001     837113
005     20210129231203.0
024 7 _ |a 10.1063/1.4991574
|2 doi
024 7 _ |a 0031-9171
|2 ISSN
024 7 _ |a 1070-6631
|2 ISSN
024 7 _ |a 1089-7666
|2 ISSN
024 7 _ |a 2128/15241
|2 Handle
024 7 _ |a WOS:000409227500046
|2 WOS
037 _ _ |a FZJ-2017-06102
082 _ _ |a 530
100 1 _ |a Gauding, Michael
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Dissipation element analysis of a turbulent non-premixed jet flame
260 _ _ |a [S.l.]
|c 2017
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1504532861_19578
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The objective of the present work is to examine the interaction between turbulent mixing and chemistry by employing the method of dissipation elements in a non-premixed turbulent jet flame. The method of dissipation elements [L. Wang and N. Peters, J. Fluid Mech. 554, 457–475 (2006)] is used to perform a space-filling decomposition of the turbulent jet flow into different regimes conditioned on their location with respect to the reaction zone. Based on the non-local structure of dissipation elements, this decomposition allows us to discern whether points away from stoichiometry are connected through a diffusive layer with the reaction zone. In a next step, a regime based statistical analysis of dissipation elements is carried out by means of data obtained from a direct numerical simulation. Turbulent mixing and chemical reactions depend strongly on the mixture fraction gradient. From a budget between strain and dissipation, the mechanism for the formation and destruction of mean gradients along dissipation elements is inspected. This budget reveals that large gradients in the mixture fraction field occur at a small but finite length scale. Finally, the inner structure of dissipation elements is examined by computing statistics along gradient trajectories of the mixture fraction field. Thereby, the method of dissipation elements provides a statistical characterization of flamelets and novel insight into the interaction between chemistry and turbulence.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Symmetry Analysis and DNS of a Turbulent Plane Jet (hfg02_20161101)
|0 G:(DE-Juel1)hfg02_20161101
|c hfg02_20161101
|f Symmetry Analysis and DNS of a Turbulent Plane Jet
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dietzsch, Felix
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Göbbert, Jens Henrik
|0 P:(DE-Juel1)168541
|b 2
700 1 _ |a Thévenin, Dominique
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Abdelsamie, Abouelmagd
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hasse, Christian
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1063/1.4991574
|g Vol. 29, no. 8, p. 085103 -
|0 PERI:(DE-600)1472743-2
|n 8
|p 085103 -
|t Physics of fluids
|v 29
|y 2017
|x 1089-7666
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/837113/files/Dissipation%20Element%20Analysis%20of%20a%20Turbulent%20Non-Premixed%20Jet%20Flame.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/837113/files/Dissipation%20Element%20Analysis%20of%20a%20Turbulent%20Non-Premixed%20Jet%20Flame.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/837113/files/Dissipation%20Element%20Analysis%20of%20a%20Turbulent%20Non-Premixed%20Jet%20Flame.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/837113/files/Dissipation%20Element%20Analysis%20of%20a%20Turbulent%20Non-Premixed%20Jet%20Flame.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/837113/files/Dissipation%20Element%20Analysis%20of%20a%20Turbulent%20Non-Premixed%20Jet%20Flame.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/837113/files/Dissipation%20Element%20Analysis%20of%20a%20Turbulent%20Non-Premixed%20Jet%20Flame.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:837113
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)168541
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS FLUIDS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21