000837185 001__ 837185
000837185 005__ 20240712113120.0
000837185 0247_ $$2doi$$a10.1016/j.jpowsour.2017.04.073
000837185 0247_ $$2ISSN$$a0378-7753
000837185 0247_ $$2ISSN$$a1873-2755
000837185 0247_ $$2WOS$$aWOS:000402342700011
000837185 037__ $$aFZJ-2017-06164
000837185 041__ $$aEnglish
000837185 082__ $$a620
000837185 1001_ $$0P:(DE-Juel1)167369$$aZhang, Tong$$b0$$ufzj
000837185 245__ $$aEnabling steady graphite anode cycling with high voltage, additive-free, sulfolane-based electrolyte: Role of the binder
000837185 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000837185 3367_ $$2DRIVER$$aarticle
000837185 3367_ $$2DataCite$$aOutput Types/Journal article
000837185 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1503996175_10811
000837185 3367_ $$2BibTeX$$aARTICLE
000837185 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837185 3367_ $$00$$2EndNote$$aJournal Article
000837185 520__ $$aWe demonstrate here the possibility of operating both high voltage spinel and high mass loading graphite electrodes in a 1 M LiPF6 in SL/DMC (1/1, wt/wt) electrolyte without the use of additive. A crucial point for practical graphite electrode operation is the use of the cheaper and environmentally friendly carboxymethyl cellulose (CMC)/styrene-butadiene rubber (SBR) combination instead of the PVDF-based electrodes used in most laboratory studies. With this type of anode we also show the operation of a full Li-ion cell operating at 4.5 V without any additive and show that most of the Li+ transport limitation observed in half-cells are in fact due to the Li metal counter electrode. The anode binder influence is to be considered for the development of high voltage electrolytes lacking good intrinsic SEI building properties, as the anode binder does not affect cathode performance, contrary to most additives. It opens the route for further improvement by use of SEI forming additives (molecular and salts), keeping in mind the requirement for the cathode.
000837185 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000837185 588__ $$aDataset connected to CrossRef
000837185 7001_ $$00000-0001-8245-5815$$ade Meatza, Iratxe$$b1
000837185 7001_ $$0P:(DE-HGF)0$$aQi, Xin$$b2
000837185 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie$$b3$$eCorresponding author
000837185 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2017.04.073$$gVol. 356, p. 97 - 102$$p97 - 102$$tJournal of power sources$$v356$$x0378-7753$$y2017
000837185 8564_ $$uhttps://juser.fz-juelich.de/record/837185/files/1-s2.0-S0378775317305682-main.pdf$$yRestricted
000837185 8564_ $$uhttps://juser.fz-juelich.de/record/837185/files/1-s2.0-S0378775317305682-main.gif?subformat=icon$$xicon$$yRestricted
000837185 8564_ $$uhttps://juser.fz-juelich.de/record/837185/files/1-s2.0-S0378775317305682-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837185 8564_ $$uhttps://juser.fz-juelich.de/record/837185/files/1-s2.0-S0378775317305682-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837185 8564_ $$uhttps://juser.fz-juelich.de/record/837185/files/1-s2.0-S0378775317305682-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837185 8564_ $$uhttps://juser.fz-juelich.de/record/837185/files/1-s2.0-S0378775317305682-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837185 909CO $$ooai:juser.fz-juelich.de:837185$$pVDB
000837185 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167369$$aForschungszentrum Jülich$$b0$$kFZJ
000837185 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166311$$aForschungszentrum Jülich$$b3$$kFZJ
000837185 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000837185 9141_ $$y2017
000837185 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000837185 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837185 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837185 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837185 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837185 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837185 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837185 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837185 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837185 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837185 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837185 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000837185 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000837185 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000837185 980__ $$ajournal
000837185 980__ $$aVDB
000837185 980__ $$aI:(DE-Juel1)IEK-12-20141217
000837185 980__ $$aUNRESTRICTED
000837185 981__ $$aI:(DE-Juel1)IMD-4-20141217