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Active matter exhibits a wealth of emerging nonequilibrium behaviours. A paradigmatic example is the
interior of cells, where active components, such as the cytoskeleton, are responsible for its structural orga-
nization and the dynamics of the various components. Of particular interest are the properties of polymers
and filaments. The intimate coupling of thermal and active noise, hydrodynamic interactions, and polymer
conformations implies the emergence of novel structural and dynamical features. In this article, we review
recent theoretical and simulation developments and results for the structural and dynamical properties of
polymers exposed to activity. Two- and three-dimensional filaments are considered propelled by different
mechanisms such as active Brownian particles or hydrodynamically-coupled force dipoles.

I. INTRODUCTION

Active matter, whose agents convert either internal
chemical energy into directed motion, or utilize energy
from the environment,1,2 exhibit fascinating emergent
dynamical and collective phenomena. Prototypes are
omnipresent in nature and range from the macroscopic
scale of flocks of birds, school of fish, and mammalian
herds,3 over self-propelled algae, sperm, and bacteria on
the single cell level1,4–6, to the sub-cellular scale of the
cytoskeleton in living cells.3–5,7–14 The motion and col-
lective behavior of active matter in the microworld is
distinctively different from that of self-propelled bod-
ies in the macroworld.1,2,4 This is due to at least four
reasons: (i) Propulsion and motility in the microworld
is typically governed by low-Reynolds number hydrody-
namics, (ii) thermal and active noise plays an important
role on length scales in the nano- and micrometer range,
(iii) active agents are often highly deformable, and (iv)
interactions in the microworld are of simple molecular
origin. As a consequence, size, shape, and deformabil-
ity of active particles is essential for their individual and
collective behavior. The motion of active agents on the
microscale is typically persistent and nearly determin-
istic, while that on the nanoscale is highly chaotic and
nearly indistinguishable from random diffusive motion.
Moreover, shape matters, spherical active Brownian par-
ticles (ABPs) lack any shape-induced alignment interac-
tion when they collide, while rodlike Brownian particles
align in parallel due to volume exclusion.

In this mini-review, we focus on the nonequilibrium be-
havior of active polymers and filaments. From a physical
point of view, the most interesting aspect is the interplay
of propulsion, deformability, and noise.

There are many realizations of active polymers. En-
zymes which catalyze chemical reactions are active par-
ticles and shown enhanced translational diffusion15 and
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chemotaxis.16 In motility assays, biological semiflexible
polar filaments, such as actin and microtubules, are
propelled on carpets of motor proteins anchored on a
substrate, which results in a directed motion.11–14,17–19

Propulsion of such biological filaments in the cell cy-
toskeleton due to tread-milling and dimeric or tetrameric
motor proteins is ubiquitous. Mixtures of active and
passive components are a characteristics of eukaryotic
cells with the active cytoskeleton on the one hand and
an embedded large variety of passive colloidal and poly-
meric objects on the other hand. Here, an enhanced
random motion of tracer particles has been observed.20

Moreover, an influence of the active microtubule21 or
actin-filament22 dynamics on the motion of chromosomal
loci23,24 or that of chromatin has been found.25 Active
chains of metal-dielectric Janus colloids can be realized
by a simultaneous control of colloid motility and inter-
actions via a perpendicular a.c. electric field.26,27 And,
finally, chains of passive colloidal particles show nonequi-
librium properties in an active environment.28

Current studies of active filaments/polymers can
crudely be classified into four categories. (i) Closest to
individual active Brownian particles are polymers com-
prised of ABP monomers (cf. Fig. 1).29–38 Here, every
monomer is independently changing its propulsion direc-
tion in a diffusive manner. A realization might be a pas-
sive polymer in a fluid of ABPs (cf. Fig. 1). In terms of a
colored noise description of activity, their statistical prop-
erties are rather similar.36,38. Explicitly, passive poly-
mers in a bath of ABPs have been considered.30,31,33,39

(ii) Motivated by the active dynamics of filaments in
motility assays,13,40 semiflexible polymers are consid-
ered which are propelled tangential to their contour.41–45

Since the driving force has a preferred direction, such
systems are denoted polar active polymers. (iii) Fluid
mediated interactions are captured to a certain extent
in models of either ABPs35 or tangential propulsion46,47

with hydrodynamic interactions between the monomers
due an induced fluid motion by monomer-monomer in-
teractions. (iv) Most generally, the monomers produce
spontaneous flow, which propel the whole polymer.48,49

Such a approach corresponds to a force- and torque-free
swimmer which, in principle, includes hydrodynamics. In
this article, we discuss the various aspects of these ap-
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FIG. 1. (Color online) Illustration of a polymer exposed to
active noise. (a) The polymer is comprised of active Brownian
particles. (b) A passive polymer is embedded in a fluid with
active Brownian particles.

proaches.

II. POLYMER EMBEDDED IN OR COMPRISED OF
ACTIVE BROWNIAN PARTICLES

A. Active Brownian Particles

An active Brownian particles is a well established rep-
resentation of a self-propelled object.1,2,50–57 It is typi-
cally represented as a repulsive spherical colloidal particle
propelled by a constant (external) force in the direction of
its instantaneous orientation, which is changing in a dif-
fusive manner. No hydrodynamic interactions are taken
into account. The equations of motion for the center-of-
mass position r and the orientation e are given by

ṙ(t) = v(t) +
1

γ̂
(F (t) + Γ (t)) , (1)

ė(t) = η̂(t)× e(t), (2)

where v = v0e is the propulsion velocity, F a force ex-
erted on the particle, Γ and η̂ are Gaussian and Marko-
vian processes (white noise) with zero odd moments and
the second moments

〈Γα(t)Γβ(t′)〉 = 2γ̂kBTδαβδ(t− t′), (3)

〈η̂α(t)η̂β(t′)〉 = (d− 1)DRδαβδ(t− t′). (4)

Here, kB is the Boltzmann constant, T the temperature,
γ̂ the translational friction coefficient, which is related
to the translational diffusion coefficient DT via DT =
kBT/γ̂, DR the rotational diffusion coefficient, d is the
spatial dimension, and α, β ∈ {x, y, x}. For a particle
in a viscous fluid in three dimensions (3d), γ̂ = 6πηR,
with η the viscosity and R the particle radius, hence,
DR and DT are related according to DT /DRR

2 = 4/3.
The rotational motion (Eq. (2)) is independent of the
colloid translation. As a particular result, the correlation

function

〈v(t) · v(t′)〉 = v20e
−(d−1)DR|t−t′| (5)

is obtained.58–60

B. Theoretical Description of the Conformational and
Dynamical Properties of Active Semiflexible Polymers

Analytically, the conformational and dynamical prop-
erties of active polymers have been studied by the
Rouse model34,35,37, for flexible polymers, or by exten-
sions thereof for semiflexible polymers32,36,38. Activ-
ity is taken into account as a random force with an
exponential temporal correlation, i.e., as colored noise
(Eq. (5)).1,32,35,36,57 Here, activity can be interpreted in
two ways. On the one hand, the polymer may be consid-
ered as comprised of active monomers, e.g., active Brown-
ian particles (ABPs). On the other hand, the active force
can originate from interactions with uncorrelated sur-
rounding ABPs, hence, the polymer corresponds to a pas-
sive polymer dissolved in an active bath (cf. Fig. 1).36 Re-
spective computer simulations are provided in Secs. II C
and II D.

We briefly describe the main conformational and dy-
namical properties of polymers in presence of active noise
utilizing a Gaussian semiflexible polymer model58,61–63

The polymer of length L experiences an active random
force Fa(s, t) = γv(s, t) at the position r(s, t) along its
contour at s and time t, where γ is the translational fric-
tion coefficient per length and v is a non-Markovian, but
Gaussian stochastic process with zero odd moments and
the second moment36

〈v(s, t) · v(s′, t′)〉 = v20le
−γR|t−t′|δ(s− s′) . (6)

In a touching-bead model, the length l corresponds to
the diameter of a bead. The decay of the correlation is
determined by γR = (d − 1)DR, where DR is the rota-
tional diffusion coefficient of an ABP (cf. Sec. II A). In
this section, we restrict ourselves to three dimensions.
More details on the derivation of Eq. (6) are presented in
Ref.36. In addition, thermal fluctuations are captured by
the Brownian white noise Γ (s, t) (3). The overdamped
linear equation of motion for the polymer can be solved
analytically by a normal-mode analysis. Explicitly, the
position r(s, t) is given by

r(s, t) =

∞∑
n=0

χn(t)ϕn(s) (7)

in terms of the eigenfunctions ϕn(s) and the normal mode
amplitudes χn(t). The latter become

χn(t) =

∫ t

−∞
e−(t−t

′)/τn

(
vn(t′) +

1

γ
Γn(t′)

)
dt′ (8)

in the stationary state. Here, vn(t) and Γn(t) are the nor-
mal mode amplitudes of the random active velocity and
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FIG. 2. (Color online) (a) Longest polymer relaxation times
as function of the Péclet number for the bending stiffnesses
(L is fixed) L/2lp = 103, 102, 10, 1, 10−1, and 10−2 (bottom
to top). (b) Mode-number dependence of the relaxation times
of active polymers with L/2lp = 10−2 for the Péclet numbers
Pe = 101, 3 × 101, 102, and 5 × 102 (bottom to top). The
black squares (top) show the mode-number dependence of a
flexible polymer with L/2lp = 103. The solid lines indicate the
relations for flexible (∼ n−2) and semiflexible (∼ (2n− 1)−4)
passive polymers, respectively. (From Ref.36)

the thermal noise, respectively. The eigenvalue equation
yields the relaxation times (n > 0)

τn =
γ

kBT (εζ4n + 2λζ2n)
(9)

in terms of the activity-dependent wave numbers ζn,
where the bending coefficient ε = 3lp/2 accounts for
bending restrictions, lp is the persistence length, and λ is
the activity-dependent bond-stretching coefficient. The
latter is determined in a mean-field manner by the con-
straint of a finite polymer contour length L.36

1. Relaxation Times

The dependence of the longest relaxation time τ1 on
the Péclet number, defined as

Pe =
v0
DRl

, (10)

is illustrated in Fig. 2(a). Evidently, the relaxation times
exhibit a strong dependence on Pe. In particular, they
decrease with increasing Pe and approach a stiffness-
independent asymptotic value for Pe → ∞. Hence, ac-
tivity accelerates the polymer relaxation behavior. For
flexible polymers (L/2lp � 1), the relaxation times fol-
low as36,38

τn =
τR
µn2

, (11)

with µ = 4lpλ/3, the bond-stretching coefficient scaled
with respect to the value of a passive flexible poly-
mer, and τR = 2γlpL

3/3πkBT the Rouse relaxation
time.36,58,63 The coefficient µ captures the activity de-
pendence of the relaxation times.

For Pe� 1 and a large number of active sites L/l, the
calculations yield µ ∼ Pe4/3 and for a small number L/l,
µ ∼ Pe, which implies the dependencies τn ∼ Pe−4/3

and τn ∼ Pe−1 (Pe � 1), respectively.36 Activity ex-
erts forces on the bonds, attempting to stretch them.
The increase in the bond-stretching coefficient counter-
acts activity and maintains a (mean) constant contour
length. Hence, the characteristics of a polymer, namely a
fixed contour length, implies a specific response to active
noise. Neglecting the factor µ, as in typical Rouse model
description,32,34,35,37,64 leads to significantly different re-
laxation times and neglects a substantial Péclet-number
dependence of active system.

At Pe . 1, the relaxation times of stiff polymers
are determined by the bending modes. With decreas-
ing L/2lp, τ1 approaches the persistence-length and Pe-
independent value τ1 = γL3/36kBT (cf. Fig. 2(a)). With
increasing Pe, the bond-stretching coefficient increases
fast and, as a consequence, τ1 decreases rapidly approach-
ing asymptotically the relaxation time of a flexible poly-
mer. The “softening” of semiflexible polymers is even
more evident from the relaxation times τn of a stiff poly-
mer displayed in Fig. 2(b). The passive polymers exhibit
the well-known n−4 mode-number dependence. An in-
creasing activity implies a gradual change toward n−2,
and ultimately, at Pe� 1, the mode-number dependence
of a flexible polymer is obtained over a considerable range
of mode numbers.

2. Conformations: Mean Square End-to-End Distance

The conformational properties of the polymers can be
characterized by their mean square end-to-end distance
(〈r2e〉 = 〈(r(L/2) − r(−L/2))2〉), which, in terms of the
eigenfunction expansion, is given by〈
r2e
〉

=

4

∞∑
n=1

(
3kBT

γ
τ2n−1 +

v20l

1 + γRτ2n−1
τ22n−1

)
ϕ2
2n−1(L/2).

(12)

Results are shown in Fig. 3 for various persistence
lengths. The dependence of the relaxation times on the
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FIG. 3. (Color online) Mean square end-to-end distances ac-
cording to Eq. (12) as function of the Péclet number for the
ratios L/2lp = 103, 102, 10, 1, 10−1, and 10−2 (bottom to top
at Pe = 10−1). The dashed line represents an approximate
analytical solution. (From Ref.36)

(a)

(b) (c)

FIG. 4. (Color online) Snapshots of an active semiflexible
polymer comprised of N = 100 ABPs with L/2lp ≈ 0.1. (a)
The polymer is semiflexible (Pe = 1), (b) shrinks with in-
creasing activity (Pe = 20), and (c) swells again with further
increasing Pe (Pe = 100).

activity determines the polymer conformations. If the re-
laxation times were independent of the active noise, the
active-noise contribution to 〈r2e〉 would increase quadrat-
ically with v0, and hence, with the Péclet number. Here,
we find the significantly slower increase of 〈r2e〉 ∼ Pe2/3

with increasing Pe. There are several remarkable fea-
tures of 〈r2e〉 for the various persistence lengths. For flex-
ible polymers, 〈r2e〉 increases monotonically in a sublin-
ear manner in the range 1 � Pe < 103 and approaches
the asymptotic value L2/2 in the limit Pe → ∞ as a
consequence of the finite contour length; interestingly,
the polymers are not fully stretched in this limit. At
large persistence lengths, 〈r2e〉 shows a nonmonotonic

dependence on the Péclet number. Within a certain
persistence-length-dependent range, a polymer shrinks
with increasing Pe (cf. Fig. 4). The shrinkage can be
substantially for pL . 10. Above a certain Pe value,
the polymers swell again and approach the asymptotic
dependence of a flexible polymer as a consequence of the
dominating flexible modes in the relaxation times. It is
important to note that the detailed quantitative activity-
dependent behavior is a function of the number L/l of ac-
tive sites along the polymer. In a typical simulation, with
a polymer comprised of ABP monomers34, this corre-
sponds to the number of monomers. We have performed
computer simulations of a discrete polymer in three di-
mensions comprised of ABPs, which yield results in close
agreement with the theoretical prediction. In particular,
the shrinkage of semiflexible polymers and the general
swelling are confirmed (Fig. 1).

3. Dynamics: End-to-End Vector Relaxation

The correlation function of the polymer end-to-end
vector is given by38

〈re(t) · re(0)〉 =

∞∑
n=1

ϕ2n−1(L/2)2
[

4L3

ξ̂2n−1
e−t/τ2n−1

+
Pe2l3

9∆2ξ̂22n−1l
6/(4L6)− 1

(
e−γRt − 2L3

3∆l3ξ̂2n−1
e−t/τ2n−1

)]
(13)

using the eigenfunction expansion (7), where ξ̂n =
Lµ(ζnL)2/2lp + lp(ζnL)4/2L). Two relaxation mecha-
nisms govern the decay of the correlation function, the
rotational Brownian motion of an individual ABP (γRt)
and the dynamics of the polymer itself (t/τn). In the
limit γRτ1 � 1, which is equivalent to Pe � (L/l)3/2,
the decay of the correlation function is determined by the
relaxation times of the polymer. For t/τ1 > 1, the decay
is exponential

〈re(t) · re(0)〉 =
L3

ξ̂1
e−t/τ1

(
4 + 2Pe2

)
ϕ1(L/2)2.

Since activity leads to shorter relaxation times, the decay
is enhanced by the active noise. In the opposite limit
γRτ1 � 1, the correlation function decays as

〈re(t) · re(0)〉 = 4Pe2L3

(
L

l

)3

e−γRt
∞∑
n=1

ϕ2n−1(L/2)2

ξ̂2n−1
,

(14)

due to the rotational diffusion coefficient of an ABP.
The crossover between the two regimes depends on the
number of active sites (L/l) along the polymer contour.
The relaxation behavior of long polymers, where typically
L/2lp = L/l � 1, is dominated by the internal polymer
dynamics. Note that the relaxation time strongly de-
pends on the activity. Short polymers or polymers with
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only a few active sites relax by the rotational diffusion
of the active process. The limiting case is a dumbbell of
APBs.65 As noticed before35, the decay is slower when
the rotational diffusion DR dominates the decay of the
correlation function.38

4. Dynamics: Mean Square Displacement

The mean square displacement (MSD) 〈∆r(s, t)2〉 =

〈(r(s, t)− r(s, 0))
2〉 of a point r(s, t) along the polymer

contour includes contributions from the polymer center-
of-mass motion and displacements with respect to the
center of mass. Averaging of the polymer contour yields

〈
∆r(t)2

〉
=
〈
∆rcm(t)2

〉
+

∞∑
n=1

[
6kBTτn

γ

(
1− e−t/τn

)
+

2v20lτ
2
n

1 + γRτn

(
1− e−γRt − γRτne−t/τn

1− γRτn

)]
.

(15)

The center-of-mass contribution is similar to that of an
single ABP1,50

〈
∆rcm(t)2

〉
=

6kBT

γL
t+

2v20l

γ2RL

(
γRt− 1 + e−γRt

)
. (16)

As a generalization, the total polymer friction γL ap-
pears in the contribution of the Brownian motion, and
the active term contains L/l, the number of active sites
along the polymer contour.36

Figure 5 displays MSDs of flexible and semiflexible
polymers. For passive polymers, we find the well-known
Rouse dependence

√
t for flexible polymers58 and the de-

pendence t3/4 for semiflexible polymers66–68 at t/τ1 � 1.
In the presence of activity, the diffusivity is significantly
enhanced, as already noted before,32,33,64 the more the
higher the Péclet number. We can identify three char-
acteristic time regimes. At short times, an activity-
specific ballistic regime appears, which is already well
pronounced for Pe ≈ 20.32,33,64 For times tγR ≈ 1, the
MSD crosses over to a Rouse-type regime (

√
t) deter-

mined by the internal polymer dynamics. Finally, the
center-of-mass motion dominates the MSD with a linear
increase in time for t/τ1 � 1. It is worth emphasizing
that this regime is dominated by activity rather than
thermal noise, since 〈∆rcm(t)2〉 = 2v20lt/γRL. Thereby,
the crossover time tγR & 1 from the ballistic to the
Rouse-type regime shifts to smaller values with increas-
ing Péclet number, a consequence of the decreasing re-
laxation times τn with increasing Pe (Fig. 2). Simul-
taneously, the polymer characteristic regime ∼

√
t be-

comes shorter and vanishes for large Péclet numbers.
This shortening is a consequence of the finite extensi-
bility of a polymer and is completely missing in a bare
Rouse-model-type approach.32,33,35,37,64 However, there
is a remarkable feature in the intermediate time regime
1 < γRt < γRτ1 for semiflexible polymers. Here, at
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FIG. 5. (Color online) Mean square displacements of a flexible
(L/2lp = 103, solid lines) and semiflexible polymer (L/2lp =
1, dashed lines) for the Péclet numbers Pe = 0 (blue), 3×100

(green), 2×101 (red), 102 (cyan), and 5×102 (purple) (bottom
to top). The time is scaled by the factor γR = 2DR of the
rotational diffusive motion.

sufficiently large Péclet numbers, the segmental MSD of
semiflexible polymers exhibits the

√
t-dependence char-

acteristic for flexible polymers.58 This is a consequence of
the crossover of the relaxation times from being bending-
mode dominated to being Rouse-mode dominated with
increasing activity. Such a change does not appear when
the stretching coefficient of a passive polymer (µ = 1) is
used only. In this case, the t3/4 dependence persist for
all Pe in the intermediate time regime.

C. Simulations of Passive Polymer in Active Fluid

The properties of a passive polymer embedded in
a fluid of active Brownian particles in two dimen-
sions (2d) have been studied by various computer
simulations.30,31,33,39 All studies find significant confor-
mational changes of the polymer due to the active en-
vironment in agreement with the above theoretical con-
siderations. In particular, flexible polymers monoton-
ically swell with increasing activity and the probabil-
ity distribution of the end-to-end vector shifts to large
values with increasing activity (v0). The scaling be-
havior of the end-to-end distance with increasing poly-
mer length has been investigated for various activities.30

Simulations predict polymer swelling with an activity-
dependent scaling exponent larger than the Flory value
(3/4 in 2d58,69) for short polymers. However, for long
polymers a crossover to the scaling prediction for self-
avoiding passive polymers is obtained. Moreover, the
effect of stiffness on the polymer conformations has been
considered,31,33 and a shrinkage with increasing activity
been found above a certain stiffness. Moreover, at large
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FIG. 6. (Color online) Simulation snapshots of semiflexible
polymers embedded in an active fluid at various stages of a
folding and unfolding process (a)→(f). The propelling force
points from the blue to the red hemisphere. Active parti-
cles off the filament are displayed semitransparent for clarity.
(Reprinted figure with permission from31. Copyright 2014 by
the American Physical Society.)

activities, flexible and semiflexible polymers exhibit the
same conformations.31,33 These findings are in agreement
with theoretical predictions (Fig. 3). In the 2d studies,
the polymers exhibit particular conformations as illus-
trated in Fig. 6.31,39 An activity-induced bending of the
polymer implies an asymmetric exposure to active par-
ticles, with more active particles on its outer region (cf.
Fig. 6). Simultaneously, the inner ABPs accumulate in
regions of highest curvature, as has been observed for
ABPs in convinement70. The combination of these two
effects lead to particular polymer conformations such as
hairpins. These structures are only temporarily stable
and dissolve and rebuild in the course of time. Hence,
the polymer will fluctuate between the two states (hair-
pin – stretched) in time for certain activities.31 Such a
behavior cannot be found in the theoretical treatment
of Sec. II B, because there excluded volume interactions
are neglected. Certain conformational aspects are a con-
sequence of the 2d character of the system, because for
polymers in 3d no such features have been found.31 With-
out doubt, we hardly expect to see conformations as in
Fig. 6(c) in 3d with rather parallel strands. However, as
show above, semiflexible polymers in 3d also shrink due
to active noise.

Considering dynamical aspects, polymer looping, i.e.,
the formation of rings where the two polymer ends meet,
in 2d has been addressed.33 For flexible chains, the loop-
ing probability decreases with increasing activity, which

can be attributed to the swelling of the polymer with
increasing activity. For semiflexible polymers, the loop-
ing probability shows a non-monotonic dependence on
activity—it increases with increasing activity at small
activity and decreases at large activity in the same man-
ner as for flexible polymers and independent of stiffness.
This is interpreted in terms of two competing effects of
the active particles.33 On the one hand, active noise in-
crease the effective chain flexibility and leads to a poly-
mer shrinkage. On the other hand, activity implies un-
binding of end monomers, i.e., breakup of rings. Si-
multaneously, the looping time, i.e., the time interval
between conformations where a polymer end-to-end dis-
tance assumes the equilibrium value and subsequently
the ends approach their closest allowed distance, de-
creases substantially with increasing activity.33 More-
over, the polymer-length dependence of the looping time
changes from the power-law ∼ N2.7 for a passive polymer
to ∼ N2.3 for an active one. This points to a drastically
increased relaxation time of the polymers in presence of
the active noise in agreement with the theoretical predic-
tion of Sec. II B.

D. Simulations of a Polymer of Active Brownian Particles

Simulations of polymers composed of active Brownian
particles have also been performed, both, for partially
active polymers29 as well as fully active ones.34 For a
fully active polymer, every monomer is an ABP and in-
dependently changes its orientation according to Eq. (2).
Additionally, the individual monomers experience bond
force and excluded-volume interactions, as passive poly-
mers, as well as the active force γ̂v0e. The results indi-
cate that the Flory scaling exponents are also valid in this
case, when the chain length increases at a given activity.
For an ideal (phantom) chain, activity only affects the
prefactor. However, the presence of excluded-volume in-
teractions leads to a non-monotonic chain extension with
increasing self-propulsion. First the polymer shrinks and
then swells with further increasing activity. The initial
shrinkage is attribute to caging of monomers by neigh-
bors. With increasing activity, the monomers are able to
escape from the local cage, which leads to a swelling of the
polymer. The caging seems to be specific for polymers of
ABPs in 2d, because flexible polymers in an active fluid
swell with increasing activity rather than shrink (Fig. 3).
Moreover, the caging should be far less relevant for active
polymers in 3d.

III. SELF-PROPELLED POLAR SEMIFLEXIBLE
POLYMERS

The activity of polymer segments (or monomers) is not
always randomly oriented, as discussed in Sec. II, but can
be correlated along the chain. We focus here on polar ac-
tive polymers, where the activity is always aligned with
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the local polarity, i.e. which are propelled along their
contour by an (external) tangential force.41–45 A possi-
ble realization are polar active filaments on carpets of
molecular motors as in motility assays.13,40 In simula-
tions, semiflexible filaments are modeled by a series of
beads connected by stiff springs (touching bead model)
and a bending potential.44 For self-propulsion, a driving
force is added to each bond-vector to uniformly drive the
filament along its contour. The overdamped equation of
motion of a monomer is then given by

γ̂ṙ = Ft(t) + F (t) + Γ (t), (17)

where Ft denotes the tangential propulsion force, while
F are the bond-stretching and bending forces and Γ ran-
dom forces due to thermal noise, as defined in Sec. II.

Again, propulsion is characterized by a Péclet number.
In contrast to Sec. II, however, the Péclet number Pe is
here defined on the polymer length scale as

Pe =
v0L

Dt
=
fpL

2

kBT
, (18)

i.e., by the ratio of the self-advection time L/v0 and self-
diffusion time L2/Dt. Together with the ratio of persis-
tence length and filament length, the flexure number

F =
PeL

lp
=
fpL

3

κ
(19)

is introduced, which measures the strength of propulsion
versus bending.

A. Conformations and Dynamics of Polar Active Polymers

Depending on the ratio of bending rigidity and propul-
sion strength, three different regimes have be observed
(cf. Fig. 7). For weak propulsion, the self-propelled
polymer behaves like a passive polymer, except that the
relaxation times are shorter (“polymer regime”). As
propulsion increases, spiral structures appear transiently
(“weak spiral regime”), until, at large propulsion, stable
spirals form (“strong spiral regime”).

As long as the aspect ratio of the filaments and the in-
teractions between distant segments (excluded volume)
do not matter, the (dimensionless) Péclet and flexure
numbers completely define the system. However, in spi-
ral states, self-interactions are strong, and details of the
polymer discretization can become important. This can
be seen by considering the initial state of spiral forma-
tion, when the front bead bumps into the middle or rear
part of the chain. Then, a strong corrugation of the poly-
mer structure due to the sequence of repulsive spherical
beads implies an effective friction, which promotes spi-
raling. These results suggest that for denser systems and
high propulsion forces, models with smoother interac-
tions are more appropriate, e.g., by building the polymer
with overlapping beads44,71.

To distinguish the polymer regimes from the spiral
regimes, the kurtosis of the spiral number

s = (φ(L)− φ(0))/2π, (20)

is a convenient order parameter. The spiral number s
counts how many times the filament is wrapped around
itself, where φ(s) is the bond orientation at position s
along the contour of the filament (cf. Fig. 8). In the
polymer regime, a Gaussian distribution of s is observed,
resulting in a kurtosis of 3. When spirals occasionally
form, a secondary peak appears in the distribution, re-
sulting in an increased kurtosis (cf. Fig. 8). However,
when spirals are stable, the distribution is very narrow,
resulting in a very small kurtosis. In general, spirals form
for large Péclet numbers and small persistence lengths,
as displayed quantitatively in Fig. 8.

In the polymer regime, the observed conformations
match those at equilibrium, except that the characteristic
time scales strongly decrease due to propulsion (Fig. 9).
As for the active polymers discussed in Sec. II B, the
relaxation time is found to be inversely proportional to
the driving force. This can be understood qualitatively
by the “railway motion” of the polymer (Fig. 10). A
polymer trajectory resembles again the conformation of
an (infinitely long) semiflexible polymer, with the same
conformational characteristics as the (passive) polymer
itself. The self-propelled polymer is just riding this rail-
way, sampling the conformations as it moves along. Thus,
it attains a statistically uncorrelated conformation after
a time lp/v0 = lpγ/fp. This is consistent with the 1/Pe-
dependence of τs(q) displayed in Fig. 9. The railway
motion also explains the observed translational and ro-
tational diffusion coefficients. The polymer (both the
propelled filament and the railway trajectory) loose ori-
entational correlation over a length scale determined by
the persistence length. Thus, the self-propelled polymer
decorrelates, when it travels along the railway, as deter-
mined by the tangent-vector correlation function

〈t(s, t) · t(s′, 0)〉 = 〈t(s+ v0t, 0) · t(s′, 0)〉
= exp (−(s− s′ + vot)/lp) (21)

With this correlation function, the diffusion of the end-to-
end vector orientation can easily be obtained by integra-
tion. This gives the active contribution to the rotational
diffusion coefficient44

Dr,a = v0/lp. (22)

Figure 11 shows that simulation results for a wide range
of persistence lengths nicely collapse onto a single line
as predicted by Eq. (22). Note that for flexure num-
bers F larger than about 102, the active contribution
clearly dominates the passive diffusion. We want to em-
phasize that the same behavior of the rotational dif-
fusion coefficient can be expected for sufficiently long
tread-milling filaments with high polymerization and de-
polymerisation rates.



8

(a) polymer regime (b) weak spiral (c) strong spiral

FIG. 7. (Color online) Trajectories of the center of mass of filaments and filament configurations from selected snapshots
(insets: grayscale, leading tip black) for lp/L = 0.2 (with N = 100 beads). Arrows point in the direction of movement. (a)
At Pe = 200, there is no sign of spiral formation. (b) At Pe = 1000 spirals form occasionally, but the overall behavior is
dominated by an elongated chain. (c) At Pe = 5000, the spiral state is predominant. The chain has a directed motion in the
elongated state. In the spiral state, the translational motion is almost purely diffusive. This leads to separated clusters in the
trajectories for simulations in the strong spiral regime, visible for example in the upper left inset in (c). The length of the
depicted trajectories corresponds to approximately 0.13τ (a), 0.13τ (b), and 0.6τ (c), where τ = L3γ̂/4kBT . (From Ref.44 -
Published by The Royal Society of Chemistry)

, 

, 

, 

(b)

lp

lp

lp

FIG. 8. (Color online) (a) Classification of the filament struc-
ture as elongated (red, bottom), weakly wound-up (blue,
middle), and strongly wound-up (orange, top) by the spi-
ral number s. (b) Probability distribution function p(|s|)
of the absolute value of the spiral number for three dif-
ferent Péclet numbers. (c) Phase diagram. The kurtosis
β2 = 〈(s− 〈s〉)4〉/〈(s− 〈s〉)2〉2 in different regions is indicated
by colors. Blue bullets: polymer regime. Cyan triangles:
weak spiral regime. Light and dark red squares: strong spi-
ral regime. For the dark red squares, spirals did not break up
during the simulations once formed. Black lines are a guide to
the eye. Green area (light gray): threshold for spiral stability
against break-up by widening. Spirals above this threshold
will unfold by widening, spirals below will not. Purple (dark
gray): parameter space that can be achieved for actin fila-
ments on a myosin carpet at T = 300 K using the parameters
for fp and κ of Ref.72. (From Ref.44 - Published by The Royal
Society of Chemistry)

lp

lp

lp
lp

lp

lp

FIG. 9. (Color online) Relaxation time τS(q) of self-propelled
filaments for q ≈ 5π/L and various persistence lengths, with
τ = γL3/4kBT . Circles correspond to the polymer regime,
triangles to the weak spiral regime, and squares to the strong
spiral regime. (From Ref.44 - Published by The Royal Society
of Chemistry)

B. Beating of Active Polar Filaments Pushing Against an
Obstacle or Load

The situation becomes more complex, when the poly-
mer cannot move freely. If the polymer is fixed at some
point, the motion of the filament is restricted, and com-
pression due to the propulsive force builds up. The part
of the filament that pulls away from the fixation point is
obviously pulled to a straight configuration under ten-
sion. The situation becomes more interesting on the
pushing side, where the propulsive forces add up and
lead to a large compressive stress. Similar to an elastic
rod under compressive load,73–75 this (inhomogeneous)
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0

0

0

0

0

0

0

vc

s0(t0)
s0(t) = s(t0) + vc(t − t0)(b)

FIG. 10. (Color online) (a) Series of snapshots of a filament
with lp/L = 0.3 (N = 100 beads) and Pe = 1000. The fila-
ment moves along its contour superimposed with thermal mo-
tion. Subsequent filaments are represented by different colors
for better differentiation. (b) Idealized railway motion in the
absence of thermal motion. The filament (thick black line)
moves with velocity v0 along the contour of an infinite chain
with the same lp (gray line). s0(t) runs along the contour of
the infinite chain and marks the end point of the filament.
(From Ref.44 - Published by The Royal Society of Chemistry)

0

0

l  / Lp

l  p

FIG. 11. (Color online) Rotational diffusion coefficient Dr as
a function of the flexure number F, with τ = γL3/4kBT . Sym-
bol shapes indicate the region in the phase diagram: circle:
polymer regime; triangle: weak spiral regime. Gray lines are
analytical predictions from the “railway assumption” for dif-
ferent passive rotation diffusion constants Dr,p. (From Ref.44

- Published by The Royal Society of Chemistry)

compressive stress can lead to buckling.
To understand the buckling of active filaments, two

cases are considered independently. A pinned filament is
fixed at one end point, but free to rotate, while a clamped
filament is fixed in its orientation at the fixation point as
well. Linear stability shows, at low temperature, that a
pinned filament will buckle if the flexure number exceeds
a critical value Frotc = 30.672. The filament will spon-

FIG. 12. (Online color) Dynamical shapes of anchored active
polar filaments. (a) Filaments clamped at one end exhibit
beating patterns. Short filaments show regular beating (top),
contacting looped shapes are observed for longer polymers
(middle), and for strong noise highly erratic shapes are ob-
tained (bottom). (b) Filament with an anchored but freely
rotating end show spirals. Short filaments at weak noise ro-
tate with a constant frequency (top), longer filaments rotate
as tightly wound spirals (middle), erratic motion without a
defined shape or rotation frequency appear for strong noise
(bottom). (From Ref.43, by permission of the Royal Society)

taneously break the symetry, and bend in one direction,
leading to rotating motion around the pinning point. A
similar instability analysis for a driven clamped filament
shows a Hopf-type instability at the critical flexure num-
ber Frotc = 75.5, leading to beating motion72.

Beyond linear stability, one has to resort to computer
models and numerical solutions and simulations43. These
studies confirm the results of linear-stability analysis, and
predict a rich variety of dynamic states beyond the sta-
bility threshold as illustrated in Fig. 12. Furthermore,
the simulations reveal a power-law scaling of beating and
rotation frequencies for pinned and clamped filaments,
respectively. In both cases, the frequency is predicted
to scale with the 4/3 power of the propulsive force, i.e.,

ω ∼ f4/3p .
A system intermediate between free-swimming and

clamped or tethered filaments is filaments pushing a
finite-size load at the front end of the filament. A tiny
load is equivalent to a free-moving filament, a huge load
corresponds to a clamped filament. Here, it is important
to note that the size and shape of the load together de-
termine the translational and rotational friction of the
load; high and low rotational frictions imply beating and
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FIG. 13. (Online color) Sequence of filament snapshots from
the different regimes. Time increases from transparent to
opaque. The gray lines are the trajectories of the center
of mass of the rigid body. (a) Filament attached to a rod-
shaped load in the elongated phase with F = 50, lp/L = 2,
and γF /γB = 5; γF and γB are the friction coefficient of the
filament and the body, respectively. (b) Filament attached to
a rod-shaped load in the beat phase with F = 5000, lp/L = 2,
and γF /γB = 1.67. (c) Filament attached to a rod-shaped
load in the beat-and-circle regime with F = 5000, lp/L = 2,
and γF /γB = 5. (d) Filament with a hexagonal head in the
rotation phase with F = 250, lp/L = 2, and γF /γB = 1.64.
(e) Filament with a hexagonal head in the beat phase at low
thermal noise with F = 1000, lp/L = 2000, and γF /γB = 1.1.
(f) Filament with a hexagonal head in the rotation phase at
low thermal noise with F = 150, lp/L = 2000. (From Ref.45 -
Published by The Royal Society of Chemistry)

rotational dynamics, respectively. Accordingly, different
dynamic regimes are obtained depending on the size and
shape of the load, as well as elasticity and driving force
of the filament (cf. Figs. 13 and 14). For small driving
forces and small loads, the filament is elongated and a
buckling transition occurs at a well-defined combination
of driving force and load size. Again, this threshold can
be understood from a linear stability analysis of the over-
damped equations of motion of a filament attached to an
aligned rod.45,76. For sufficiently strong propulsion, the
filament turns from a stable node, where all eigenvalues
of the Jacobian matrix are real and negative (with the ex-
ception of the zero eigenvalues that correspond to Gold-
stone modes), to a stable focus, where the real parts of
the eigenvalues are negative but at least one pair of com-
plex conjugated eigenvalues with a non-zero imaginary
part exists; in the latter case, these modes are not un-
stable, but show enhanced fluctuations. Beyond a higher

critical flexure number, unstable modes appear, leading
to buckling of the filament. The critical flexure number
depends on the size of the load, but converges for large
loads to the critical flexure number for clamped filaments
Frotc = 75.5. Noise broadens this transition and permits
amplification of further modes. For low noise and large
load, the results for clamped filaments are recovered.

These buckling transitions to beating and rotating mo-
tion have a profound effect on possible applications. A
longer filament results in a larger propulsion force on the
load, however, if this propulsive force is large enough for
the filament to buckle, it enters a less- or non-propulsive
state. Thus, optimal propulsion can be expected just
below the critical line.

IV. HYDRODYNAMICS AND ACTIVE POLYMERS

Swimming microorganisms or synthetic self-propelled
particles are often embedded in a fluid and hydrodynam-
ics is essential for their dynamics and the propulsion
itself. Consequently, theoretical35 and simulation46–49

studies have been performed to unravel the influence
of hydrodynamic interactions on the dynamics of active
polymers. Thereby, different routes have been taken.
On the one hand, activity is considered as an external
driving force35,46,47 and hydrodynamic interactions are
taken into account on the level of a hydrodynamic ten-
sor, either the Oseen58,77 or the Rotne-Prager-Yamakawa
tensor.77,78 On the other hand, polymers comprised of
energy-converting active monomers are considered,48,49

where propulsion is achieved by the hydrodynamic flow
generated by those monomers. In a theoretical descrip-
tion, with a representation of the active particle by a
spherical colloid, propulsion is attained by a prescribed
velocity on the colloid surface. A prominent example for
such an active colloid is the squirmer model,79,80 which is
a generic model for a broad class of microswimmers, rang-
ing from diffusiophoretic particles to biological cells.81–84

For a spherical squirmer, the surface flow field (slip ve-
locity) is given by

vsq = B1 sinϑ(1 + β cosϑ)eϑ (23)

(cf. Fig. 15 for the definition of the angle ϑ and the
tangential vector eϑ). The coefficient B1 = 2U0/3 is re-
lated to the swimming velocity U0 of the squirmer and
β accounts for the strength of the force dipole. Thereby
β > 0 for a puller, β < 0 for a pusher, and β = 0 for neu-
tral swimmer. Figure 15 displays flow fields for pullers,
pushers, and neutral squirmers.

The far field of pullers and pushes is dominated by
the force dipole contribution and decays as 1/r2 with
distance from the colloid center. The source dipole field
dominates for neutral squirmers and decays as 1/r3. Note
that an active particle is force and torque free and, hence,
no Stokeslet term is present. In an active polymer, such
colloids are arranged in a linear fashion. The respective
bond forces, or other intramolecular forces, give rise to a



11

!"! !"# !"$ !"% !"&

! "# $!!

!

!""

!"!

"
$
!
"
%

"#$%&'(")

*"'(

*"'( + ,-.,#"

!"! !"# !"$ !"% !"&

! "# $!!

"#$%&'(")

*"'(

*"'( + ,-.,#"

.$('(-$%

!"! #

!"! !

!""

"&"

"&!

"&#

##'$ (
'() '*)

FIG. 14. (Online color) Phase diagram of the various filament conformations as a function of the ratio between the head
size and filament length γF /γB and the flexure number F = fpL

3/κ. (a) Filament with rod-shaped load at high temperature
(lp/L = 2). (b) Filament with hexagonal head at high temperature (lp/L = 2). Symbols: triangles for oscillations in Cλ1 ,
circles for persistent rotation, double-circles for rotation with alternating directions, squares for non-rotating and non-oscillating
states. The gray line in (b) is a phase boundary and a guide to the eye. The gray line in (a) indicates the transition from a
stable focus to an unstable focus in the stability analysis. The light gray line markes the transition from a stable node to a
stable focus. The line is dotted where the transition from a node to a focus is interpolated because it could not be determined
accurately due to numeric difficulties. PλC is the fraction of states in which the circle mode ψc dominates, and χ2 measures
the deviation from a Gaussian behavior of λ1 and λ2. (From Ref.45 - Published by The Royal Society of Chemistry)

FIG. 15. (Online color) Definition of the angle ϑ on the
squirmer surface (left) and flow streamlines of isolated squirm-
ers in the swimmer reference frame for a pusher (middle) and
a neutral squirmer (right). For a puller, the flow lines in the
left figure have to be inverted.

Stokeslet-type hydrodynamic flow field, which decays as
1/r.

Expression for the translation and rotation of spherical
active particles are derived in Refs.49,85 in terms of mobil-
ity matrices. Aside from the well-known matrices77,86,87

for passive particles, extension are provided for active
particles that relate the modes of the nonequilibrium
surface velocity to their rigid body motion. The rather
general approach allows for the study of motile and non-
motile systems taking into account fundamental solutions
of the Stokes equation up to the desired order.

A. Polar Semiflexible Filaments and Hydrodynamic
Interactions

A model, which is closely related to that described in
Sec. III A, has been employed for the motion of polar
semiflexible filaments in a fluid.46 Three main regimes of
motion have been detected, which are denoted as trans-
lation, snaking, and rotation. The appearance of the re-
spective type of motion depends on the polymer stiffness,
but is independent of the absence or presence of hydro-
dynamic interactions. Although the behavior is qualita-
tively similar, hydrodynamic interactions yield a signif-
icant quantitative difference. Specifically the parameter
range of rotation, where a filament moves in a circular

fashion, increases considerably in the presence of hydro-
dynamic interactions.

The collective motion of actin filaments driven by
molecular motors has been studied experimentally in
motility assays.13,19,40 The results are controversial, hy-
drodynamic interactions are considering either to be es-
sential for the observed structure formation,13,40 or hy-
drodynamic interactions are judged as irrelevant and the
phenomenon is attributed to direct contacts between the
filaments.19 Simulations46 show that both interactions
lead to collective motion of semiflexible polymers. Only
the parameter ranges for rotational motion are rather dif-
ferent and hydrodynamic interactions enhance rotational
motion at weak active forces. The amplification and initi-
ation of rotational motion by hydrodynamic interactions
has also been demonstrated for two filaments.47

B. Hydrodynamically Induced Oscillations of Filaments

A semiflexible polymer, when clamped at one of its
ends and whose monomers generate a dipolar flow field
(force dipole) tangential to the polymer, exhibits spon-
taneous oscillations when activity exceeds a threshold.
Here, simulations yield two distinct filament motions.88

For intermediate activities, a corkscrew-type rotation is
found in three dimensions. For large activities, the fila-
ment beats in a plane with waves propagating from the
clamp to the filament tip. A detailed investigation shows
that this beating originates from hydrodynamic interac-
tions and that there is no beating without it.88

The beating motion itself and the respective beat pat-
terns are different from those described in Sec. III B,
since the monomers possess a force dipole only and no
self-propulsion velocity. In contrast, the polymers of
Sec. III B are propelled along the tangent of the poly-
mer. Evidently, the latter can stimulate other motion
patterns. It remains to analyse how propulsion modifies
the motion of the filaments in presence of hydrodynamic
interactions and a force dipole.

Similar to the studies of Sec. III B the transport of
a load by a hydrodynamically-active filament has been
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FIG. 16. (Online color) Flow streamlines of nonequilibrium
steady-state conformations of free ((a), (c)) and tethered ((g),
(h)) filaments at various activities. The activity increases
from left to right. The snapshots show the first two excited
elastic modes, where the filament in (a) is translating and
that in (c) rotating. For the tethered filament, a rotation
is obtained first and an oscillating state at higher activity.
(Reproduced in part from Ref.49 with permission of The Royal
Society of Chemistry.)

studied.89 Five distinct beating modes have been identi-
fied giving rise to transport. Two of them appear due to
the load and are not present for clamped filaments.

C. Hydrodynamic Instabilities and Filament Dynamics

Applying the same type of model, the dynamics of free
and tethered (fixed, but freely rotating end) active fila-
ments has been analyzed.49 Considering the flow fields
of polymers comprised of extensile (pusher) and con-
tractile (puller) (cf. Fig. 15) monomers, leads to the
conclusion that flow compresses contractile and extends
extensile filaments. This is evident from the flow pro-
files of the monomers displayed in Fig. 15. For pushers,
subsequent monomers are repelled by their flow fields,
whereas for pullers the monomers are attracted. Hence,
for a symmetrically curved polymer, active flow prefer-
entially suppresses bending of contractile filaments, but
enhances it for extensile filaments. Thus, the interplay
between flow and bending leads to a destabilization of
straight extensile filaments, whereas contractile filaments
are stabilized.49

Looking at extensile polymers only, a wide spectrum of
nonequilibrium stationary states appear. A selection is

displayed in Fig. 16 for free and tethered filaments.49 At a
critical activity, a linear instability occurs and a straight
free filament bends and assumes a U-shaped form. As
is illustrated by the flow field (Fig. 16(a)), the polymer
moves then autonomously although the self-propulsion
velocity U0 is zero. With increasing activity, higher elas-
tic modes appear via a serious of bifurcations (Fig. 16(c)).
Thereby, asymmetric conformations with respect to the
center exhibit a rotational motion. Note that the force
dipoles are tangential to the polymer contour. Filaments
tethered by one of their ends (Fig. 16(g), (h)) exhibit a
rotational motion above a threshold activity. An increas-
ing activity leads to flagella-like beating (Fig. 16(h)). For
even larger activities, filaments with more bend confor-
mations appear, which rotated again. For even higher ac-
tivity, conformations with higher elastic eigenmodes are
expected, which either oscillate or rotate49. In general,
the filaments move in a plane determined by the initial
condition, although the systems is three dimensional.

As mentioned before, a filament is propelled crooked
to its tangent even at zero self-propulsion velocity due to
the bending of the filament. Correspondingly, the center-
of-mass velocity is proportional to the filament curvature
and activity. Similarly, this proportionality holds for the
rotation frequency about the center-of-mass.49 Hence,
motility can emerge due to the hydrodynamic coupling
of various active units combined with symmetry broken
structures.

V. ACTIVE POLYMERS IN NETWORKS AND DENSE
POLYMER SOLUTIONS

A. Viscoelasticity of Dense Solutions of Polar Semiflexible
Polymers

In a theoretical study of polar active filaments, the
viscoelastic properties of a solution of such polymers
(3d) have been analysed.41 Thereby, significant activity-
induced modifications of the passive polymer dynamics
have been found. Specifically, the short-time and ter-
minal relaxation times are changed. Increased fluctua-
tions of the longitudinal modes imply a hardening of the
solution at high frequencies. Moreover, new relaxation
regimes appear due to a change of the ratio between the
transverse and longitudinal fluctuations. Specifically, at
short times the shear modulus G(t) of the solutions shows
new time regimes with the power-law t−1/8 followed by
a regime ∼ t−1/2 instead of the semiflexible-polymer-
typical regime ∼ t−3/4. Similar to passive polymers, a
plateau appears at longer times due to entanglements.
For active filaments, this plateau is shorter, both, for
rodlike and flexible polymers. Hence, activity leads to a
softening or fluidization of the solution due to their di-
rected motion.41 Similarly, softening for whole cells due
to motor activity has been observed.90
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FIG. 17. (Online color) Dependence of the shear relaxation
time on filament length for actin and actin-myosin networks.
The triangles indicate the relaxation times of an entangled F-
actin solution, whereas bullets correspond to actin networks
with active myosin under ATP conditions. (Reprinted by per-
mission from Macmillan Publishers Ltd: Nature91, copyright
2002.)

B. Relaxation and Transport Properties

Fluidization of actin-myosin gels due to motor activity
has been found experimentally.91,92 This is particularly
interesting, because passive (no ATP) myosin acts as a
crosslinker for actin polymers. Accordingly, the storage
modulus increases six-fold if passive myosin is added to
the solution. However, with a sufficient concentration of
ATP, the myosin proteins act as directional motors, and
propel the filaments relative to each other, causing a de-
crease of the relaxation time and fluidization of the gel.
Indeed, experiments show a drastic decrease of the vis-
cous relaxation time91 in qualitative agreement with the
theoretical considerations of Sec. II B. Simultaneously,
the length dependence of the relaxation time changes
from a L3 dependence to a linear dependence, as shown
in Fig. 17. The linear dependence on actin-length of the
relaxation time is in agreement with predictions for the
polar active polymer dynamics of Sec. III A (cf. Fig. 9).
In contrast, the longest relaxation time of the polymer
with APB monomers exhibits a different length depen-
dence, namely L3 − L2.5. This suggests that the actin
filaments are indeed driven tangential to their contour.

Recently, the dynamics of different genomic regions
in the nucleus of live cells has been studied, in partic-
ular, the influence of the protein laminA.93 LaminA is
considered to be important for the organization of chro-
matin in the cell nucleus by forming or initiating chromo-
somal interchain interactions (crosslinks between chro-
matin strands) over the whole nucleus.93 Measurements
of the dynamics of various genomic loci in several cell
lines93 yield, in the presence of laminA, a polymer-like
subdiffusive time dependence of the MSD, although with

FIG. 18. (Online color) Mean square displacements divided

by time for telomeres in Lmna+/+ cells (black squares) and

Lmna−/− cells (red bullets). Symbols designate the average
locus MSD while shaded areas mark the standard deviation
of all single loci MSDs. (From Ref.93)

an exponent somewhat smaller than the Rouse value 1/2
(cf. Sec. II B 4).93 The difference in the exponent can be
attributed to viscoelastic effects.37,64 Depletion of lam-
inA drastically accelerates the dynamics and the MSD
crosses over to normal diffusion (cf. Fig. 18). This in-
crease can be attributed to a release of constraints due
to the depletion of laminA and appearing large-scale
motions of genomic regions, driven by thermal and ac-
tive noise.37,93 The transition from a polymer-dynamics-
dominated time regime to accelerated diffusion is consis-
tent with our results shown in Fig. 5. Already moderate
active noise leads to an accelerated dynamics over several
orders in time.

VI. SUMMARY AND OUTLOOK

Polymers and semiflexible filaments are ubiquitous,
both in biology and in technical applications. Similar
omnipresent is activity in biological systems. However,
the implication of an active environment on the poly-
mer properties have only be realized recently, specifically
in the context of biological cells. The action of motor
proteins, as well as treadmilling due to polymerization
and de-polymerization of polar active filament in the cy-
toskeleton has long been studied to unravel cell motility
and internal cell dynamics. Yet, little is know about the
effect of the active cell environment on the properties of
other contained polymers such as the chromatin. Even
less is known about the material properties of active poly-
mer solutions and melts. We think that the incorporation
of activity in polymer materials may be a promising route
to the design of novel switchable and smart materials.

We are only at the beginning of a detailed understand-
ing of the interplay of driving forces, passive and active
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noise, polymer flexibility, and constraints due to other
polymers or geometrical boundaries. Most studies so far
have focused on single filaments, as reviewed in this arti-
cle. Besides, considerable effort has been devoted to stud-
ies of the dynamics of dense systems in two dimensions
in the nematic phase. Here, continuum models based
on the nematic order parameter proofed to be extremely
successful.17 It will be very interesting in the future to
bridge the gap between these very different levels of de-
scription, and to connect the single polymer properties to
the emergent behavior at large length- and time-scales.
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