000837179 001__ 837179
000837179 005__ 20240709081931.0
000837179 0247_ $$2doi$$a10.1002/ente.201600459
000837179 0247_ $$2ISSN$$a2194-4288
000837179 0247_ $$2ISSN$$a2194-4296
000837179 0247_ $$2WOS$$aWOS:000401237900009
000837179 0247_ $$2altmetric$$aaltmetric:12573354
000837179 037__ $$aFZJ-2017-06158
000837179 041__ $$aEnglish
000837179 082__ $$a620
000837179 1001_ $$00000-0002-6835-7140$$aTillmann, Selina D.$$b0$$eCorresponding author
000837179 245__ $$aNickel Network Derived from a Block Copolymer Template for MnO$_{2}$ Electrodes as Dimensionally Stabilized Lithium-Ion Battery Anodes
000837179 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2017
000837179 3367_ $$2DRIVER$$aarticle
000837179 3367_ $$2DataCite$$aOutput Types/Journal article
000837179 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1503995275_10812
000837179 3367_ $$2BibTeX$$aARTICLE
000837179 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837179 3367_ $$00$$2EndNote$$aJournal Article
000837179 520__ $$aTo improve lithium-ion batteries further, novel concepts for the reproducible preparation of highly structured bicontinuous battery electrodes are required. With this in mind, the main focus of this work is based on the block copolymer template-directed synthesis of metal nanofoams suitable for the rational study and design of the final conductive matrix through molecular engineering of the starting polymer. As a proof of concept, diverse MnO2 electrodes with nickel foam as substrates are prepared and morphologically and structurally characterized by means of SEM, Raman spectroscopy, and XRD. To investigate the electrochemical properties of the prepared MnO2–nickel foam electrodes, cyclic voltammetry and galvanostatic cycling experiments, including C-rate tests, are performed and the obtained results are discussed with respect to the deposition time. Compared with the reference, namely, bulk MnO2–nickel foil electrodes, superior electrochemical characteristics, particularly regarding C-rate capability and long-term cycling stability, are achieved, which is attributed to better dimensional stability of the composite electrode.
000837179 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000837179 588__ $$aDataset connected to CrossRef
000837179 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b1$$ufzj
000837179 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2$$ufzj
000837179 7001_ $$0P:(DE-HGF)0$$aLoos, Katja$$b3
000837179 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.201600459$$gVol. 5, no. 5, p. 715 - 724$$n5$$p715 - 724$$tEnergy technology$$v5$$x2194-4288$$y2017
000837179 909CO $$ooai:juser.fz-juelich.de:837179$$pVDB
000837179 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b1$$kFZJ
000837179 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ
000837179 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000837179 9141_ $$y2017
000837179 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837179 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2015
000837179 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837179 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837179 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837179 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000837179 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837179 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000837179 980__ $$ajournal
000837179 980__ $$aVDB
000837179 980__ $$aI:(DE-Juel1)IEK-12-20141217
000837179 980__ $$aUNRESTRICTED
000837179 981__ $$aI:(DE-Juel1)IMD-4-20141217