000837228 001__ 837228
000837228 005__ 20240711092300.0
000837228 0247_ $$2doi$$a10.1016/j.jallcom.2017.05.113
000837228 0247_ $$2ISSN$$a0925-8388
000837228 0247_ $$2ISSN$$a1873-4669
000837228 0247_ $$2WOS$$aWOS:000402931200034
000837228 0247_ $$2altmetric$$aaltmetric:24694727
000837228 037__ $$aFZJ-2017-06203
000837228 041__ $$aEnglish
000837228 082__ $$a670
000837228 1001_ $$0P:(DE-Juel1)129770$$aNiewolak, L.$$b0$$eCorresponding author
000837228 245__ $$aTemperature dependence of phase composition in W and Si-alloyed high chromium ferritic steels for SOFC interconnect applications
000837228 260__ $$aLausanne$$bElsevier$$c2017
000837228 3367_ $$2DRIVER$$aarticle
000837228 3367_ $$2DataCite$$aOutput Types/Journal article
000837228 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1504085990_16837
000837228 3367_ $$2BibTeX$$aARTICLE
000837228 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837228 3367_ $$00$$2EndNote$$aJournal Article
000837228 520__ $$aTungsten alloyed high-chromium ferritic steels such as the commercially available alloy Crofer 22 H have been proposed as construction materials for interconnects in Solid Oxide Fuel Cells. The background of the present study relates to the qualification of such alloys, especially with respect to a possible optimization of the tungsten concentration, aiming at formation of the strengthening intermetallic phases. For this purpose the chemical composition of intermetallic phases in a number of Fe-Cr-W-base model alloys after exposure at temperatures between 600 °C and 900 °C was measured by SEM/EDX and TEM/EDX. The obtained chemical and phase compositions were used for estimation of the iron-rich corner of the Fe-Cr-W system in the temperature range 600–900 °C. Finally, the experimental results were compared with values calculated using the Thermocalc software and the database TCFE 7. This comparison showed that in the temperature range 800 °C–900 °C the calculations gave a qualitatively correct description of phases present in the microstructure, however, substantial differences between calculations and experiments existed in the temperature range 600 °C–700 °C. Moreover, it was found that the solubility of silicon in the C14 Laves phase of the type Fe2W is substantially smaller than that in the Fe2Nb based laves phase present in Crofer 22 H.
000837228 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000837228 588__ $$aDataset connected to CrossRef
000837228 7001_ $$0P:(DE-Juel1)129819$$aZurek, J.$$b1$$ufzj
000837228 7001_ $$0P:(DE-Juel1)129810$$aWessel, E.$$b2$$ufzj
000837228 7001_ $$0P:(DE-HGF)0$$aHattendorf, H.$$b3
000837228 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, W. J.$$b4$$ufzj
000837228 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2017.05.113$$gVol. 717, p. 240 - 253$$p240-253$$tJournal of alloys and compounds$$v717$$x0925-8388$$y2017
000837228 8564_ $$uhttps://juser.fz-juelich.de/record/837228/files/1-s2.0-S092583881731705X-main.pdf$$yRestricted
000837228 8564_ $$uhttps://juser.fz-juelich.de/record/837228/files/1-s2.0-S092583881731705X-main.gif?subformat=icon$$xicon$$yRestricted
000837228 8564_ $$uhttps://juser.fz-juelich.de/record/837228/files/1-s2.0-S092583881731705X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837228 8564_ $$uhttps://juser.fz-juelich.de/record/837228/files/1-s2.0-S092583881731705X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837228 8564_ $$uhttps://juser.fz-juelich.de/record/837228/files/1-s2.0-S092583881731705X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837228 8564_ $$uhttps://juser.fz-juelich.de/record/837228/files/1-s2.0-S092583881731705X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837228 909CO $$ooai:juser.fz-juelich.de:837228$$pVDB
000837228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129819$$aForschungszentrum Jülich$$b1$$kFZJ
000837228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129810$$aForschungszentrum Jülich$$b2$$kFZJ
000837228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich$$b4$$kFZJ
000837228 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000837228 9141_ $$y2017
000837228 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ALLOY COMPD : 2015
000837228 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837228 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837228 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837228 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837228 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837228 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837228 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837228 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837228 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837228 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837228 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000837228 980__ $$ajournal
000837228 980__ $$aVDB
000837228 980__ $$aI:(DE-Juel1)IEK-2-20101013
000837228 980__ $$aUNRESTRICTED
000837228 981__ $$aI:(DE-Juel1)IMD-1-20101013