000837122 001__ 837122
000837122 005__ 20240619091227.0
000837122 0247_ $$2doi$$a10.1088/1361-6528/aa57b5
000837122 0247_ $$2ISSN$$a0957-4484
000837122 0247_ $$2ISSN$$a1361-6528
000837122 0247_ $$2WOS$$aWOS:000401020700002
000837122 037__ $$aFZJ-2017-06111
000837122 041__ $$aEnglish
000837122 082__ $$a530
000837122 1001_ $$0P:(DE-Juel1)161523$$aWeidlich, Sabrina$$b0$$ufzj
000837122 245__ $$aMEAs and 3D nanoelectrodes: electrodeposition as tool for a precisely controlled nanofabrication
000837122 260__ $$aBristol$$bIOP Publ.$$c2017
000837122 3367_ $$2DRIVER$$aarticle
000837122 3367_ $$2DataCite$$aOutput Types/Journal article
000837122 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1503908480_18688
000837122 3367_ $$2BibTeX$$aARTICLE
000837122 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837122 3367_ $$00$$2EndNote$$aJournal Article
000837122 520__ $$aMicroelectrode arrays (MEAs) are gaining increasing importance for the investigation of signaling processes between electrogenic cells. However, efficient cell–chip coupling for robust and long-term electrophysiological recording and stimulation still remains a challenge. A possible approach for the improvement of the cell–electrode contact is the utilization of three-dimensional structures. In recent years, various 3D electrode geometries have been developed, but we are still lacking a fabrication approach that enables the formation of different 3D structures on a single chip in a controlled manner. This, however, is needed to enable a direct and reliable comparison of the recording capabilities of the different structures. Here, we present a method for a precisely controlled deposition of nanoelectrodes, enabling the fabrication of multiple, well-defined types of structures on our 64 electrode MEAs towards a rapid-prototyping approach to 3D electrodes.
000837122 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000837122 588__ $$aDataset connected to CrossRef
000837122 7001_ $$0P:(DE-Juel1)156197$$aKrause, Kay$$b1
000837122 7001_ $$0P:(DE-Juel1)140152$$aSchnitker, Jan$$b2$$ufzj
000837122 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b3$$ufzj
000837122 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b4$$eCorresponding author$$ufzj
000837122 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/1361-6528/aa57b5$$gVol. 28, no. 9, p. 095302 -$$n9$$p095302 -$$tNanotechnology$$v28$$x1361-6528$$y2017
000837122 8564_ $$uhttps://juser.fz-juelich.de/record/837122/files/Weidlich_2017_Nanotechnology_28_095302.pdf$$yRestricted
000837122 8564_ $$uhttps://juser.fz-juelich.de/record/837122/files/Weidlich_2017_Nanotechnology_28_095302.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837122 909CO $$ooai:juser.fz-juelich.de:837122$$pVDB
000837122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161523$$aForschungszentrum Jülich$$b0$$kFZJ
000837122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156197$$aForschungszentrum Jülich$$b1$$kFZJ
000837122 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)156197$$a ICS-8$$b1
000837122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140152$$aForschungszentrum Jülich$$b2$$kFZJ
000837122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128745$$aForschungszentrum Jülich$$b3$$kFZJ
000837122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b4$$kFZJ
000837122 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000837122 9141_ $$y2017
000837122 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837122 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000837122 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2015
000837122 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837122 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837122 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837122 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837122 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837122 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837122 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837122 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837122 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837122 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837122 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000837122 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837122 920__ $$lyes
000837122 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000837122 980__ $$ajournal
000837122 980__ $$aVDB
000837122 980__ $$aI:(DE-Juel1)ICS-8-20110106
000837122 980__ $$aUNRESTRICTED
000837122 981__ $$aI:(DE-Juel1)IBI-3-20200312