000837176 001__ 837176
000837176 005__ 20220930130131.0
000837176 0247_ $$2doi$$a10.1002/pssr.201700222
000837176 0247_ $$2ISSN$$a1862-6254
000837176 0247_ $$2ISSN$$a1862-6270
000837176 0247_ $$2WOS$$aWOS:000410132200009
000837176 0247_ $$2altmetric$$aaltmetric:26496433
000837176 037__ $$aFZJ-2017-06155
000837176 041__ $$aEnglish
000837176 082__ $$a530
000837176 1001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b0$$eCorresponding author
000837176 245__ $$aStability and Decomposition of Perovskite-Type Titanates upon High-Temperature Reduction
000837176 260__ $$aWeinheim$$bWiley-VCH$$c2017
000837176 3367_ $$2DRIVER$$aarticle
000837176 3367_ $$2DataCite$$aOutput Types/Journal article
000837176 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505739300_31850
000837176 3367_ $$2BibTeX$$aARTICLE
000837176 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837176 3367_ $$00$$2EndNote$$aJournal Article
000837176 520__ $$aControlling the properties of the surface region of ternary perovskite-type titanates is of high importance in the field of future energy and information technologies. A common method to modify the surface of perovskite oxides such as SrTiO3 is annealing under vacuum conditions. Here we show that the local oxygen partial pressure near to the surface plays a crucial role during annealing. While the oxide is found to be macroscopically stable during high-temperature reduction under standard vacuum conditions and only segregation effects on the nanoscale seem to take place, surface decomposition due to incongruent sublimation occurs as soon as an oxygen getter such as Ti is positioned close to the oxide. In consequence, owing to the high volatility of Sr-containing species at very low oxygen pressures, a Sr-depleted TiOx surface layer is formed. This effect might reveal an alternative possibility to tailor composition and structure of perovskite-type titanate surfaces.
000837176 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000837176 588__ $$aDataset connected to CrossRef
000837176 7001_ $$0P:(DE-Juel1)130836$$aMeuffels, Paul$$b1
000837176 7001_ $$0P:(DE-Juel1)125382$$aSpeier, Wolfgang$$b2
000837176 7001_ $$0P:(DE-HGF)0$$aErmrich, Martin$$b3
000837176 7001_ $$0P:(DE-HGF)0$$aWrana, Dominik$$b4
000837176 7001_ $$0P:(DE-HGF)0$$aKrok, Franciszek$$b5
000837176 7001_ $$0P:(DE-HGF)0$$aSzot, Kristof$$b6
000837176 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.201700222$$gp. 1700222 -$$n9$$p1700222 -$$tPhysica status solidi / Rapid research letters$$v11$$x1862-6254$$y2017
000837176 8564_ $$uhttps://juser.fz-juelich.de/record/837176/files/Rodenb-cher_et_al-2017-physica_status_solidi_%28RRL%29_-_Rapid_Research_Letters.pdf$$yRestricted
000837176 8564_ $$uhttps://juser.fz-juelich.de/record/837176/files/Rodenb-cher_et_al-2017-physica_status_solidi_%28RRL%29_-_Rapid_Research_Letters.gif?subformat=icon$$xicon$$yRestricted
000837176 8564_ $$uhttps://juser.fz-juelich.de/record/837176/files/Rodenb-cher_et_al-2017-physica_status_solidi_%28RRL%29_-_Rapid_Research_Letters.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837176 8564_ $$uhttps://juser.fz-juelich.de/record/837176/files/Rodenb-cher_et_al-2017-physica_status_solidi_%28RRL%29_-_Rapid_Research_Letters.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837176 8564_ $$uhttps://juser.fz-juelich.de/record/837176/files/Rodenb-cher_et_al-2017-physica_status_solidi_%28RRL%29_-_Rapid_Research_Letters.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837176 8564_ $$uhttps://juser.fz-juelich.de/record/837176/files/Rodenb-cher_et_al-2017-physica_status_solidi_%28RRL%29_-_Rapid_Research_Letters.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837176 8767_ $$87047967$$92017-11-02$$d2017-11-06$$eCover$$jZahlung erfolgt$$pms201700222
000837176 8767_ $$87047970$$92017-11-02$$d2017-11-06$$eOther$$jZahlung erfolgt$$pms201700222$$z1 DIN A2 Poster
000837176 909CO $$ooai:juser.fz-juelich.de:837176$$pOpenAPC$$pVDB$$popenCost
000837176 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b0$$kFZJ
000837176 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130836$$aForschungszentrum Jülich$$b1$$kFZJ
000837176 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125382$$aForschungszentrum Jülich$$b2$$kFZJ
000837176 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)125382$$aRWTH Aachen$$b2$$kRWTH
000837176 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000837176 9141_ $$y2017
000837176 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837176 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837176 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI-R : 2015
000837176 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837176 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837176 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837176 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837176 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837176 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837176 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000837176 980__ $$ajournal
000837176 980__ $$aVDB
000837176 980__ $$aI:(DE-Juel1)PGI-7-20110106
000837176 980__ $$aAPC
000837176 980__ $$aUNRESTRICTED
000837176 9801_ $$aAPC