
or the charge order is not influenced by changes of the magnetic structure. The latter seems
unlikely considering that the temperature induced charge order transitions are also magnetic
transitions.
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4.10 The magnetic phases of YFe2O4−δ

4.10.1 Neutron diffraction

Before we come to a general discussion of the charge order we will also examine the mag-
netic structure of stoichiometric YFe2O4−δ. The following introduction in Chapter 4.10.1 is a
repetition of the results obtained in my diploma thesis [20], where the details can be found.

All neutron diffraction experiments were performed on the same 42mg YFe2O4−δ single
crystal grown during my diploma thesis. The crystal was always preoriented using Laue X-
ray diffraction. The measurements presented in Figure 4.29 were all measured at DNS (see Sec.
2.3.9). YFe2O4−δ shows three different magnetic states, the transition temperatures follow
the macroscopic magnetization and coincide with the charge order transitions. Above the
ordering transition at 228.5 on cooling ( 248.5 K on warming) only diffuse magnetic scattering
along

(
1
3
1
3
ℓ
)

and
(
2
3
2
3
ℓ
)

is observed (right part of Figure 4.29e indicating a random stacking of
still antiferromagnetically ordered layers. Below this transition temperature two 3D ordered
magnetic phases are observed, the transition between both lies around 180 K on cooling in
accordance with the macroscopic magnetization (Figure 4.6). Figure 4.29a and (b) show a part
of the reciprocal hhℓ-map in the spin flip channel with the neutron polarization perpendicular
to the scattering plane. So only magnetic scattering is visible.
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Figure 4.29: (a) Spin flip channel of the (hhℓ)-plane at 160 and (b) at 200 K
(c) Sketch of domain contributions (reproduced from [30])
(d) Spin flip channel of the (hk0)-plane at 200 K
(e) cuts from hhℓ-plane for P ⊥ hhℓ (top) and P ‖ Q̃ (bottom)
((a), (b) and (e)) reproduced from [20]).

The scattering pattern at 200 and 160 K consists of peaks arranged in two lines along
(
1
3
1
3
ℓ
)
,

which are shifted slightly in the positive and negative direction along (hh0). A similar pattern
is observed along the

(
2
3
2
3
ℓ
)
-line (cf. Appendix A.6 and A.7). The intensity distribution of the
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peaks changes drastically while cooling from 200 K to 160 K . To determine the direction of
the magnetic moment, polarization analysis was used. Figure 4.29e shows parts of the hhℓ-
plane at 160 K and 242 K, measured with different neutron polarizations. The upper part of
the figure is the spin flip channel measured with the neutron polarization P pointing out of
the scattering plane hhℓ. In this configuration, scattering from magnetic moments lying in
the hhℓ-plane will lead to spin flip scattering, which is shown here. In contrast to this the
lower part of Figure 4.29e also shows the spin-flip channel but the polarization P is parallel
to the average scattering vector Q̃. Since only the magnetization M perpendicular to Q can
be measured P ‖ Q̃ induces M⊥Q ⊥ P so all magnetic scattering regardless of the moment
direction will be spin flip. This is a rough approximation since in a multi detector experiment
the polarization cannot be parallel to all Q vectors. The chosen region of reciprocal space is
close enough to P to justify this approximation. As can be seen from the comparison of the
different polarization choices at 242 K, the measurement with P ‖ Q̃ shows a higher intensity
than the one with P ⊥ hhℓ indicating a magnetic moment not lying in the hhℓ- plane. The
intensity difference corresponds to a deviation of 30◦ from an ideal Ising spin system with
chex as the easy axis. In the case of the 3D ordered phase (left and center image of Figure 4.29e)
no intensity variation is observed indicating that the spins are pointing parallel to chex. The
deviation from the Ising character above the charge order transition could be explained by a
disorder of the Fe3+ spins. The Fe2+ spins are aligned parallel chex due to spin orbit coupling
and the orbital moment. If the Fe3+ spins above the CO transition point in random directions,
this is an average deviation of 60◦ from chex. Since half of the Fe ions are Fe2+, with a moment
parallel chex, the mean deviation for all Fe ions from chex will be 30◦ as observed in polarized
neutron diffraction.

The anisotropy observed in magnetization measurements [158, 226] also indicates an Ising
spin system and this is a generally accepted consent [19, 31, 198, 226–231] even before de
Groot et al. [123] determined the spin-structure of LuFe2O4−δ. It was confirmed with several
methods including magnetization measurements [226], polarization analysis in resonant X-
ray diffraction [75], where a large orbital moment is observed [198], density functional theory
and Monte Carlo calculations [231], and the observation of Ising pancake like domains in
magnetic force microscopy [230, 232]. Nevertheless it was never directly tested with polarized
neutron scattering in LuFe2O4−δ. This experimental confirmation of the generally assumed
Ising character of the RFe2O4−δ-system, drastically reduces the possible spin structures in
YFe2O4−δ, since there are only two spin states for each Fe site left. if full order is assumed.

4.10.2 A multi domain state

The assumed incommensurate shift of the magnetic Bragg peaks from the
(
1
3
1
3
ℓ
)
-line resem-

bles a similarity to the contributions of three domains to the CO-pattern of LuFe2O4−δ sug-
gested in [30]. Angst et al. provided as explanation for the observed intensity variation on the(
1
3
1
3
ℓ
)
-line, the incommensurable shifting of peaks along (1̄1̄0), (1̄20) and (21̄0) as shown in

Figure 4.29c originating from three domains arranged in a 120◦ pattern.
To test whether such a domain arrangement can explain the shifting and intensity vari-
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ations of our magnetic scattering, measurements of a plane perpendicular to hhℓ-should be
examined since it should show a peak arrangement in an equilateral triangle around

(
1
3
1
3
ℓ
)
.

Therefore we measured the (hk0)-plane shown in Figure 4.29d, as expected there is an equilat-
eral triangle observed. Through the broad resolution ellipsoid of the DNS experiment (see Sec.
2.3.9) the hhl-plane shows also reflections which lie above or below the plane. To determine
the spin structure the exact position of the magnetic reflections and their integrated intensity
have to be known, the DNS instrument cannot offer this in a reasonable timeframe.

4.10.3 The spin structure at 200 K

To receive the integrated intensities necessary for a refinement of the spin structure, we went
to the D10 beamline at the ILL, which is a four circle diffractometer with an area detector,
which allows fast collection of magnetic reflections (see Sec. 2.3.10). The area detector is espe-
cially necessary since the magnetic unit cell could not be determined from the DNS data and
therefore the exact positions where reflections are expected where unknown. We therefore sys-
tematically scanned an area of the reciprocal space around the

(
1
3
1
3
ℓ
)

and
(
2
3
2
3
ℓ
)

lines. Since
polarization analysis is not available at D10 and its use would unnecessary increase the mea-
surement time, charge order reflections were also collected in this scans. Since the polariza-
tion analysis at DNS showed no magnetic intensity on charge order or structural reflections,
overlap of these with magnetic reflections could be excluded. Nevertheless CO-reflections
are often in close proximity to magnetic reflections, so that every detector image had to be
inspected manually to exclude regions with CO-reflections. In some cases powder rings from
the aluminum sample holder had to be excluded. To get integrated intensities rocking scans
were done on previously determined reflection positions. We collected 706 omega scans, each
consisting of around 25 detector images, on magnetic and structural reflections including
charge order superstructure reflections. To speed up the integration process a python pro-
gram was written, which shows all frames belonging to a specific omega scan, the integration
of these images and the integrated intensity versus Ω. On the basis of these images, manual
integration masks were chosen for all images which showed contamination from neighbor-
ing reflections or aluminum rings. The integration was done automatically considering these
masks by fitting pseudovoigt functions with constant background to the rocking curves. The
fitting curves were plotted together with the data to check if the parameters were reasonable.
Figure 4.30 shows the output of the python program for a typical magnetic reflection.

The reflections were corrected for the Lorentz factor, which is for an ω-scan in Euler geom-
etry [233],

L =
1

sin(2θ)
with Ireal = L · Iobs (4.29)

and corrects for the different angular velocities of the motion of reflections with different
lengths of Q [67]. This is only exact for reflections lying in the center of the area detector,
which is the case for all used reflections (cf. e.g. Fig. 4.30). Together with the non-infinitesimal
size of the reflection and surface thickness of the Ewald sphere, this leads to different times
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reflections with different |Q| will stay in reflection condition. Short scattering vectors lead to
shorter times, decreasing the observed intensity, the Lorentz factor corrects for that.

The measured intensities have to be corrected for several other reasons. The magnetic form
factor originates from the fact that the magnetic interaction of the neutron takes part with the
electron shell of the atom and not the point size nucleus. It reduces the measured intensities
at higher Q, following Eqn. (4.30).

Ireal = fm (Q)
−2 · Iobs with fm (Q) as defined in Eqn. (2.51) (4.30)

Only the magnetic moment perpendicular to Q contributes to the intensity of a reflection
[234]. The magnetic moment in YFe2O4−δ in the 3D ordered phase is pointing in chex direction.
Therefore the measured intensities have to be corrected as Ireal = WM⊥

· Iobs with

WM⊥
=

1

| sin(α)|
with α = arccos

(
Q · M

|Q| · |M|

)
(4.31)

where the scalar product is taken in Cartesian coordinates.

Figure 4.30: Output of the python program written for the D10 data integration on a typical magnetic
reflection. The left part shows the single detector images of the ω-scan, the image at the bottom shows
the pixelwise integration of all these images, the cross marks the detector center. The upper right image
shows the integration of the left images in dependence of omega with a PseudoVoigt fit and a constant
background, the blue line marks the center of the omega scan. The red curve is the best fit and the green
curve the initial fit suggested by the guess() function of the lmfit package.

The thermal motion of the atoms will lead to an intensity decrease described by the Debye-
Waller factor [235], assuming an isotropic thermal displacement of the Fe-ions the intensity
decrease can be described as,

Iobs = Ireal · exp
(
−
1

3
〈u2〉 |Q|2

)
(4.32)

with 〈u2〉 = 0.008Å 2, the mean square displacement of an Fe atom received from X-ray
diffraction.
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The integration process showed that charge order reflections could be observed but the
intensities were too weak to be used for structure refinement. Unfortunately at the time of
the experiment we were not clear about the charge order structure and we collected mostly
first order reflections of the propagation vector

(
1
7
1
7
9
7

)
, since these are only the fourth order

of the final propagation vector
(
2
7
2
7
3
7

)
they tend to be weak and could not be measured in

reasonable counting times. Therefore only the 175 structural reflections belonging to the R3̄m
cell were used in the structural refinement. The much stronger first order reflections of

(
2
7
2
7
3
7

)

were regularly observed in omega scans on close magnetic reflections but were only indexed
during the integration after the experiment.

Figure 4.31 shows the relative absolute difference in intensities between Friedel mates of
all measured reflections of the hexagonal structure in comparison to the relative uncertainty
of the measured intensities. In Figure 4.31 the scattering angle is increasing from the left to
the right. No systematic deviations could be observed and the difference between the Friedel
mates is comparable to the measurement uncertainty. Considering the small amount of re-
flections where Friedel mates were measured and the statistical uncertainty an empirical ab-
sorption correction was not feasible. No reflection was measured several times with different
azimuths. Therefore an analytical absorption correction was done in Jana2006 using Gaussian
grid and indexed crystal facets. The crystal is small (10 mm3) and the linear attenuation factor
at λ = 2.36Å is only 0.104 cm−1, the ratio between the longest and shortest face distances is
less than 4.2 ((100) vs. (001)), which results in transmission factors between 0.97 and 0.99 for
the structural reflections. The influence on the differences in intensities between the Friedel
mates is much less than the size of the points in Figure 4.31 and therefore not shown. Since
the absorption correction had no reasonable effect on the refinement and introduces some un-
certainty because of the general problem of an analytical absorption correction on a twinned
crystal, due to partly illumination, no absorption correction was sued in the refinement.
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Figure 4.31: Relative difference between the Friedel mates of structural reflections in comparison to the
measurement uncertainty (the error is a continuous line for visibility).

Integrated intensities of 330 magnetic reflections were collected, 179 had to be discarded
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because the integration was not reliable, because of close CO reflections, not broad enough
omega scans, aluminum lines, or they belong to a propagation based on the 160 K CO, which
will be discussed in Sec. 4.10.5. Finally, only 151 magnetic reflections were used for the struc-
tural refinement.

All magnetic reflections can be indexed with a propagation vector of
(
03
2
1
)

in the triclinic
cell of the 200 K P1̄ charge order supercell, in hexagonal notation this corresponds to

(
5
14

5
14

18
14

)
.

It is worthwhile to notice that if higher harmonics are considered this is equivalent to
(
01
2
0
)

in the triclinic cell. The multiple domains from the CO-structure have of course to be con-
sidered. Due to the small amount of usable reflections a restriction to the reflections of only
one domain as in the X-ray diffraction structure solution is unreasonable. Since the magnetic
reflections show no overlap the handling of the twins is straight forward. The 151 magnetic
reflections are distributed almost evenly over the six domains. The number of reflections for
twin1 to twin6 are 21, 20, 22, 16, 27, 23.

Jana2006 will be used for the refinement of the magnetic structure. The magnetic cell can
be described with a two times in b-direction enlarged CO cell and in the following all spin
moments from the 14 Fe sites are considered as free variables, the spin direction is fixed in
chex direction.

The magnetic structure refinement option of Jana2006 assumes that the initial structure is
not twinned and all twinning is induced through the magnetic order. To overcome this the
twinning matrices from the 200 K CO structure have to be transformed to the new magnetic
cell, which was done with the cell transformation dialog of Jana2006 [64, 222]. After a new
magnetic structure was created with the representation analysis option of Jana2006 [64, 222],
the twinning matrices had to be written to the m50 file. Also the twin flags, identifying to
which domain a reflections belongs to, had to be set by hand in the m95 file, since Jana2006
[64, 222] assumes an untwinned structure at the beginning of the representation analysis. As
the polarization analysis at 160 K shows YFe2O4−δ is a true Ising-spin-system and only spin-
models with S ‖ chex have to be considered.

Representation analysis based on the magnetic propagation vector
(
01
2
0
)
, which is a spe-

cial point, and the triclinic CO cell (Sec. 4.8) leads to two irreducible representations both with
magnetic space group Ps1̄. Each with 7 distinct Fe sites, one has no origin shift the other a shift
by (0, 1

2
0)tric. If one considers three possible spin values {−1, 0, 1}, where zero is allowed as a

value to provide some degree of disorder, this gives 37 possible spin states. Since the magnetic
propagation vector is (0, 1

2
, 0) a full anti-ferromagnetic order would be possible, nevertheless,

the refinement is not restricted to this case. The moments were restricted to point along chex

in the refinement and the moments were free on each site.
Since only a 175 structural reflections and no CO reflections were usable, a refinement of

the 75 atomic coordinates and 25 isotropic displacement parameters is not possible. There-
fore the atomic coordinates were fixed to the values from the structure determined by X-ray
diffraction in Section 4.8 . One isotropic displacement parameter was used for all atoms. Intro-
ducing different displacements parameters for Y, Fe and Oxygen did not lead to a significant
improvement of the refinement and was therefore not done to reduce the number of free pa-
rameters. All Fe positions were treated with the magnetic form factor of Fe3+, because in
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LuFe2O4−δ it was found that the Fe2+ position shows a similar magnetic moment through
the strong orbital moment [123, 194, 198]. In LuFe2O4−δ the introduction of different Fe2+

and Fe3+ form factors lead to an minor improvement of the spin structure solution, where for
Fe2+ not only the spin moment was considered [123].

The representation analysis lead to two possible structures if the inversion symmetry is
conserved. One structure belongs to the irreducible representation Y1+ the other to Y1- in the
notation of Miller and Love [236] and the difference between the structures is an origin shift
by

(
03
2
1
)
.

The representation analysis in the version of Jana2006 from July 20171, both possibilities
are listed and additionally the non-centrosymmetric solution.

While the refinement based on the 200 K P1̄ structure lead to a very good weighted R
value of 5.7 for all reflections and 6.6 for the magnetic reflections, the refined moments were
totally unrealistic since some were larger than 15µB, regardless of which of the two represen-
tations were used. One reason for this could be that some of the magnetic measured intensities
were wrong, which is unlikely since questionable reflections were excluded. The other reason
would be that the placement of the Fe atoms in the 200 K CO structure is wrong. Some of the
Fe ions in the 200 K structure obey huge anisotropic displacement parameters and it could
be that these prevent the description by isotropic displacement parameters or that splitted
positions are necessary. Using a CO structure based on a refinement of the X-ray data with
isotropic displacement parameter, as a basis for the magnetic refinement, did lead to very
large R-values >30 and unreasonable moments as well. Also introducing spin only magnetic
form factors for Fe2+ and Fe3+ did not lead to an improvement.

For LuFe2O4−δ it was found that a refinement based on the CO structure or the hexagonal
structure lead to similar results [75]. Therefore, to exclude any problem with the 200 K CO
structure solution of YFe2O4−δ it is feasible to refine the magnetic structure based on R3̄m
cell. Therefore we integrated only the 200 K X-ray data under neglect of the superstructure
data and refined the structure in R3̄m. Not surprisingly the received R-values are pretty large
Robs = 16.7 and wRall = 22.9 and the Yttrium shows the strong anisotropic displacement as
observed in the room temperature structure in Figure 4.14a.

This structure was then transformed following the CO propagation vector
(
2
7
2
7
3
7

)
using the

transformation matrices given in Eqn. (4.20), by the use of ISODISTORT [171]. It would also
be possible to refine the structure based on the R3̄m cell and the magnetic propagation vector(

5
14

5
14

18
14

)
. Changing to the CO cell allows one to copy and paste the reflection files with the

twin indexation from the previous refinement. Again the structure for magnetic refinement
was created using the representation analysis of Jana2006 [64, 222] with the magnetic prop-
agation vector of

(
03
2
1
)

in the triclinic notation. The refinement converges with reasonable
magnetic R-values around 10, but the refinement is completely insensitive to the magnetic
structure, the errors on the magnetic moments are larger than the received values.

To exclude any problems with the 200 K CO cell in the magnetic refinement and also over-
parameterization in the refinement we will now examine the most simple magnetic structure,

1March version showed only the one without origin shift
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produced on the assumption that the magnetic structure is based on the primitive rhombohe-
dral cell and the transformation between the cells is described by the magnetic propagation
vector

(
5
14

5
14

18
14

)
.

The second harmonic of
(

5
14

5
14

18
14

)
is

(
5
7
5
7
18
7

)
, which is a charge order position, the same

is true for other higher harmonics of even order. From the polarized neutron experiment at
DNS magnetic intensity on charge order reflections can be excluded (cf. Appendix A.6). The
third harmonic is symmetry equivalent to

(
1
14

1
14

27
14

)
, here we have no data to determine if this

harmonic is present. The fifth harmonic is symmetry equivalent to
(

3̄
14

3̄
14

3
14

)
and the seventh

harmonic to
(
1
2
1
2
0
)
, for both vectors no peaks are observed (cf. Appendix A.6). There are some

small peaks present on
(
1
2
1
2
0
)

due to the
(
λ
2

)
contamination of (110). They are present also in

the non-spinflip channel and at different temperatures.
It is therefore reasonable to refine the magnetic structure without considering higher har-

monics, although a contribution from the third harmonic cannot be excluded.
Representation analysis using the R3̄m cell and the magnetic propagation vector

(
5
14

5
14

18
14

)

gives one irreducible representation with magnetic space group Ps1̄, assuming a single active
k-vector, this leads to two structures, which differer from each other by having no origin shift
(Case I) or a shift of

(
1̄
3
1̄
6
1
3

)
hex

(Case II), which is
(
01
2
0
)

CO. In the primitive magnetic cell this

corresponds to an origin shift by
(
001

2

)
the transformation matrix from the hexagonal to the

magnetic cell can be found in Appendix A.2. If the structure of Case II is described in a cell
without origin shift the inversion means mirroring on

(
001

4

)
instead of (000), which leads to

a moment distribution for the general positions of the group as given in Table 4.24. In Case I
(000) the moment is not inverted by the inversion operation and in Case II it is inverted with
the spacial inversion.

This means that for all 14 Fe ions in the in btric direction doubled CO cell, which are con-
nected by spatial inversion to the other 14 Fe ions, there exist two cases; either all moments
are reversed or no moment is reversed.

And the magnetic structure factor can be calculated as,

F =

14∑

j=1

Sj · exp [2πiQ · r(Fej)] =






∑

j

Sj · 2 cos [2πiQ · r(Fej)] for Case I

∑

j

Sj · 2i sin [2πiQ · r(Fej)] for Case II
(4.33)

here j runs over the 14 Fe ions connected by translation in the in btric-direction doubled CO
cell.

Since we consider a magnetic structure based on the primitive rhombohedral cell, the spin
moment of 13 of the Fe positions in Eqn. (4.33) are given by the application of the magnetic
propagation vector.

The 7 Fe positions of the CO cell in hexagonal notation connected by translation are given
in Eqn. (4.25). The other 7 positions in the magnetic cell, the in btric direction doubled CO cell,
are received by applying a translation of

(
5
3
4
3
1
3

)
hex, which is (0, 1, 0)tric. For the calculation the

ideal positions from the hexagonal cell were used.
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position (Ps1̄) moment (Case I (000)) moment (Case II
(
001

2

)
)

(x, y, z)) S S
(
x, y, z+ 1

2

)
−S −S

(x̄, ȳ, z̄) S −S
(
x̄, ȳ, z̄+ 1

2

)
−S S

Table 4.24: General positions of the Group Ps1̄ and the moments for the structure without origin shift
(000) (Case I) and with origin shift

(
001

2

)
(Case II).

The spin moments which can be received from application of the propagation vector, were
calculated following Eqn. (4.34),

Si = ℜ [exp (−2πik · R(Fei) + iφ)] (4.34)

where k = [ 5
14
, 5
14
, 18
14
] is the magnetic propagation vector in the hexagonal cell and R(Fei) is

the lattice part of the different Fe positions following r(Fei) = Ri+r ′, where Ri is a hexagonal
lattice vector and r ′ = [0, 0, z] is the position of the Fe ion in the hexagonal unitcell. For the
calculation of the spin moments the origin is therefore chosen to be at R(Fe4) = (0, 0, 0), where
the numbering corresponds to the Fe positions in Table 4.16 and Eqn. (4.25) and the moment
of Fe4 is determined by the phase φ as S4 = cos(φ).

Since in Equation (4.34) R(Fe8) = R(Fe1) +
(
5
3
, 4
3
, 1
3

)
hex the moment of Fe8 is received as

S8 = ℜ
[

exp(−2πik · R(Fe1) +
(
5

3

4

3

1

3

)
+ iφ)

]
= S1 ·ℜ

[
exp(−2πik ·

(
5

3

4

3

1

3

)
)
]

(4.35)

and
(
5
3
4
3
1
3

)
·
(

5
14

5
14

18
14

)
= 3

2
the moment of Fe8 is the negative moment of Fe1:

S8 = S1 ·ℜ[exp (−3π)] = −S1 (4.36)

In analog to F8 this is valid for the other 6 Fe positions in Eqn. (4.25) and we have only 7
distinct Si-values the others are given by inversion.

The magnetic moments were then used to calculated the intensity for the 21 magnetic
reflections observed in the first domain for the two cases given in 4.33. In the calculation
φ and the Debye-Waller factor (Eqn. (4.32)) were used as free variables. Using the average
Debye-Waller factor received from the isotropic mean displacement of the Fe ions in X-ray
diffraction 〈u2〉 = 0.008Å

2
, lead to large differences between the observed and calculated

intensities at higher |Q|. The calculated intensities were also corrected with the Lorentz factor
Eqn. (4.29), the factor for only observing the component M⊥Q Eqn. (4.31) and the magnetic
form factor Eqn. (4.30). For the latter the dipole approximation Eqn. (2.51) is used with a
mixed value for Fe2+ and Fe3+.

The calculated and the measured magnetic intensities were normed on
(
05
2
0
)

and then
fitted to determine the optimum values for φ and the Debye-Waller factor. Figure 4.32 shows
the intensities of the reflections of the first domain, together with the calculated intensities
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for the two cases defined in Equation Eqn. (4.33). In Figure 4.32 |Q| is increasing from left to
right, the decrease of the intensity at higher |Q| is caused by the magnetic form factor (cf. 2.6b)
and the Debye-Waller factor. For case I the parameters were determined as 〈u2〉 = 0.189Å and
φ = 0.193 · π and for case II 〈u2〉 = 0.190Å and φ = 0.697 · π. The absolute phase difference
between both cases is nearly π

2
.

The thermal displacement factor of 〈u2〉 = 0.190Å is unrealistic, in comparison to the factor
received from refinement of the 200 K structure 〈u2〉 = 0.008Å, even if the 200 K structure is re-
fined with the hexagonal cell the mean isotropic displacement increases only to 〈u2〉 = 0.02Å
as it includes now the distortions rendering the Fe sites different in the CO cell. As the ther-
mal displacement parameter is, beside the phase shift, the only fitting parameter, it is likely
that the parameter accounts for some other problem in the magnetic model. For example, if
the assumption of a mixed magnetic form factor for Fe2+ and Fe3+ considering also the or-
bital contributions is wrong, this can lead to wrong intensities at higher |Q|, which are then
corrected by the Debye-Waller factor.

Fe13+ Fe23+ Fe33+ Fe42.5+ Fe52+ Fe62+ Fe72+

Case I 0.98 -0.74 0.96 0.82 -0.37 -0.49 -0.07

Case II -0.17 -0.66 0.27 -0.58 -0.92 0.88 1.00

Table 4.25: Magnetic moment for the distinct Fe positions and the two cases, a value of 1 is full spin.
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Figure 4.32: Measured and calculated intensities of reflections from the first domain normed to the
intensity of (0,−2.5, 0). They are ordered with Q increasing on the x-axis. exp is the measured intensity,
case I is the calculated intensity for the cell with (000) as origin and case II is the calculated intensity for
the structure with the origin at (01

2
0)CO.

91



CHAPTER 4. YFE2O4−δ

Figure 4.33 shows the spin structures for the two Ps1̄ structures distinguished by the dif-
ferent origin shift. The shown cell is the in b-direction doubled charge order cell from Section
4.8, from which the Fe valences are also shown. Comparing only the absolute values of the
moments, it is obvious that in the case I structure the Fe3+ ions are close to full spin and in
the case II structure the Fe2+ ions have almost full spin (cf. Table 4.25).

P1CO
c

b

a

R3m c

b
a

Fe2.5+

Fe2+

Fe3+

O

Y

(a) Case I (000)

P1CO
c

b

a

R3m c

b
a

Fe2.5+

Fe2+

Fe3+

O

Y

(b) Case II
(
00 1

2

)

Figure 4.33: The two possible spin structures of YFe2O4−δ at 200 K. Figure (a) is for Case I with no origin
shift and Figure (b) is for Case II with an origin shift of

(
1̄
3
1̄
6
1
3

)
hex

as defined in Eqn. (4.33).

If the Fe2+ orbital moment is quenched, the total moment of Fe2+ is only the spin moment
of 4µB, which is slightly less than the moment of Fe2+ 5µB. The difference is too small to
explain the reduced moment on the Fe2+ sites in the case I structure (cf. Tab. ). From the
XMCD measurements (Sec. 4.4) on stoichiometric YFe2O4−δ we could not received the orbital
moment, but for the non-stoichiometric sample a large orbital moment is observed. This is
also the case for stoichiometric LuFe2O4−δ [9, 190, 193–198].

In the case I structure the Fe3+ moments are close to the full moment. The Fe3+ sites are less
localized in the 200 K charge order structure than the Fe2+ sites (cf. Sec. 4.8.5) and obey some
degree of disorder. It is reasonable that this disorder also affects magnetic structure through
spin charge coupling and decreases the average moment on the Fe3+ sites. The large magnetic
anisotropy observed in YFe2O4−δ (Sec. 4.4) and LuFe2O4−δ [9], which is caused by spin orbit
coupling and an unquenched Fe2+ moment [198, 231], will lead to a higher tendency for the
Fe2+ spin moments to align parallel to chex.

Above the charge order transition a deviation from the Ising character is observed (cf.
Sec. 4.10.1). If now at 200 K the Fe3+ moments still show some degree of disorder, the as-
sumption of all spins pointing parallel chex might not be justified. Although since the model
fits the observed intensities quite well, such a deviation should be small. The small frequency
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dependent shift of the high temperature transition of YFe2O4−δ observed in AC susceptibility
(cf. Sec. 4.3.1) is an indication for some degree of disorder in the magnetic states of YFe2O4−δ

also in the 200 K phase, although it tells us nothing about the valence of the disordered Fe
ions.

The spin order of YFe2O4−δ at 200 K is characterized by the propagation vector
(
03
2
1
)

in the triclinic cell of the 200 K P1̄ charge order supercell, in hexagonal notation this corre-
sponds to

(
5
14

5
14

18
14

)
. A contribution of higher harmonics could be excluded for even order,

the fifth and seventh harmonics. For the third harmonic we cannot exclude a contribution
to the magnetic distortions. Representation analysis based on the rhombohedral cell lead to
two structures with spacegroup Ps1̄, one has no origin shift the other one by

(
1̄
3
1̄
6
1
3

)
hex

. Both
structures lead to almost the same diffraction pattern (cf. Fig. 4.32) and match well with the
observed intensities. One main difference between the spin structures is that for the structure
with origin shift, the Fe3+ ions have almost full spin and for the other structure the Fe2+ ions.
Considering the disorder of the Fe3+ ions in the 200 K CO cell, the scenario with a reduced
moment on the Fe3+ positions due to disorder seems more likely. In the future it might be
possible to distinguish between the two solutions through introduction of different moments
and form factors for Fe2+ and Fe3+, more importantly a refinement of the structure based
on the distorted 200 K CO structure. Inclusion of the third harmonic, from which a contribu-
tion could not be excluded, could also allow one to distinguish the two structures through
their diffraction pattern. The refinement could also be improved by the inclusion of reflec-
tions from different domains, which was omitted here to avoid an influence of problems with
the domain population determination.

4.10.4 Temperature dependence of the spin order

To further elucidate the interplay between the 160 K and 200 K spin magnetic phases we have
evaluated the temperature dependence of different magnetic and structural reflections.

Figure 4.34 shows the temperature dependence of the hexagonal structural reflections
(110) and (003), while the (003) reflection shows almost no change of intensity at the 240 K
charge order transition, the (110) reflection shows an intensity increase while cooling through
the charge order transition. Normally one would expect that the intensity of the structural re-
flection drops while cooling through the charge order transition since some intensity is shifted
to the superstructure reflections. This behavior can be explained by the increase of mosaicity
below the charge order transition, which reduces extinction and was also observed on the low
temperature transition of LuFe2O4−δ [31].

The charge order transition changes both the in-plane and out-of-plane ordering from
(1
3
1
3
ℓ) and diffuse along ℓ to a propagation of

(
2
7
2
7
3
7

)
. The transition from the disorder along

ℓ to an ordered structure creates only a very small drop in the intensities of (003), while the
in-plane change of the propagation has a much stronger effect. More interesting in terms of
the magnetic order is of course the temperature dependence of magnetic reflections, which
can be described by two different types. Figure 4.35 shows the temperature dependence of
the (0.37, 0.37, 0.37)hex and (0.36, 0.35, 4.36)hex reflections. All curves start with cooling from
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Figure 4.34: Temperature dependence the structural (110) and (003) reflection (hexagonal notation).
Both measurements starts with cooling from 200 K.

200 K. The two reflections show quite different behavior. The temperature dependence of
the (0.37, 0.37, 0.37) reflection follows the lower temperature transition in the magnetization
curve (Figure 4.6), while the temperature dependence of (0.36, 0.35, 4.36)hex follows the higher
temperature transition in the magnetization.

At 200 K on cooling the magnetic reflections from the type of (0.37, 0.37, 0.37), which we
attribute to the 160 K phase have a low intensity, but are still observable. Considering the 1

4
-

propagation of the 160 K charge order cell they can be described as (3
8
3
8
3
8
) in the hexagonal

notation.

On the other hand the (0.36, 0.35, 4.35)-type reflections, which we attribute to the 200 K
phase, have a high intensity at 200 K during cooling, with the 1

7
-propagation this corresponds

to (−0.01, 2.52,−0.03) in the charge order cell, which was attributed to be (0, 2.5, 0). On the
other hand (0, 2.5, 0) is (0.36, 0.36, 4.29) in the hexagonal cell, which could mean that the re-
flection was falsely indexed. The temperature dependency of the (0.36, 0.35, 4.35) reflection
is the same as (0.29, 0.35,−0.71) and (0.37, 0.28, 0.29), so they should all belong to the same
phase and it is likely that the variation of the ℓ-coordinate of 4.25 instead of 4.28 is just a
measurement uncertainty and the magnetic propagation vector is correct.

While the 160 K reflections are still observable at 200 K they are too far away from magnetic
or structural reflections of th 200 K phase, to be falsely indexed and used in the refinement.
Since the reflections of the 160 K phase are still observable a part of the sample seems to be
in the phase with a

(
1
4
1
4
3
4

)
charge order propagation. This was never observed in our X-ray

diffraction experiments, which could be explained due to the much smaller sample mass and
different cooling times. Although with the large amount crystals tested, we should have ob-
served this by chance. We observed such a superposition of the two phases at 100 K in single
crystal X-ray diffraction and it was also observed at higher temperatures in powder X-ray
diffraction by Balsco et al. [170]. A superposition of the two phases, if not attributed, would
lead to a too strong intensity of the R3̄m structural reflections in comparison to the 200 K
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Figure 4.35: Temperature dependence of the two types of magnetic reflections. Both measurements starts
with cooling from 200 K.

charge order and magnetic reflections. Since the charge order breaks the R3̄m symmetry, the
intensity distribution would also be affected. The only way to handle such a superposition
would be to measure also the reflections belonging to the

(
1
4
1
4
3
4

)
propagation at 200 K, which

was not done in our experiment, besides the three reflections measured for temperature de-
pendence.

In contrast to the well separated phases observed in X-ray diffraction, the observations in
neutron diffraction at 200 K and 160 K show a superposition of the two CO-phases, although
the phases observed in X-ray diffraction are dominant. This is most likely due to the larger
sample volume and different cooling times.

4.10.5 The spin structure at 160 K

The experiment at TriCs (see Sec. 2.3.11) to determine the magnetic cell at 160 K was per-
formed shortly before the experiment at 200 K. Since the magnetic propagation of the 160 K
phase was unknown at that time we collected three-dimensional maps along (1

3
1
3
ℓ) , (2

3
2
3
ℓ)

and symmetry equivalent lines. In these maps 71 reflections were identified and the inte-
grated intensities of these were measured with rocking scans and a point detector. From the
71 measured reflections 38 can be described with a propagation vector of (01

2
1
2
) in the tri-

clinic 160 K CO, cell if six twin components are considered. Most of the reflections can be
described with a propagation vector of (3

8
3
8
45
8
)hex based on the R3̄m cell, but some reflections

like (1̄ 5̄
2
1
2
)CO are higher harmonics of (3

8
3
8
45
8
)hex. Eleven reflections are charge order reflections

of the 160 K phase, 17 are magnetic reflections from the 200 K phase and 5 reflections could
not be attributed to any of these propagations. The five reflections are (0.61,−0.38,−3.62),
(0.36, 0.39,−0.58), (−0.14, 0.68, 1.41) (−0.32, 0.63, 1.53) and (−0.56, 0.85, 1.01) in hexagonal
notation. The magnetic structure at 160 K consists of a superposition of the 200 K structure
and one with a propagation vector of (01

2
1
2
)CO. The superposition is expected from the tem-

perature dependence shown in Figure 4.35, although it is surprising that it is stronger at 160 K
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than at 200 K. Representation analysis based on the 160 K charge order structure and the prop-
agation vector (01

2
1
2
)CO leads to two irreducible representations, which both give a structure

in spacegroup Ps1̄, and are distinct only by either having no origin shift or a shift of
(
001

2

)
. The

transformation matrix between the 160 K CO cell and the magnetic cell is given in Eqn. (4.37).

B =




1 0 0

0 −1 −1

0 0 −2


 and p =




0

0

0


 or




0

0

1
2


 (4.37)

Comparing the intensities of the reflections that were measured in at least two domains,
lead to very different domain populations, if different reflections from the same domain were
used. The small amount of magnetic or CO reflection does not allow the removal of outliers.
To exclude any problems with domain population scaling, only one domain was considered
for the following calculations.

Assuming that all spins have full moments, that the system has a magnetic space group,
and considering the four Fe sites from the CO cell, there are 8 different spin arrangements for
each structure (4

2

2
). As for the phase at 200 K, the origin shift between the two cells results

in two cases; one connected to the sine and one to the cosine in Equation Eqn. (4.33). The
measured integrated intensities were corrected for the magnetic form factor, Debye Waller
factor, Lorentz factor and that only M⊥Q contributes to magnetic scattering.
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Figure 4.36: Measured and calculated intensities of reflections from one domain normed to the Intensity
of (0,−2.5, 0.5). They are ordered with Q increasing on the x-axis. observed is the measured intensity,
calculated is the calculated intensity for the cell with no origin shift.
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Comparing measured and calculated integrated intensities of the 16 different spin struc-
tures lead to only one structure, which is compatible in regard of relative intensities between
different reflections. Figure 4.36 shows the measured intensities and the calculated intensities
for this spin structure.

The structure is based on the cell with spacegroup Ps1̄ with no origin shift and a spin
structure as given in Table 4.26.

Fe13+ Fe22+ Fe32+ Fe43+

-1 1 1 -1

Table 4.26: Magnetic moment for the distinct Fe positions at 160 K, a value of 1 is full spin.

Figure 4.37 shows the spin structure in the magnetic Ps1̄ cell, the red cell is the 160 K charge
order cell.
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Figure 4.37: Spin structures of YFe2O4−δ at 160 K, Ps1̄ with no origin shift.

In the 160 K spin structure, both of the distinct Fe2+ sites have a parallel spin in a direction
opposing both Fe3+ spins. In contrast to the 200 K spin structure the 160 K spin structure
can be well described with full spin moments indicating a complete spin order, which is in
accordance with the full charge order and the stronger localization at 160 K.

The spin model could be improved by inclusion of different domains and a refinement of
the Debye Waller factor, which is omitted here because of time reasons.

Nevertheless we were able to determine for the first time the spin structure of YFe2O4−δ

at 160 K, which is based on a propagation vector of
(
01
2
1
2

)
CO and has the spacegroup Ps1̄ with

no origin shift in regard to the 160 K charge order structure.
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4.11 General Discussion

We will now go back to the charge order structures of YFe2O4−δ and compare the two low
temperature structures of YFe2O4−δ. Figure 4.38 shows the 200 K and 160 K structures in com-
parison, the view is along the hexagonal [11̄0] axis and [001] is pointing upwards. The mixed
valence in the 200 K structure is colored yellow. The most obvious observation is that the
anisotropic displacement parameters at 200 K are much larger, as one would expect at higher
temperatures. They also show a stronger anisotropy sometimes not fulfilling the Hirshfeld
test, which tests if the displacement parameters of two ions in a bond have similar values
along the bonding direction [73]. This can be a hint for an error in the structure, however in
our case it is more likely an indication for non-attributed disorder. The Hirshfeld test is valid
for the phononic contribution to the displacement ellipsoids, if they describe a disordered
position, the test fails. In the case of the Y4 position, the disorder was attributed to a split
position and indeed the refinement could be further enhanced by splitting Fe sites. To avoid
over parameterization in the refinement this splitting is omitted.

160K P1̄c

b

a

R3̄m
c

b

a

200K P1̄

c

b

a

Fe2+

Fe3+O

Y

Fe2.5+

Fe2.5+

Y

Fe2+Fe3+ O

Figure 4.38: View of the P1̄ 200 K (left) and 160 K structures along the hexagonal [1-10] axis with [001]
pointing upwards.

The transition from the 200 K P1̄ structure to the 160 K P1̄ structure can be be described by
the transformation (4.38).




a ′

b ′

c ′




200K

=B200 K · B−1
160 K︸ ︷︷ ︸

B160K to 200K

·




a

b

c




160K

(4.38)
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with:

B160K to 200K =




−1 0 0

0 −1 −1

1
2

−3
2

1


 (4.39)

In contrast to us, Blasco et al. [170] observe the low temperature phase only in superpo-
sition with the 200 K phase, this might be explained by the much larger sample volume, a
different oxygen stoichiometry or even different cooling times [159].

In Mössbauer spectroscopy a decrease of the Mössbauer line width is observed with de-
creasing temperature [174], compatible with the more localized charge distribution at 160 K
compared to the 200 K structure. Also the occurrence of a very broad sextet, additional to
the Fe2+ and Fe3+ sextets in the spectrum at 220 K on warming and 190 K on cooling [174],
which is attributed to Fe3+ is compatible with our model of 3 localized Fe2+ and 4 partly
localized Fe3+ from which one is closer to Fe2.5+. The fact that these features can still be re-
solved also indicates that the hopping frequency between the non-localized charges has to
be below 108 Hz, characteristic for the Mössbauer effect [174]. It is worthwhile to notice that
the spectrum of non-stoichiometric YFe2O4−δ [173] is completely different from that of the
stoichiometric one [174] due to the charge order of Fe2+ and Fe3+.

It is also observed that the cooling rate has an influence on the low temperature Mössbauer
spectrum [160] and therefore also on the charge order structure, which would explain why for
example Blasco et al. [170] observed a superposition of different phases below 200 K, in con-
trast to the single phase we observe at 160 K. We observe a superposition of the 200 K and
160 K phase at 100 K in X-ray diffraction if the sample is cooled fast to 100 K, with slower cool-
ing rates the reflections of the 200 K phase vanish. A general superposition of the two phases
is observed in neutron diffraction. The latter is most likely caused by the larger sample vol-
ume or different cooling times, quenching some of the phases. In contrast to the powder X-ray
diffraction at 200 K, where a monoclinic structure is observed [160] Mössbauer spectroscopy
shows the same hyperfine splitting as for the triclinic low temperature phase, if the sample is
kept at 200 K for over an hour [160]. This is compatible with our finding that both structures
at 200 K and 160 K are triclinic. Although the structure is questionable Blasco et al. [170] also
found both phases to be triclinic, based on synchrotron powder X-ray diffraction. The resistiv-
ity of YFe2O4−δ shows a continuous increase during cooling with jumps at both charge order
transition temperatures [178, 179]. This can be well explained with the increased localization
of the Fe electrons at both transition points. The resistivity also obeys the thermal hystere-
sis observed in magnetization measurements [181]. For a non-stoichiometric single crystal a
jump in the resistivity is only observed in the chex-plane at the broad 250 K magnetic transition
[178], which can be ascribed to in-plane charge order. The hopping frequency of the electrons
between Fe2+ and Fe3+ increases with increasing temperature [175], which accounts for the
general lowering of the resistance with increasing temperature.

A partial Fe charge order with non-localized electrons on mixed valence sites is also found
in K0.6FeF3 and leads to charge-order-induced polarization [237] and ferroelasticity [238],
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although it is very different to YFe2O4−δ since the mixed valence site is distinct by a differ-
ent site symmetry. Another example for a partial charge order is the weak metallic AgNiO2,
where a charge order of Ni2+ and Ni3.5+ sites is observed [239, 240] and the partial CO lifts
the orbital degeneracy under the presence of charge fluctuations [241]. The average valence
at 200 K from Table 4.20 is 2.38, while at 160 K the valence is 2.47 (Table 4.11), the rhombohe-
dral room temperature structure has a Fe valence of 2.31. With decreasing temperature the Fe
average BVS as well as the site specific BVS is shifted to lower values at both phase transitions.

As stated in [19] the ratios of the Fe distances in the bilayer and between different bilayers
are supposed to determine the realized charge order.

For a full three dimensional CO four interactions are necessary [19, 242, 243]; these are the
Fe in-plane intra nearest neighbor interaction VabNN , the out of plane intra nearest neighbor
interaction VcNN , the interlayer out of plane nearest neighbor interaction Vinter between differ-
ent bilayers and the next nearest neighbor interaction to the second layer of a different bilayer
VinterNNN . The latter will not be discussed and is therefore omitted in Figure 4.39a, which
shows the interactions used in this thesis, it also includes the next nearest neighbor interac-
tion inside the bilayer VcNNN , which is used in the single bi-layer model from Nagano et al. [79]
and will use to elucidate the effect of different ionic rare earth radii.
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Figure 4.39: (a) Different Fe-interactions in the hexagonal cell. (b) Dependence of abNN
db

and the cell
volume from the rare-earth ion radius R3+ (reproduced from [19], data based on [194, 226, 244–248]).

In a first approximation the strength of the Coulomb interaction is proportional to 1
r

where
r is the distance between the two Fe atoms. In a very rough model considering only the charge
differences compared to the mean valence case, the interaction is repulsive between Fe ions
of the same valence and attractive for different valences.

As stated in [19] the size change of the rare earth ion changes the bilayer thickness db as
given in Eqn. (4.40), as well as the intralayer Fe-Fe distance abNN, which is the hexagonal ahex

lattice parameter. The ratio between the two abNN
db

shows a linear connection to both the R3+

ion radius and the volume of the hexagonal unit cell, as shown in Figure 4.39b.
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4.11. GENERAL DISCUSSION

Table 4.27 gives the relevant Fe-Fe distances in YFe2O4−δ, LuFe2O4−δ and YbFe2O4−δ as
well as relevant ratios between them, here the bilayer thickness is given as:

db =

√
(cNN)2 −

(abNN)2

3
(4.40)

YFe2O4−δ abNN cNN cNNN
abNN
cNN

abNN
cNNN

cNN
cNNN

ahex
db

295 K 3.5152(4) 3.116(3) 4.6974(4) 1.128(1) 0.7483(1) 0.6633(1) 1.487(2)

210 K 3.526(23) 3.140(13) 4.716(38) 1.123(8) 0.748(7) 0.666(6) 1.475(20)

160 K 3.564(50) 3.166(27) 4.75(09) 1.126(18) 0.750(18) 0.665(13) 1.481(50)

LuFe2O4−δ abNN cNN cNNN
abNN
cNN

abNN
cNNN

cNN
cNNN

ahex
db

295 K 3.440(1) 3.158(2) 4.670(1) 1.0893(8) 0.7366(3) 0.6762(5) 1.401(1)

210 K 3.434(6) 3.158(8) 4.665(4) 1.084(3) 0.734(1) 0.677(2) 1.390(8)

YbFe2O4−δ abNN cNN cNNN
abNN
cNN

abNN
cNNN

cNN
cNNN

ahex
db

295 K 3.455(1) 3.138(4) 4.667(3) 1.101(1) 0.7403(5) 0.672(1) 1.426(1)

Table 4.27: Distances between Fe positions in YFe2O4−δ, YbFe2O4−δ [249] and LuFe2O4−δ [9] (averaged
in case of CO cells).

In the model with three interactions in [79], the nearest neighbor interaction along chex

VcNN is the strongest and the ratio between VcNN and the next nearest neighbor interaction
VcNNN mainly determines which charge order is established. At T = 0, under the assumption
the potential follows 1

r
, for cNN

cNNN
> 0.5 the propagation of the form (ττℓ) will be based on

τ = 1
2

, while for cNN

cNNN
< 0.5 it will be based on τ = 1

4
at T = 0K. Thus increasing the out

of plane nearest neighbor interaction in comparison to the out of plane next nearest neighbor
interaction inside the bilayer results in lowering of τ.

With the temperature reduction in YFe2O4−δ the ratio cNN

cNNN
does not change, considering

the large standard deviation, caused by the wide spread of Fe-Fe distances at low temperature
(cf. Tab. 4.27).

Looking at the different rare earth ions the ratio cNN

cNNN
is slightly lowered if the ions size

increases from Lu3+ over Yb3+ to Y3+. This will lead to a propagation with a lower τ as
observed in YFe2O4−δ.

Under the assumption that the potential is proportional to 1
r

, VcNNN
VabNN

in [79] corresponds
to abNN

cNNN
in Table 4.27. Figure 4.40b shows the mean-field phase diagram for RFe2O4−δ repro-

duced from [79] for abNN
cNN

= 1.2, this is larger than the experimentally found value of 1.08
for LuFe2O4−δ or 1.13 for YFe2O4−δ, although they considered a value of 1.2 applicable for
LuFe2O4−δ. In this phase diagram lowering the ratio abNN

cNNN
leads to a reduction of τ in the

propagation of the charge order (ττℓ) from 0.5 over 0.33 to 0.25. LuFe2O4−δ and YbFe2O4−δ

both show a clear preference for a charge order with τ = 1
3

, while in YFe2O4−δ at room tem-
perature diffuse lines at h = 0.333(16) (cf. Fig. 4.13b), are observed and at 210K τ is lowered
to 2

7
and at 160K again lowered to 1

4
. The ratio abNN

cNNN
is increased if one goes from LuFe2O4−δ

over YbFe2O4−δ to YFe2O4−δ (cf. Tab. 4.27), which would in the phase diagram (Fig. 4.40b)
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CHAPTER 4. YFE2O4−δ

correspond to an increase of τ. The opposite is observed in experiment, which leads to the con-
clusion that the phase diagram reproduced in 4.40b cannot describe the RFe2O4−δ-system.

A reduction of the ratio cNN
cinter

increases the intralayer interaction in contrast to the inter-
layer interaction, since cNN is the Fe-Fe distance inside a bilayer and cinter the Fe-Fe dis-
tance between different bilayers. Inside the standard deviations YFe2O4−δ, LuFe2O4−δ and
YbFe2O4−δ have the same value of cNN

cinter
= 0.50 (not given in the table) and therefore the ratio

cannot be used to determine the CO of the RFe2O4−δ system. In the model of Harris et al. [242]
and Yamada et al. [243] this interaction is necessary to determine the phase relation between
different Fe layers, but following [214] is not necessary to determine the in plane-propagation
τ.

Lowering the ratio of abNN
cNN

decreases the interaction between the two layers in the bilayer
in comparison to a single layer and shifts τ to higher values, which can be seen in the phase
diagram at T = 0K from Naka et al. [214] in Fig. 4.40c, the points for YFe2O4−δ, YbFe2O4−δ

and LuFe2O4−δ were added from Table 4.27. This is a general shift to larger τ in (ττℓ) if the
ion size decreases from Y3+ over Yb3+ to Lu3+, as it is observed in experiment. At higher
temperatures the red line is expanded to a region in which the τ = 1

3
CO is stable as can be

seen in the phase diagram in Figure 4.40b, which corresponds to the dotted line in Figure
4.40c.

Experimentally we found that at elevated temperature LuFe2O4−δ and YbFe2O4−δ lie in
this zone and show a τ = 1

3
charge order, while YFe2O4−δ with the higher abNN

cNN
is still in the

phase where τ = 1
4

is favored. The experimental values of cNN

cNNN
for all three R3+ lie clearly

above the border of cNN

cNNN
= 0.5 (red line in Fig. 4.40c), which would correspond to τ = 1

2

at T = 0K. This is an indication that the rough approximation of V ∝ 1
r

is not valid. If one
assumes screened potentials V ∝ 1

r
e−

r
λs , with λs the screening length, the points would all be

moved in the direction of the blue region both vertically and horizontally. Even if at non-zero
temperature only the red line, where three charge orders with τ = 1

4
, 1
3

and 1
2

are degenerate,
is broadened as shown in Fig. 4.40b to a region where a τ = 1

3
CO is stable, YFe2O4−δ would

have a τ = 1
3

propagation. From experiment we can therefore conclude, that a pure V = 1
r

potential cannot explain the observed charge orders.

Lowering of the abNN
db

also increases the intralayer interaction as does a lowering of cNN

cNNN
,

therefore a lowering of τ can also be expected, which is what is observed if one changes from
LuFe2O4−δ over YbFe2O4−δ to YFe2O4−δ (cf. Tab. 4.27).

In regard of the temperature changes in YFe2O4−δ, cooling from the τ = 1
3

room temper-
ature short-range correlations at the phase transition at 228.5 K τ is lowered to 2

7
, but with

this structure no full charge order is possible as long as the structure is centrosymmetric. This
is because of the mean Fe valence of 2.5, which cannot be distributed as Fe2+ and Fe3+ on
the 7 distinct sites of the 210 K CO structure, as long as the structure is centrosymmetric. A
centrosymmetric structure is very likely because the CO pattern determined by BVS is always
centrosymmetric, even if the structure is refined in the non-centrosymmetric space group P1.
On further cooling the electron hopping is reduced and a full charge order is favored, as can
be seen in the BVS at 160 K, which shows a stronger localization. Since a full localization of
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4.11. GENERAL DISCUSSION

the Fe electrons is not possible with τ = 2
7

it is further lowered to τ = 1
4

, which leads to the
fully charge ordered structure determined at 160 K.

To explore how far the charge order correlations in YFe2O4−δ reach, one has to look at
the width of superstructure peaks observed in X-ray diffraction. The resolution from the Su-
perNova diffractometer is not high enough to allow any determination of charge order cor-
relation lengths based on the peak with. Our only synchrotron measurement on YFe2O4−δ

was a resonant scattering experiment reported in my diploma thesis [20]. During this exper-
iment we made some reciprocal space scans at 120 K to determine the peak width. At 120 K
YFe2O4−δ shows the same charge order as at 160 K, so the results are representative for the
160 K phase. Figure 4.40 shows the intensity of a reciprocal space scan along (00ℓ) through the
superstructure reflection (1

2
, 1
2
, 13.5) at 120 K and the structural reflection (0, 0, 18) at 10K.

The peak width of the (1
2
, 1
2
, 13.5) superstructure reflection along (00ℓ) was corrected for the

width of the structural reflection, to take into account instrumental resolution and mosaicity.
From this a correlation length of 22 unit cells along c was determined, which corresponds to
66 Fe bilayers. This is larger than typical correlation lengths observed in LuFe2O4−δ 7 [232]
or 9 Fe bilayers [250] .
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Figure 4.40: (a) Scan through (1
2
, 1
2
, 13.5) along (0, 0, ℓ at 120 K and (0, 0, 18) at 10 K. The ℓ-position of the

120 K peak was corrected, based on the 10 K UB-matrix. Figure from own published work [40].
(b) Mean-field phase diagram for RFe2O4−δ (Reprinted with permission from A. Nagano et al., Phys.
Rev. Lett. 99, 217202 (2007) Copyright (2007) by the American Physical Society [79]) (c) Mean-field phase
diagram at T = 0 for RFe2O4−δ (Reprinted with permission from M.Naka et al., Phys. Rev. B 77, 224441
(2008) Copyright (2008) by the American Physical Society [214], points added from Table 4.27, assuming
V ∝ 1

r
, the dotted line corresponds to Figure (b).

The ℓ-coordinate in the propagation vector (1
4
1
4
1
2

) is not received from the model in [214],
but simply originates from an assumed out of phase stacking of the two layers. It is worth-
while to have a look at the different propagation vectors with τ = 1

4
, (1

4
1
4

0) is a special point Σ,
the two smallest cells compatible with this propagation vector have spacegroup P2/m with
3 Fe positions or P2/c with 2 Fe positions. The P2/m cell with 3 distinct Fe sites cannot have
a full charge order of Fe2+ and Fe3+. The P2/c cell can have a full charge order. If small dis-
tortion modes amplitudes are introduced in the structure received from ISODISTORT [171],
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CHAPTER 4. YFE2O4−δ

the received charge order pattern is not the one from Naka et al. [214], which is reproduced in
Figure 4.21b, where a Fe2+ ion in the upper layer has always a majority of Fe3+ in the triangle
surrounding it in the lower layer and vice versa. The propagation vector (1

4
1
4
1
2
) is a general

point, the two smallest compatible cells both have two k-vectors active. The solution with
spacegroup C2/m has 9 distinct Fe positions and therefore cannot have a full charge order.
The second solution with spacegroup C2/c has 6 Fe sites, but we were not able to reproduce
the pattern from Fig. 4.21b, by introduction of small distortions.

The very small frequency dependent shift of the AC susceptibility of the higher tempera-
ture transition of YFe2O4−δ is an indication for some partial magnetic order, this would be
compatible with a not fully localized CO at 200 K in conjunction with different Fe3+ and Fe2+

magnetic moments.

In the τ = 1
3

charge order the nearest neighbor coulomb interaction cancels out in a non
distorted triangular lattice [251]. The τ = 1

3
charge is rather stabilized by both thermal and

quantum fluctuations, causing the interlayer electron transfer [251]. Let us now consider a
distortion of the triangular lattice, which alters the potential along [110] different from the
one along [100]. For the non-distorted case with full frustration, the τ = 1

3
charge order is

energetically favorable [252]. If now increasing distortions are introduced the τ = 1
4
, 1
2

charge
orders, which are based on Coulomb interaction are favored [252]. The distortions of the Fe
layers in YFe2O4−δ (cf. Sec. 4.8.3 and 4.7.4) are much stronger than in LuFe2O4−δ [9, 75], this
can be well seen in the large standard deviations of the abNN-distances in Table 4.27, which
reassemble the huge spread of Fe-Fe distances in YFe2O4−δ. The stronger distorting of the
triangular lattice in YFe2O4−δ leads to a preference for the Coulomb based τ = 1

4
charge

order in contrast to the quantum τ = 1
3

in LuFe2O4−δ.

Naka et al. [253] found that a reduced cluster size in the cluster mean-field method on
a model with interaction spin-less fermions on a single bilayer, does not lead to a τ = 1

4

charge order in contrast to their calculations on static charges [79]. If one considers that the
correlation length in YFe2O4−δ is found to be much larger (66 bilayers) than in LuFe2O4−δ

(7-9 bilayers [232, 250]), this can be another explanation why LuFe2O4−δ favours the τ = 1
3

charge order.

Considering the temperature dependence of the charge order in YFe2O4−δ, Nagano et al.

[79] found by Monte Carlo calculations for VcNN
VabNN

= 1.2 and VcNNN
VabNN

= 0.6, which they assume
applicable for RFe2O4−δ, that with decreasing temperature the dominant charge-correlation
function changes from τ = 1

3
over τ = 1

2
to τ = 1

4
. Although it does not reassemble the τ = 2

7

CO we observe, it predicts a two step transition with τ = 1
3

as start- and τ = 1
4

as end-member,
as observed in YFe2O4−δ. This is also conform with the observation that the temperature of
the charge ordering transition in YFe2O4−δ (228 and 190 K) is lower than those of the τ = 1

3

CO in LuFe2O4−δ (320 K).

The magnetic structure of YFe2O4−δ at 200 K is described based on the rhombohedral
structure and a propagation vector of

(
5
14

5
14

18
14

)
hex, leading to the magnetic space group Ps1̄.

The diffraction pattern is compatible with two structures one without origin shift and the
other with a shift of

(
1̄
3
1̄
6
1
3

)
hex

. The structure with origin shift has almost full moments on the
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Fe2+ sites and reduced moments on the Fe3+ sites, which seems to be the more likely scenario,
considering the partial disorder of the Fe3+ sites in the charge order structure. In contrast to
this the 160 K spin structure is described based on the 160 K CO cell by a propagation vec-
tor of (01

2
1
2
)CO and a cell with spacegroup Ps1̄ and no origin shift in relation to the CO cell.

In hexagonal coordinates the main propagation is (3
8
3
8
45
8
)hex, although higher harmonics are

also present.
Considering the periodicity τ in (ττℓ)hex, at room temperature we observed diffuse mag-

netic scattering at τ = 0.333, at 200 K τ increases to 0.357 and τ increases further at 160 K
to τ = 0.375. This is in contrast to the charge order periodicity, which decreases with de-
creasing temperature from τ = 0.333 at room temperature over 0.286 at 200 K to τ = 0.25

at 160 K. This is also in contrast to LuFe2O4−δ where both the charge order and spin order
periodicity at room temperature and low temperature is at τ = 1

3
(a small incommensurabil-

ity of ∆τ = +0.0028 is observed), although in contrast to YFe2O4−δ charge and spin order
occur at different temperatures [75]. This might be an indication that spin charge coupling
plays a more important role in stabilizing the charge and spin structure in YFe2O4−δ than in
LuFe2O4−δ.

The strong orbital magnetic moment observed above the CO transition and in non-stoichio-
metric YFe2O4−δ excludes long-range orbital magnetic order. Since both magnetic transitions
are also structural transitions, it is possible that at low temperature the Fe3+ orbital moment
is quenched. The XMCD signal of the antiferromagnetic states is too weak to use sum rules.
In resonant X-ray diffraction at 120 K a small anisotropy is observed [20], which could be
connected to orbital order and is theoretically expected for the RFe2O4−δ system [78, 79]. The
XMCD signal at 200 K (cf. Fig. 4.12) shows a much larger signal for the Fe2+ ions than for
Fe3+, indicating a higher net magnetic moment of Fe2+ along the field direction than the
Fe3+ moment antiparallel to the field direction.

Since the magnetic structure is antiferromagnetic this cannot be directly linked to the mo-
ment sizes. One can conclude that Fe2+ is more easily polarized by a magnetic field, but it is
unclear for which spin structure (full Fe2+ moments or decreased moments) this is the case.
At 160 K the XMCD signals for both Fe2+ and Fe3+ have a similar size indicating an equal
contribution to the net magnetic moment, which is compatible with the fully ordered antifer-
romagnetic spin structure given in Figure 4.37.
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In this thesis two materials, which were proposed as potential multiferroics, were investi-
gated; i) YFe2O4−δ, which shows complex charge order and ii) Ni0.42Mn0.58TiO3, which is a
XY-spin glass with toroidal moments. Single crystals of Ni0.42Mn0.58TiO3 where grown with
the traveling floating zone method and the Ni/Mn-stoichiometry was determined by pow-
der and single crystal X-ray diffraction to be between 0.403 and 0.432. The spin glass state
can only be established for a Ni/Mn-ratio between 0.4 and 0.5 (cf. Fig. 3.1). By a frequency
shift of the AC-susceptibility it was shown that our single crystals obey the spin glass phase
below 10 K, which was further proven through a magnetic memory-test. The single crystals
show the same magnetic anisotropy as observed in [35], where the spins freeze first in the
chex-plane. A magnetoelectric effect based on toroidal moments could not be reproduced after
applying the same cooling in crossed magnetic and electric fields inside the chex-plane as re-
ported in [35]. This was most likely caused by the imperfect isolating of the sample and joule
heating caused by the application of the electric field, which warmed the sample over the spin
glass transition at 10 K. Neutron diffraction showed magnetic diffuse lines along (1, 0, ℓ) with
enhanced intensity on the positions expected for NiTiO3 and MnTiO3. Polarization analysis
confirmed that the spins lie inside the chex-plane. It would be interesting in the future to im-
prove the setup for a measurement in electric fields using the MPMS, to isolate the sample
from the contacts to avoid joule heating and possibly reproduce the results from [35]. If the
effect cannot be reproduced, one has to further explore different Ni/Mn stoichiometries since
[35] do not specify how the ratio was determined.

The main part of this thesis is dedicated to the determination of the charge order struc-
tures of YFe2O4−δ at 160 K and 200 K. At room temperature YFe2O4−δ has the rhombohedral
spacegroup R3̄m, but shows additional diffuse scattering along

(
1
3
1
3
ℓ
)

as indication for 2D
order inside the Fe-layers, which are still randomly stacked. Cooling below the first magnetic
transition at 228.5 K, 3D charge order of the Fe-ions occurs. This charge order is based on a
propagation vector of

(
2
7
2
7
3
7

)
and a reduction of the symmetry to P1̄. From single crystal X-ray

diffraction the crystallographic structure of YFe2O4−δ was solved and refined. The lost sym-
metry elements lead to 6 twin domains. Since the atomic form factors of Fe2+ and Fe3+ are too
close to be directly distinguished by X-ray diffraction, bond valence sum analysis was applied
to determine the valence of the Fe ions. The charge order at 200 K is incomplete, as one would
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expect from a distribution of the mean Fe valence of 2.5 on 7 distinct sites. While three sites
show a strong localization and are therefore Fe2+ the other four sites share the 0.5 electrons
left, with a preference for the electron to be at one site. The valence pattern is found to be
centrosymmetric even if the structure is refined in the non-centrosymmetric spacegroup P1,
which makes a centrosymmetric structure very likely. The determined structure is triclinic
in contrast to the early suggestion of a monoclinic phase [160]. In contrast to the triclinic
structure suggested by Blasco et al. [170] based on representation analysis and powder X-ray
diffraction our structure has a 7-times lower volume and can explain all reflections shown
in [170]. Mode decomposition shows that three modes belonging to the general point

(
2
7
2
7
3
7

)

and its higher harmonics are necessary to describe the charge order.

The spin order of YFe2O4−δ at 200 K is characterized by the propagation vector
(

5
14

5
14

18
14

)

in hexagonal notation. A contribution of higher harmonics could be excluded for even order
harmonics and the fifth and seventh harmonic. Two cells both with spacegroup Ps1̄ are com-
patible with this propagation, one has no origin shift the other one by

(
1̄
3
1̄
6
1
3

)
hex

. A refinement

of the neutron diffraction data based on the R3̄m structure could not distinguish between the
two structures. Since the structure with orgin shift shows almost full moments on the stronger
localized Fe2+ positions, it is considered to be more likely. In the future the refinement of the
spin structure could be improved through inclusion of reflections from different domains and
the introduction of the distortions of the 200 K CO cell in the refinement. Nevertheless we
were able for the first time to determine the spin structure of YFe2O4−δ.

Cooling through the second magnetic transition at 180 K, the propagation of the charge or-
der changes to

(
1
4
1
4
3
4

)
and the structure also obeys the triclinic centrosymmetric spacegroup

P1̄ with 6 twin domains due to the lost symmetry elements (relative to the R3̄m structure).
Again by BVS the Fe valence was determined and a full charge disproportionation into Fe2+

and Fe3+ was found, which is in accordance with the results on LuFe2O4−δ [9, 76] and con-
form with Mössbauer spectroscopy [160, 174] and is in contrast to the previously suggested
multimodal valence [193] based on XANES measurements on LuFe2O4−δ. The 160 K charge
order phase is insensitive to magnetic fields up to 24 T in contrast to LuFe2O4−δ where meta-
magnetic transitions were observed [123]. Mode decomposition shows that the CO pattern is
mainly based on the single mode of the general point

(
1
4
1
4
3
4

)
. For the low temperature phase

a correlation of the CO over 66 Fe bilayers was determined, which is much larger than the
typical lengths observed in LuFe2O4−δ; 7 [232] or 9 [250] Fe bilayers.

The lowering of τ in the propagation (ττℓ) from 1
3

observed in LuFe2O4−δ and YbFe2O4−δ

to 2
7

and on further cooling to 1
4

in YFe2O4−δ, is explained by the larger ionic radius of Y3+,
which reduces the intrabilayer Fe-Fe distances and increases the interlayer spacing inside
a bilayer. This experimental observation therefore confirms the theoretical prediction from
Naka et al. [214] (cf. Fig. 4.40c) where an enhancement of the intralayer interaction in relation
to the interlayer interaction is expected to lower τ.

At 160 K the magnetic structure is based on a propagation vector of
(
01
2
1
2

)
CO and has the

spacegroup Ps1̄ with no origin shift in regard to the 160 K charge order structure. From the
16 possible spin structures with full moments, only one matches the relative intensities ob-
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served in neutron diffraction and the spin structure with both Fe3+ spins, in the magnetic cell,
pointing in the same direction and the two Fe2+ in the other direction is realized.

In conclusion the most relevant achievement of this thesis is the determination of the two
low temperature charge order structures of YFe2O4−δ, which are both found to be triclinic.
This gives also new input for the structure determination of LuFe2O4−δ and YbFe2O4−δ. The
second important achievement is the establishment of the spin structures of YFe2O4−δ at
200 K and 160 K for the first time.
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A
Appendix

A.1 Spin operator

This explanation is a reproduction of Appendix A in Chapter 7 of [50] and can be similarly
found in [94].
The spin operator σ̂ is given as

σ̂ = (σ̂x, σ̂y, σ̂z) (A.1)

where x, y, z are the Cartesian axes and with the Pauli spin matrices

σ̂x =


0 1

1 0


 σ̂y =


0 −i

i 0


 σ̂z =


1 0

0 −1


 (A.2)

for a spin 1
2

particle the spin up |+〉 and spin down |−〉 states can be represented as:

|+〉 =


1

0


 |−〉 =


0

1


 (A.3)

leading to the following algebra:

σ̂x |+〉 = |−〉 σ̂x |−〉 = |+〉 (A.4)

σ̂y |+〉 = i |−〉 σ̂y |−〉 = −i |+〉 (A.5)

σ̂z |+〉 = |+〉 σ̂z |−〉 = − |−〉 (A.6)

A.2 Transformation matrix to magnetic cell at 200 K

The transformation matrix from the hexagonal cell to the magnetic Ps1̄ cell at 200 K received
from representation analysis is given as:

B =




−1 −2 0

2.33333 0.666667 −0.333333

3.33333 0.666667 0.666667


 and p =




0

0

0


 or




1̄
3

1̄
6

1
3


 (A.7)
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A.3 YFe2O4−δ atomic parameters with Fe2+ and Fe3+ form factors

Table A.1 gives the atomic positions and thermal displacement parameters at 160 K consider-
ing different form factors for Fe2+ and Fe3+ assigned after the results from the bond valence
sum analysis. Table A.2 is a reproduction of Table 4.7 for direct comparison.

Site x y z U11 U22 U33 U12 U13 U23

Y1 .24416(8) .36549(7) .46537(7) .0044(3) .0056(3) .0038(3) -.0009(2) .0003(2) -.0006(2)

Y2 -.25810(8) .12406(7) .48338(7) .0045(3) .0072(3) .0134(3) -.0004(2) .0016(2) .0022(2)

Fe1 .34550(12) .02464(11) .13478(9) .0051(4) .0066(4) .0050(4) .000 .0009(3) -.0009(3)

Fe2 -.11926(13) .32993(13) .14233(9) .0085(4) .0094(5) .0044(4) .0026(3) .000 -.0008(3)

Fe3 .60415(14) .50141(12) .84774(9) .0094(4) .0111(5) .0041(4) -.0032(3) .0009(3) -.0006(3)

Fe4 .14568(12) .21070(11) .84667(9) .0051(4) .0071(4) .0059(4) -.0007(3) .0012(3) -.0006(3)

O1 .5830(6) .3923(5) .6171(4) .0069(18) .0061(18) .0044(19) . 000 -.0017(14) .0023(15)

O2 .3900(6) .0701(5) .3706(4) .0061(18) .0049(18) .0062(18) .000 .000 .000

O3 .0969(6) .1651(5) .6171(4) .0043(18) .0061(18) .0090(19) .000 .0029(15) .000

O4 .3419(6) .0201(5) .8837(5) .0060(19) .012(2) .012(2) .0031(16) .000 .000

O5 -.1223(6) .3570(5) .3753(4) .0052(18) .0070(18) .0055(18) .000 .0020(14) .000

O6 -.1419(6) .1866(5) .9077(4) .0096(19) .0102(19) .0050(19) -.0019(16) .0021(15) .000

O7 .2124(6) .2721(5) .1631(4) .0069(18) .0080(18) .0074(19) .000 .000 .000

O8 .2971(6) .4531(5) .9078(4) .0081(19) .0095(19) .0034(19) .000 .000 .0022(15)

Table A.1: Atomic positions and thermal displacement parameters at 160 K using different atomic form
factors for Fe2+ and Fe3+.

Site x y z U11 U22 U33 U12 U13 U23

Y1 .24420(8) .36552(7) .46534(7) .0041(3) .0051(3) .0034(3) -.0009(2) .00023(20) -.0007(2)

Y2 -.25807(8) .12408(7) .48336(7) .0042(3) .0064(3) .0131(3) -.0007(2) .0016(2) .0022(2)

Fe1 .34540(12) .02463(11) .13480(9) .0049(4) .0064(4) .0043(4) .000 .0007(3) -.0012(3)

Fe2 -.11930(13) .32994(13) .14234(9) .0081(4) .0089(4) .0037(4) .0028(3) .000 -.0011(3)

Fe3 .60414(14) .50140(12) .84774(9) .0088(4) .0105(4) .0035(4) -.0036(3) .0008(3) -.0007(3)

Fe4 .14569(12) .21055(11) .84667(9) .0050(4) .0066(4) .0053(4) -.0006(3) .0011(3) -.0008(3)

O1 .5829(6) .3919(5) .6171(4) .0059(18) .0051(18) .0046(19) .000 -.0015(14) .0028(15)

O2 .3900(6) .0696(5) .3708(4) .0063(18) .0050(18) .0046(17) .000 .000 .000

O3 .0966(6) .1647(5) .6168(4) .0045(18) .0074(18) .0069(19) .000 .0021(14) .000

O4 .3419(6) .0197(5) .8837(4) .0049(18) .012(2) .013(2) .0026(16) .000 .0023(17)

O5 -.1225(6) .3566(5) .3753(4) .0049(18) .0053(18) .0051(18) .000 .0024(14) .000

O6 -.1419(6) .1861(5) .9076(4) .0081(19) .0110(19) .0047(19) -.0020(16) .0016(15) .000

O7 .2125(6) .2723(5) .1628(4) .0071(18) .0065(18) .0070(19) .000 .000 .000

O8 .2970(6) .4530(5) .9080(4) .0072(19) .0094(19) .0030(19) -.0022(15) .000 .0024(15)

Table A.2: Atomic positions and thermal displacement parameters of the refined 160 K structure using
the average Fe form factor.
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A.4 Refinement in P1 at 160 K

In the following the refined structure parameters are given for a refinement in the non-centro-
symmetric spacegroup P1.

a (Å) b (Å) c (Å) α (◦) β(◦) γ (◦)

6.0928(4) 7.1500(5) 8.4611(6) 103.285(6) 96.372(6) 90.207(6)

Table A.3: Lattice parameters of the P1̄ cell at 160 K

Parameter this work

Spacegroup P1

Rint/Rσ (%) 4.2/3.9

Robs/wRobs (%) 3.9/4.75

Rall/ wRall (%) 4.71/5.28

GOFobs/ GOFall 1.83/1.87

unique Reflections obs / all 2235 / 1919

parameters 258

diff. peak and hole (e/Å 3) 1.89 / -1.22

ρcalc (g/cm3) 4.931

Twin population (%)

1 0.79(2)

2 0.048(10)

3 0.064(12)

4 0.043(7)

5 0.005(8)

6 0.051(7)

Table A.4: Refinement parameters at 160 K in P1
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Site T (K) BVS (2+) BVS (3+)

Fe11 160 2.86(7) 3.06(7)

Fe12 160 2.64(6) 2.82(7)

Fe21 160 2.06(5) 2.20(6)

Fe22 160 2.02(5) 2.17(5)

Fe31 160 2.06(5) 2.20(6)

Fe32 160 2.03(5) 2.17(5)

Fe41 160 2.84(8) 3.04(8)

Fe42 160 2.61(7) 2.79(7)

Table A.5: Fe Bond valence sum calculations for the P1 structure, the standard deviation is propagated
from the standard deviation of the mean of d0i as given in Table 2.1 and from the uncertainties of the
bond lengths.
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Site x y z U11 U22 U33 U12 U13 U23

Y11 0.2444(4) 0.3662(4) 0.4679(4) 0.0052(15) 0.0079(16) 0.015(2) -0.0011(12) 0.0034(13) 0.0038(15)

Y12 -0.2443(4) -0.3656(3) -0.4656(3) 0.0046(14) 0.0023(16) 0.0038(15) 0.0005(12) 0.0001(11) -0.0009(13)

Y21 -0.2576(4) 0.1237(4) 0.4829(4) 0.0057(16) 0.0061(16) 0.0147(17) -0.0003(12) 0.0025(12) 0.0031(14)

Y22 0.2577(5) -0.1247(4) -0.4854(4) 0.0046(14) 0.0052(15) 0.0184(16) 0.0000(11) 0.0034(11) 0.0030(13)

Fe11 0.3436(7) 0.0238(6) 0.1340(5) 0.010(2) 0.008(3) 0.004(2) 0.0037(18) -0.0009(15) 0.0005(17)

Fe12 -0.3467(6) -0.0258(6) -0.1367(5) 0.003(2) 0.006(3) 0.003(2) -0.0047(17) 0.0014(14) -0.0015(18)

Fe21 -0.1202(7) 0.3295(7) 0.1428(6) 0.013(2) 0.007(2) 0.012(2) 0.0010(18) 0.0008(17) 0.000(2)

Fe22 0.1214(7) -0.3260(7) -0.1421(5) 0.011(2) 0.022(3) -0.002(2) 0.0125(19) 0.0004(15) 0.0004(18)

Fe31 0.6073(8) 0.5001(7) 0.8485(6) 0.018(3) 0.018(3) 0.000(2) -0.008(2) 0.0030(18) -0.004(2)

Fe32 -0.6053(7) -0.5004(7) -0.8477(5) 0.011(2) 0.009(2) 0.007(2) -0.0045(19) 0.0008(16) 0.0013(17)

Fe41 0.1451(7) 0.2111(6) 0.8465(5) 0.014(2) 0.013(3) -0.0006(18) -0.0050(19) 0.0018(15) 0.0006(17)

Fe42 -0.1472(7) -0.2109(6) -0.8476(5) 0.0022(19) 0.001(3) 0.011(2) 0.0035(17) 0.0010(15) -0.0007(18)

O11 0.589(3) 0.395(3) 0.621(2) 0.000(7) 0.003(9) 0.011(9) -0.003(6) 0.012(6) 0.003(7)

O12 -0.580(3) -0.390(3) -0.614(2) 0.009(8) 0.008(10) 0.006(10) 0.006(7) -0.014(6) 0.008(8)

O21 0.389(3) 0.073(3) 0.369(2) 0.000(8) 0.001(8) 0.022(9) 0.009(6) -0.003(6) 0.009(7)

O22 -0.393(3) -0.071(3) -0.3724(19) 0.006(9) 0.017(11) -0.012(6) -0.006(8) 0.000(5) -0.004(6)

O31 0.098(3) 0.156(3) 0.620(2) -0.003(8) 0.016(10) 0.009(10) 0.010(7) 0.008(6) 0.005(7)

O32 -0.094(3) -0.170(3) -0.615(2) 0.006(8) -0.006(7) 0.007(9) -0.006(6) -0.004(6) 0.004(6)

O41 0.334(4) 0.018(4) 0.888(3) 0.027(12) 0.045(15) 0.032(14) 0.029(11) 0.006(10) 0.009(11)

O42 -0.344(3) -0.017(3) -0.879(2) -0.001(8) 0.003(8) 0.001(8) -0.005(6) -0.001(6) 0.002(6)

O51 -0.118(3) 0.357(3) 0.380(2) -0.001(8) -0.003(9) 0.022(10) 0.003(6) 0.009(6) 0.000(7)

O52 0.125(3) -0.355(3) -0.369(2) 0.014(9) 0.011(10) -0.007(8) -0.009(7) -0.003(6) 0.000(7)

O61 -0.140(3) 0.187(3) 0.910(2) -0.005(8) 0.032(12) 0.012(11) -0.014(8) -0.008(7) 0.005(9)

O62 0.146(3) -0.185(3) -0.905(2) 0.038(12) -0.002(9) -0.001(9) 0.009(8) 0.012(8) -0.004(7)

O71 0.212(3) 0.275(2) 0.159(2) 0.007(10) -0.004(8) 0.023(10) -0.009(7) 0.001(7) -0.019(7)

O72 -0.214(3) -0.270(3) -0.163(2) 0.007(10) 0.026(12) 0.016(10) 0.009(8) 0.006(7) 0.021(9)

O81 0.298(3) 0.449(3) 0.908(2) 0.008(9) 0.007(10) 0.000(9) -0.007(7) 0.005(7) -0.003(7)

O82 -0.295(3) -0.458(3) -0.907(2) 0.021(10) 0.011(10) 0.007(9) 0.009(8) 0.002(7) 0.007(7)

Table A.6: Atomic positions and thermal displacement parameters of the refined 160 K structure refined
in P1.
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A.5 Refinement in P1 at 200 K

In the following the refined structure parameters are given for a refinement in the non-centro-
symmetric spacegroup P1.

a (Å) b (Å) c (Å) α (◦) β(◦) γ (◦)

6.0814(3) 9.8419(4) 11.0698(6) 105.407(4) 100.456(4) 95.814(4)

Table A.7: Lattice parameters of the P1̄ cell at 200 K

Parameter this work

Spacegroup P1

Rint/Rσ (%) 12.1/15.3

Robs/wRobs (%) 5.6/9.4

Rall/ wRall (%) 24.2/15.9

GOFobs/ GOFall 1.29/1.15

unique Reflections obs / all 35244 / 10038

parameters 456

diff. peak and hole (e/Å 3) 14 / -17

ρcalc (g/cm3) 4.9584

Twin population (%)

1 0.280(10)

2 0

3 0.224(6)

4 0.275(5)

5 0.025(5)

6 0.195(5)

Table A.8: Refinement parameters at 200 K in P1, The large peaks which are still present are very close to
the origin and are an indication for a problem with the split Y4 position and the assumption of the same
ADP for both Y41 and Y42. The next largest peak is much smaller.
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Site T (K) BVS (2+) BVS (3+) BVS (2.5+)

Fe11 200 2.64(5) 2.83(5) 2.74(5)

Fe12 200 2.69(5) 2.88(6) 2.79(5)

Fe21 200 2.57(5) 2.75(5) 2.66(5)

Fe22 200 2.45(5) 2.62(6) 2.54(5)

Fe31 200 2.71(5) 2.89(6) 2.80(5)

Fe32 200 2.61(5) 2.79(5) 2.70(5)

Fe41 200 2.33(5) 2.49(5) 2.41(5)

Fe42 200 2.47(5) 2.64(5) 2.56(5)

Fe51 200 2.04(4) 2.18(4) 2.11(4)

Fe52 200 1.96(4) 2.10(4) 2.03(4)

Fe61 200 1.96(5) 2.10(5) 2.03(5)

Fe62 200 1.93(4) 2.06(4) 2.05(4)

Fe71 200 1.85(4) 1.98(4) 1.915(4)

Fe72 200 1.95(4) 2.08(4) 2.02(4)

Table A.9: Bond valence sum of the Fe-sites at 200, K for the P1 structure

Site x y z U11 U22 U33 U12 U13 U23

Y12 -0.7205(7) -0.4292(7) -0.4272(6) 0.0037(6) 0.0252(11) 0.0077(6) 0.0015(6) 0.0005(4) -0.0058(6)

Y21 0.1386(7) 0.3016(7) 0.2718(6) 0.0056(5) 0.0073(6) 0.0084(6) -0.0002(5) 0.0016(5) 0.0006(5)

Y22 -0.1393(7) -0.2970(7) -0.2748(6) 0.0032(5) 0.0111(7) 0.0091(7) -0.0005(5) 0.0022(5) -0.0012(6)

Y31 0.5679(7) 0.1210(6) 0.1583(6) 0.0055(5) 0.0061(6) 0.0069(6) 0.0016(4) 0.0017(4) 0.0034(5)

Y32 -0.5714(7) -0.1216(7) -0.1581(6) 0.0033(5) 0.0077(7) 0.0066(6) -0.0007(4) 0.0010(4) 0.0015(5)

Y41 -0.0027(8) 0.0205(8) -0.0135(7) 0.0047(10) 0.0134(16) 0.0112(14) 0.0044(10) 0.0036(9) 0.0036(11)

Y42 0.0016(8) -0.0242(7) 0.0164(6) 0.0030(9) 0.0072(12) 0.0070(11) -0.0021(8) -0.0010(8) -0.0029(10)

Fe11 0.6760(8) -0.2088(7) 0.1430(6) 0.0059(7) 0.0076(10) 0.0097(9) 0.0025(7) -0.0003(7) 0.0002(8)

Fe12 -0.6752(8) 0.2084(7) -0.1421(6) 0.0155(10) 0.0110(11) 0.0070(9) 0.0038(8) -0.0008(8) 0.0018(8)

Fe21 0.1150(7) 0.6558(7) 0.0082(6) 0.0036(7) 0.0190(13) 0.0037(7) -0.0012(7) 0.0010(6) -0.0053(7)

Fe22 -0.1185(8) -0.6533(7) -0.0088(6) 0.0119(10) 0.0248(15) 0.0144(11) 0.0019(9) 0.0039(8) 0.0090(10)

Fe31 0.3971(8) 0.2329(7) 0.5824(6) 0.0083(8) 0.0118(11) 0.0123(10) -0.0019(8) -0.0018(7) 0.0041(9)

Fe32 -0.4000(8) -0.2344(7) -0.5860(6) 0.0093(8) 0.0059(9) 0.0066(8) 0.0000(7) 0.0029(6) -0.0014(7)

Fe41 0.9669(8) 0.3632(7) 0.7315(6) 0.0117(9) 0.0113(12) 0.0132(10) 0.0014(8) 0.0034(8) 0.0044(9)

Fe42 -0.9658(8) -0.3622(7) -0.7299(6) 0.0047(7) 0.0069(10) 0.0106(9) 0.0005(6) -0.0005(6) -0.0031(8)

Fe51 0.8486(8) 0.0610(7) 0.4137(6) 0.0124(8) 0.0117(10) 0.0112(9) -0.0067(7) -0.0063(6) 0.0066(8)

Fe52 -0.8386(9) -0.0642(7) -0.4187(6) 0.0423(16) 0.0184(14) 0.0227(14) -0.0176(11) -0.0184(11) 0.0180(12)

Fe61 0.2691(9) -0.0472(7) 0.3110(7) 0.0375(17) 0.0167(14) 0.045(2) 0.0188(12) 0.0377(16) 0.0194(14)

Fe62 -0.2635(9) 0.0503(7) -0.3121(7) 0.048(2) 0.0196(15) 0.043(2) 0.0190(14) 0.0372(18) 0.0240(15)

Fe71 0.4744(8) 0.4879(7) 0.1357(6) 0.0241(12) 0.0114(10) 0.0141(10) -0.0031(8) -0.0047(8) 0.0100(9)

Fe72 -0.4668(8) -0.4828(7) -0.1310(6) 0.0317(14) 0.0123(11) 0.0155(10) 0.0108(10) 0.0155(10) 0.0085(9)

Table A.10: Atomic positions and thermal displacement parameters of the refined 200 K structure refined
in P1.
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Site x y z U11 U22 U33 U12 U13 U23

O11 0.4883(19) 0.3483(14) 0.2300(13) 0.004(3) 0.011(4) 0.019(5) 0.005(3) 0.004(3) 0.011(4)

O12 -0.4778(18) -0.3507(13) -0.2308(11) 0.007(3) 0.005(4) 0.005(3) -0.001(2) 0.002(2) -0.001(3)

O21 0.8368(18) 0.2200(14) 0.3435(13) 0.004(3) 0.008(4) 0.014(4) 0.003(3) 0.005(3) 0.002(3)

O22 -0.8322(19) -0.2205(14) -0.3473(12) 0.009(3) 0.009(4) 0.006(4) -0.002(3) -0.002(3) 0.004(3)

O31 -0.127(2) 0.2079(16) 0.0835(13) 0.013(4) 0.022(5) 0.016(4) -0.001(4) 0.003(3) 0.015(4)

O32 0.1226(18) -0.2067(14) -0.0901(11) 0.005(3) 0.012(4) 0.001(3) -0.007(3) -0.001(2) -0.005(2)

O41 0.225(2) 0.0753(16) 0.2030(15) 0.010(4) 0.012(5) 0.026(6) 0.002(3) 0.011(4) 0.000(4)

O42 -0.220(2) -0.0756(14) -0.2012(13) 0.008(3) 0.006(4) 0.017(5) -0.002(3) 0.007(3) 0.001(4)

O51 0.6645(19) -0.0856(13) 0.0360(11) 0.007(3) 0.005(3) 0.007(3) 0.001(3) -0.006(2) -0.009(2)

O52 -0.665(2) 0.0810(14) -0.0354(12) 0.019(4) 0.014(4) 0.008(3) 0.005(3) -0.001(3) 0.010(3)

O61 0.382(2) 0.3539(15) 0.4766(13) 0.008(3) 0.013(4) 0.013(4) -0.006(3) -0.002(3) 0.004(4)

O62 -0.3848(18) -0.3588(14) -0.4778(11) 0.008(3) 0.013(4) 0.007(4) 0.009(3) 0.003(3) 0.007(3)

O71 0.4336(17) 0.6360(13) 0.0358(10) 0.005(3) 0.012(4) 0.003(3) 0.001(3) -0.001(2) 0.003(3)

O72 -0.444(2) -0.6390(14) -0.0407(13) 0.022(5) 0.005(4) 0.020(5) -0.004(3) 0.005(4) 0.006(4)

O81 0.900(2) 0.5135(16) 0.8791(18) 0.014(5) 0.006(4) 0.040(8) 0.001(3) 0.007(5) -0.003(5)

O82 -0.899(3) -0.5081(18) -0.8728(18) 0.014(5) 0.019(6) 0.039(8) -0.004(4) 0.007(5) 0.006(6)

O91 0.012(2) 0.2329(17) 0.8567(17) 0.018(5) 0.018(6) 0.040(8) -0.003(4) 0.016(5) 0.014(6)

O92 -0.013(2) -0.2360(15) -0.8587(15) 0.021(5) 0.012(5) 0.028(6) 0.008(4) 0.022(5) 0.005(4)

O101 0.295(2) 0.3424(16) 0.7258(14) 0.016(4) 0.013(5) 0.013(5) -0.003(4) 0.003(4) 0.005(4)

O102 -0.288(2) -0.3395(15) -0.7270(12) 0.009(3) 0.011(5) 0.009(4) 0.001(3) 0.002(3) 0.003(3)

O111 0.594(2) -0.0635(13) 0.2749(12) 0.012(4) 0.003(3) 0.008(3) -0.001(3) -0.002(3) -0.005(3)

O112 -0.591(2) 0.0685(16) -0.2744(13) 0.013(4) 0.024(6) 0.013(4) 0.003(4) 0.002(3) 0.008(4)

O121 0.960(2) 0.4921(15) 0.6243(13) 0.014(4) 0.013(5) 0.016(4) 0.006(3) 0.007(3) 0.010(4)

O122 -0.9562(19) -0.4915(14) -0.6196(12) 0.008(4) 0.006(4) 0.009(3) -0.003(3) -0.002(3) 0.003(3)

O131 0.1911(19) 0.0692(14) 0.4743(12) 0.014(4) 0.006(4) 0.008(4) -0.002(3) 0.000(3) 0.003(3)

O132 -0.1963(19) -0.0702(14) -0.4779(12) 0.010(4) 0.008(4) 0.009(4) -0.002(3) -0.006(3) 0.003(3)

O141 0.709(2) 0.2215(15) 0.6208(14) 0.013(4) 0.008(5) 0.026(6) -0.004(3) -0.006(4) 0.007(4)

O142 -0.713(2) -0.2226(16) -0.6206(13) 0.015(5) 0.016(5) 0.011(4) 0.000(4) -0.004(3) 0.008(4)

Table A.11: Atomic positions and thermal displacement parameters of the refined 200 K structure refined
in P1.
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