001     837179
005     20240709081931.0
024 7 _ |a 10.1002/ente.201600459
|2 doi
024 7 _ |a 2194-4288
|2 ISSN
024 7 _ |a 2194-4296
|2 ISSN
024 7 _ |a WOS:000401237900009
|2 WOS
024 7 _ |a altmetric:12573354
|2 altmetric
037 _ _ |a FZJ-2017-06158
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Tillmann, Selina D.
|0 0000-0002-6835-7140
|b 0
|e Corresponding author
245 _ _ |a Nickel Network Derived from a Block Copolymer Template for MnO$_{2}$ Electrodes as Dimensionally Stabilized Lithium-Ion Battery Anodes
260 _ _ |a Weinheim [u.a.]
|c 2017
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1503995275_10812
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To improve lithium-ion batteries further, novel concepts for the reproducible preparation of highly structured bicontinuous battery electrodes are required. With this in mind, the main focus of this work is based on the block copolymer template-directed synthesis of metal nanofoams suitable for the rational study and design of the final conductive matrix through molecular engineering of the starting polymer. As a proof of concept, diverse MnO2 electrodes with nickel foam as substrates are prepared and morphologically and structurally characterized by means of SEM, Raman spectroscopy, and XRD. To investigate the electrochemical properties of the prepared MnO2–nickel foam electrodes, cyclic voltammetry and galvanostatic cycling experiments, including C-rate tests, are performed and the obtained results are discussed with respect to the deposition time. Compared with the reference, namely, bulk MnO2–nickel foil electrodes, superior electrochemical characteristics, particularly regarding C-rate capability and long-term cycling stability, are achieved, which is attributed to better dimensional stability of the composite electrode.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 1
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 2
|u fzj
700 1 _ |a Loos, Katja
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1002/ente.201600459
|g Vol. 5, no. 5, p. 715 - 724
|0 PERI:(DE-600)2700412-0
|n 5
|p 715 - 724
|t Energy technology
|v 5
|y 2017
|x 2194-4288
909 C O |o oai:juser.fz-juelich.de:837179
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171204
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY TECHNOL-GER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21