000837190 001__ 837190
000837190 005__ 20240712113120.0
000837190 0247_ $$2doi$$a10.1016/j.nanoen.2016.07.021
000837190 0247_ $$2WOS$$aWOS:000384910500067
000837190 037__ $$aFZJ-2017-06169
000837190 041__ $$aEnglish
000837190 082__ $$a540
000837190 1001_ $$0P:(DE-Juel1)169319$$aHe, Xin$$b0$$ufzj
000837190 245__ $$aDurable high-rate capability Na$_{0.44}$ MnO$_{2}$ cathode material for sodium-ion batteries
000837190 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2016
000837190 3367_ $$2DRIVER$$aarticle
000837190 3367_ $$2DataCite$$aOutput Types/Journal article
000837190 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1503997362_10818
000837190 3367_ $$2BibTeX$$aARTICLE
000837190 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837190 3367_ $$00$$2EndNote$$aJournal Article
000837190 520__ $$aMonocrystalline orthorhombic Na0.44MnO2 nanoplate as a potential cathode material for sodium-ion batteries has been synthesized by a template-assisted sol-gel method. It exhibits high crystallinity, pure phase and homogeneous size distribution. During the synthesis, acidic and reductive conditions are applied to limit the production of unfavorable Birnessite phase in the precursor, and colloidal polystyrene is included to avoid morphology collapse during the gel formation and particle elongation in one direction. The decompositions of polystyrene and citric acid during high temperature firing offer a reductive carbothermal condition which can suppress the formation of unidimensional particles, and limit particle growth along the [001] direction. As a consequence, the material delivers 96 mAh g−1 discharge capacity at 10 C (86% of 0.1 C capacity) and maintains 97.8% capacity after 100 cycles at 0.5 C. Such superior rate capability and cycling stability of this material are among the best to date, suggesting its great interest in practical applications.
000837190 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000837190 588__ $$aDataset connected to CrossRef
000837190 7001_ $$0P:(DE-HGF)0$$aWang, Jun$$b1
000837190 7001_ $$0P:(DE-HGF)0$$aQiu, Bao$$b2
000837190 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie-Elisée$$b3$$ufzj
000837190 7001_ $$0P:(DE-HGF)0$$aMa, Chuze$$b4
000837190 7001_ $$0P:(DE-HGF)0$$aCao, Xia$$b5
000837190 7001_ $$0P:(DE-HGF)0$$aLiu, Haodong$$b6
000837190 7001_ $$0P:(DE-HGF)0$$aStan, Marian Cristian$$b7
000837190 7001_ $$0P:(DE-HGF)0$$aLiu, Haidong$$b8
000837190 7001_ $$0P:(DE-HGF)0$$aGallash, Tobias$$b9
000837190 7001_ $$0P:(DE-HGF)0$$aMeng, Y. Shirley$$b10$$eCorresponding author
000837190 7001_ $$0P:(DE-HGF)0$$aLi, Jie$$b11$$eCorresponding author
000837190 773__ $$0PERI:(DE-600)2648700-7$$a10.1016/j.nanoen.2016.07.021$$gVol. 27, p. 602 - 610$$p602 - 610$$tNano energy$$v27$$x2211-2855$$y2016
000837190 8564_ $$uhttps://juser.fz-juelich.de/record/837190/files/1-s2.0-S2211285516302610-main.pdf$$yRestricted
000837190 8564_ $$uhttps://juser.fz-juelich.de/record/837190/files/1-s2.0-S2211285516302610-main.gif?subformat=icon$$xicon$$yRestricted
000837190 8564_ $$uhttps://juser.fz-juelich.de/record/837190/files/1-s2.0-S2211285516302610-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837190 8564_ $$uhttps://juser.fz-juelich.de/record/837190/files/1-s2.0-S2211285516302610-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837190 8564_ $$uhttps://juser.fz-juelich.de/record/837190/files/1-s2.0-S2211285516302610-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837190 8564_ $$uhttps://juser.fz-juelich.de/record/837190/files/1-s2.0-S2211285516302610-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837190 909CO $$ooai:juser.fz-juelich.de:837190$$pVDB
000837190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169319$$aForschungszentrum Jülich$$b0$$kFZJ
000837190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166311$$aForschungszentrum Jülich$$b3$$kFZJ
000837190 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000837190 9141_ $$y2017
000837190 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO ENERGY : 2015
000837190 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837190 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837190 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837190 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837190 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837190 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000837190 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO ENERGY : 2015
000837190 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000837190 980__ $$ajournal
000837190 980__ $$aVDB
000837190 980__ $$aI:(DE-Juel1)IEK-12-20141217
000837190 980__ $$aUNRESTRICTED
000837190 981__ $$aI:(DE-Juel1)IMD-4-20141217