000837184 001__ 837184
000837184 005__ 20240712113120.0
000837184 0247_ $$2doi$$a10.1021/acsnano.7b00922
000837184 0247_ $$2ISSN$$a1936-0851
000837184 0247_ $$2ISSN$$a1936-086X
000837184 0247_ $$2WOS$$aWOS:000402498400038
000837184 0247_ $$2altmetric$$aaltmetric:24694705
000837184 0247_ $$2pmid$$a28437078
000837184 037__ $$aFZJ-2017-06163
000837184 041__ $$aEnglish
000837184 082__ $$a540
000837184 1001_ $$0P:(DE-HGF)0$$aReyes Jiménez, Antonia$$b0
000837184 245__ $$aA Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries
000837184 260__ $$aWashington, DC$$bSoc.$$c2017
000837184 3367_ $$2DRIVER$$aarticle
000837184 3367_ $$2DataCite$$aOutput Types/Journal article
000837184 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1503994954_10816
000837184 3367_ $$2BibTeX$$aARTICLE
000837184 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837184 3367_ $$00$$2EndNote$$aJournal Article
000837184 520__ $$aThe next generation of lithium ion batteries (LIBs) with increased energy density for large-scale applications, such as electric mobility, and also for small electronic devices, such as microbatteries and on-chip batteries, requires advanced electrode active materials with enhanced specific and volumetric capacities. In this regard, silicon as anode material has attracted much attention due to its high specific capacity. However, the enormous volume changes during lithiation/delithiation are still a main obstacle avoiding the broad commercial use of Si-based electrodes. In this work, Si-based thin film electrodes, prepared by magnetron sputtering, are studied. Herein, we present a sophisticated surface design and electrode structure modification by amorphous carbon layers to increase the mechanical integrity and, thus, the electrochemical performance. Therefore, the influence of amorphous C thin film layers, either deposited on top (C/Si) or incorporated between the amorphous Si thin film layers (Si/C/Si), was characterized according to their physical and electrochemical properties. The thin film electrodes were thoroughly studied by means of electrochemical impedance spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. We can show that the silicon thin film electrodes with an amorphous C layer showed a remarkably improved electrochemical performance in terms of capacity retention and Coulombic efficiency. The C layer is able to mitigate the mechanical stress during lithiation of the Si thin film by buffering the volume changes and to reduce the loss of active lithium during solid electrolyte interphase formation and cycling.
000837184 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000837184 588__ $$aDataset connected to CrossRef
000837184 7001_ $$0P:(DE-HGF)0$$aKlöpsch, Richard$$b1
000837184 7001_ $$0P:(DE-HGF)0$$aWagner, Ralf$$b2
000837184 7001_ $$0P:(DE-HGF)0$$aRodehorst, Uta C.$$b3
000837184 7001_ $$0P:(DE-HGF)0$$aKolek, Martin$$b4
000837184 7001_ $$0P:(DE-HGF)0$$aNölle, Roman$$b5
000837184 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6$$eCorresponding author$$ufzj
000837184 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b7$$eCorresponding author
000837184 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.7b00922$$gVol. 11, no. 5, p. 4731 - 4744$$n5$$p4731 - 4744$$tACS nano$$v11$$x1936-086X$$y2017
000837184 8564_ $$uhttps://juser.fz-juelich.de/record/837184/files/acsnano.7b00922.pdf$$yRestricted
000837184 8564_ $$uhttps://juser.fz-juelich.de/record/837184/files/acsnano.7b00922.gif?subformat=icon$$xicon$$yRestricted
000837184 8564_ $$uhttps://juser.fz-juelich.de/record/837184/files/acsnano.7b00922.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837184 8564_ $$uhttps://juser.fz-juelich.de/record/837184/files/acsnano.7b00922.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837184 8564_ $$uhttps://juser.fz-juelich.de/record/837184/files/acsnano.7b00922.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837184 8564_ $$uhttps://juser.fz-juelich.de/record/837184/files/acsnano.7b00922.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837184 909CO $$ooai:juser.fz-juelich.de:837184$$pVDB
000837184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
000837184 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000837184 9141_ $$y2017
000837184 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2015
000837184 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837184 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837184 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837184 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837184 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837184 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837184 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837184 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837184 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS NANO : 2015
000837184 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000837184 980__ $$ajournal
000837184 980__ $$aVDB
000837184 980__ $$aI:(DE-Juel1)IEK-12-20141217
000837184 980__ $$aUNRESTRICTED
000837184 981__ $$aI:(DE-Juel1)IMD-4-20141217