001     837187
005     20240709081926.0
024 7 _ |a 10.1002/aenm.201600906
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a WOS:000387664800006
|2 WOS
037 _ _ |a FZJ-2017-06166
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Wang, Jun
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Lithium- and Manganese-Rich Oxide Cathode Materials for High-Energy Lithium Ion Batteries
260 _ _ |a Weinheim
|c 2016
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1503996376_10813
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Layered lithium- and manganese-rich oxides (LMROs), described as xLi2MnO3·(1–x)LiMO2 or Li1+yM1–yO2 (M = Mn, Ni, Co, etc., 0 < x <1, 0 < y ≤ 0.33), have attracted much attention as cathode materials for lithium ion batteries in recent years. They exhibit very promising capacities, up to above 300 mA h g−1, due to transition metal redox reactions and unconventional oxygen anion redox reaction. However, they suffer from structural degradation and severe voltage fade (i.e., decreasing energy storage) upon cycling, which are plaguing their practical application. Thus, this review will aim to describe the pristine structure, high-capacity mechanisms and structure evolutions of LMROs. Also, recent progress associated with understanding and mitigating the voltage decay of LMROs will be discussed. Several approaches to solve this problem, such as adjusting cycling voltage window and chemical composition, optimizing synthesis strategy, controlling morphology, doping, surface modification, constructing core-shell and layered-spinel hetero structures, are described in detail.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a He, Xin
|0 P:(DE-Juel1)169319
|b 1
|u fzj
700 1 _ |a Paillard, Elie-Elisée
|0 P:(DE-Juel1)166311
|b 2
|u fzj
700 1 _ |a Laszczynski, Nina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Li, Jie
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Passerini, Stefano
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1002/aenm.201600906
|g Vol. 6, no. 21, p. 1600906 -
|0 PERI:(DE-600)2594556-7
|n 21
|p 1600906 -
|t Advanced energy materials
|v 6
|y 2016
|x 1614-6832
909 C O |o oai:juser.fz-juelich.de:837187
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169319
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166311
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV ENERGY MATER : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21