001     837228
005     20240711092300.0
024 7 _ |a 10.1016/j.jallcom.2017.05.113
|2 doi
024 7 _ |a 0925-8388
|2 ISSN
024 7 _ |a 1873-4669
|2 ISSN
024 7 _ |a WOS:000402931200034
|2 WOS
024 7 _ |a altmetric:24694727
|2 altmetric
037 _ _ |a FZJ-2017-06203
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Niewolak, L.
|0 P:(DE-Juel1)129770
|b 0
|e Corresponding author
245 _ _ |a Temperature dependence of phase composition in W and Si-alloyed high chromium ferritic steels for SOFC interconnect applications
260 _ _ |a Lausanne
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1504085990_16837
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tungsten alloyed high-chromium ferritic steels such as the commercially available alloy Crofer 22 H have been proposed as construction materials for interconnects in Solid Oxide Fuel Cells. The background of the present study relates to the qualification of such alloys, especially with respect to a possible optimization of the tungsten concentration, aiming at formation of the strengthening intermetallic phases. For this purpose the chemical composition of intermetallic phases in a number of Fe-Cr-W-base model alloys after exposure at temperatures between 600 °C and 900 °C was measured by SEM/EDX and TEM/EDX. The obtained chemical and phase compositions were used for estimation of the iron-rich corner of the Fe-Cr-W system in the temperature range 600–900 °C. Finally, the experimental results were compared with values calculated using the Thermocalc software and the database TCFE 7. This comparison showed that in the temperature range 800 °C–900 °C the calculations gave a qualitatively correct description of phases present in the microstructure, however, substantial differences between calculations and experiments existed in the temperature range 600 °C–700 °C. Moreover, it was found that the solubility of silicon in the C14 Laves phase of the type Fe2W is substantially smaller than that in the Fe2Nb based laves phase present in Crofer 22 H.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zurek, J.
|0 P:(DE-Juel1)129819
|b 1
|u fzj
700 1 _ |a Wessel, E.
|0 P:(DE-Juel1)129810
|b 2
|u fzj
700 1 _ |a Hattendorf, H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Quadakkers, W. J.
|0 P:(DE-Juel1)129782
|b 4
|u fzj
773 _ _ |a 10.1016/j.jallcom.2017.05.113
|g Vol. 717, p. 240 - 253
|0 PERI:(DE-600)2012675-X
|p 240-253
|t Journal of alloys and compounds
|v 717
|y 2017
|x 0925-8388
856 4 _ |u https://juser.fz-juelich.de/record/837228/files/1-s2.0-S092583881731705X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837228/files/1-s2.0-S092583881731705X-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837228/files/1-s2.0-S092583881731705X-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837228/files/1-s2.0-S092583881731705X-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837228/files/1-s2.0-S092583881731705X-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837228/files/1-s2.0-S092583881731705X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837228
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129819
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129810
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129782
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ALLOY COMPD : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21