Hauptseite > Publikationsdatenbank > MEAs and 3D nanoelectrodes: electrodeposition as tool for a precisely controlled nanofabrication > print |
001 | 837122 | ||
005 | 20240619091227.0 | ||
024 | 7 | _ | |a 10.1088/1361-6528/aa57b5 |2 doi |
024 | 7 | _ | |a 0957-4484 |2 ISSN |
024 | 7 | _ | |a 1361-6528 |2 ISSN |
024 | 7 | _ | |a WOS:000401020700002 |2 WOS |
037 | _ | _ | |a FZJ-2017-06111 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Weidlich, Sabrina |0 P:(DE-Juel1)161523 |b 0 |u fzj |
245 | _ | _ | |a MEAs and 3D nanoelectrodes: electrodeposition as tool for a precisely controlled nanofabrication |
260 | _ | _ | |a Bristol |c 2017 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1503908480_18688 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Microelectrode arrays (MEAs) are gaining increasing importance for the investigation of signaling processes between electrogenic cells. However, efficient cell–chip coupling for robust and long-term electrophysiological recording and stimulation still remains a challenge. A possible approach for the improvement of the cell–electrode contact is the utilization of three-dimensional structures. In recent years, various 3D electrode geometries have been developed, but we are still lacking a fabrication approach that enables the formation of different 3D structures on a single chip in a controlled manner. This, however, is needed to enable a direct and reliable comparison of the recording capabilities of the different structures. Here, we present a method for a precisely controlled deposition of nanoelectrodes, enabling the fabrication of multiple, well-defined types of structures on our 64 electrode MEAs towards a rapid-prototyping approach to 3D electrodes. |
536 | _ | _ | |a 552 - Engineering Cell Function (POF3-552) |0 G:(DE-HGF)POF3-552 |c POF3-552 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Krause, Kay |0 P:(DE-Juel1)156197 |b 1 |
700 | 1 | _ | |a Schnitker, Jan |0 P:(DE-Juel1)140152 |b 2 |u fzj |
700 | 1 | _ | |a Wolfrum, Bernhard |0 P:(DE-Juel1)128745 |b 3 |u fzj |
700 | 1 | _ | |a Offenhäusser, Andreas |0 P:(DE-Juel1)128713 |b 4 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1088/1361-6528/aa57b5 |g Vol. 28, no. 9, p. 095302 - |0 PERI:(DE-600)1362365-5 |n 9 |p 095302 - |t Nanotechnology |v 28 |y 2017 |x 1361-6528 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/837122/files/Weidlich_2017_Nanotechnology_28_095302.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/837122/files/Weidlich_2017_Nanotechnology_28_095302.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:837122 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)161523 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)156197 |
910 | 1 | _ | |a ICS-8 |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)156197 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)140152 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)128745 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)128713 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-552 |2 G:(DE-HGF)POF3-500 |v Engineering Cell Function |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOTECHNOLOGY : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-8-20110106 |k ICS-8 |l Bioelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ICS-8-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-3-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|