000837186 001__ 837186
000837186 005__ 20210129231220.0
000837186 0247_ $$2doi$$a10.1016/j.apsusc.2017.06.272
000837186 0247_ $$2ISSN$$a0169-4332
000837186 0247_ $$2ISSN$$a1873-5584
000837186 0247_ $$2WOS$$aWOS:000416965500009
000837186 037__ $$aFZJ-2017-06165
000837186 041__ $$aEnglish
000837186 082__ $$a670
000837186 1001_ $$0P:(DE-HGF)0$$aWrana, D.$$b0$$eCorresponding author
000837186 245__ $$aIn situ study of redox processes on the surface of SrTiO$_{3}$ single crystals
000837186 260__ $$aAmsterdam$$bElsevier$$c2017
000837186 3367_ $$2DRIVER$$aarticle
000837186 3367_ $$2DataCite$$aOutput Types/Journal article
000837186 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512386072_12598
000837186 3367_ $$2BibTeX$$aARTICLE
000837186 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837186 3367_ $$00$$2EndNote$$aJournal Article
000837186 520__ $$aIn this paper, we report on surface transformations under high-temperature (up to 1000 °C) annealing of SrTiO3(100) single crystals under reducing conditions and in situ oxidation. We compare macroscale electrical measurements with nanoscale investigations of as-reduced and oxidized surfaces. On the nanoscale, annealing in ultra-high-vacuum (UHV) conditions causes a restoration of the long-range atomic order of the (1 × 1) pattern. However, above annealing temperatures of 900 °C, a complex reconstruction of (×)R 33.7° and subsequently (×)R 26.6° appears. The surface becomes Ti-rich and residual carbon desorbs. Electrical surface conductivity increases with the annealing temperature, revealing an inhomogeneous spot-like structure on the nanoscale. Mapping of the surface potential also reveals comparable spatial variations, marking exits of dislocations. The estimated surface work function is increased upon reoxidation by 0.55 eV in the case of annealing at 900 °C, when (×)R 33.7° dominates. Our results show that in contrast to the macroscopic resistance of the crystal, the nanoscale surface conductivity and surface potential are significantly influenced by redox processes at room temperature.
000837186 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000837186 588__ $$aDataset connected to CrossRef
000837186 7001_ $$0P:(DE-Juel1)142194$$aRodenbücher, C.$$b1
000837186 7001_ $$0P:(DE-HGF)0$$aBełza, W.$$b2
000837186 7001_ $$0P:(DE-Juel1)130993$$aSzot, K.$$b3
000837186 7001_ $$0P:(DE-HGF)0$$aKrok, F.$$b4
000837186 773__ $$0PERI:(DE-600)2002520-8$$a10.1016/j.apsusc.2017.06.272$$gp. S016943321731927X$$p46-52$$tApplied surface science$$v432$$x0169-4332$$y2017
000837186 8564_ $$uhttps://juser.fz-juelich.de/record/837186/files/1-s2.0-S016943321731927X-main.pdf$$yRestricted
000837186 8564_ $$uhttps://juser.fz-juelich.de/record/837186/files/1-s2.0-S016943321731927X-main.gif?subformat=icon$$xicon$$yRestricted
000837186 8564_ $$uhttps://juser.fz-juelich.de/record/837186/files/1-s2.0-S016943321731927X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837186 8564_ $$uhttps://juser.fz-juelich.de/record/837186/files/1-s2.0-S016943321731927X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837186 8564_ $$uhttps://juser.fz-juelich.de/record/837186/files/1-s2.0-S016943321731927X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837186 8564_ $$uhttps://juser.fz-juelich.de/record/837186/files/1-s2.0-S016943321731927X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837186 909CO $$ooai:juser.fz-juelich.de:837186$$pVDB
000837186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b1$$kFZJ
000837186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130993$$aForschungszentrum Jülich$$b3$$kFZJ
000837186 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000837186 9141_ $$y2017
000837186 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837186 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL SURF SCI : 2015
000837186 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837186 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837186 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837186 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837186 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837186 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837186 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837186 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837186 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837186 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000837186 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837186 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000837186 980__ $$ajournal
000837186 980__ $$aVDB
000837186 980__ $$aI:(DE-Juel1)PGI-7-20110106
000837186 980__ $$aUNRESTRICTED