000837232 001__ 837232
000837232 005__ 20210129231230.0
000837232 0247_ $$2doi$$a10.1002/wcms.1311
000837232 0247_ $$2WOS$$aWOS:000403439500004
000837232 0247_ $$2altmetric$$aaltmetric:22026916
000837232 037__ $$aFZJ-2017-06207
000837232 082__ $$a004
000837232 1001_ $$0P:(DE-HGF)0$$aHermans, Susanne M. A.$$b0
000837232 245__ $$aRigidity theory for biomolecules: concepts, software, and applications
000837232 260__ $$aMalden, MA$$bWiley-Blackwell$$c2017
000837232 3367_ $$2DRIVER$$aarticle
000837232 3367_ $$2DataCite$$aOutput Types/Journal article
000837232 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520840019_25959
000837232 3367_ $$2BibTeX$$aARTICLE
000837232 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837232 3367_ $$00$$2EndNote$$aJournal Article
000837232 520__ $$aThe mechanical heterogeneity of biomolecular structures is intimately linked to their diverse biological functions. Applying rigidity theory to biomolecules identifies this heterogeneous composition of flexible and rigid regions, which can aid in the understanding of biomolecular stability and long-ranged information transfer through biomolecules, and yield valuable information for rational drug design and protein engineering. We review fundamental concepts in rigidity theory, ways to represent biomolecules as constraint networks, and methodological and algorithmic developments for analyzing such networks and linking the results to biomolecular function. Software packages for performing rigidity analyses on biomolecules in an efficient, automated way are described, as are rigidity analyses on biomolecules including the ribosome, viruses, or transmembrane proteins. The analyses address questions of allosteric mechanisms, mutation effects on (thermo-)stability, protein (un-)folding, and coarse-graining of biomolecules. We advocate that the application of rigidity theory to biomolecules has matured in such a way that it could be broadly applied as a computational biophysical method to scrutinize biomolecular function from a structure-based point of view and to complement approaches focused on biomolecular dynamics. We discuss possibilities to improve constraint network representations and to perform large-scale and prospective studies. WIREs Comput Mol Sci 2017, 7:e1311. doi: 10.1002/wcms.1311
000837232 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000837232 7001_ $$0P:(DE-HGF)0$$aPfleger, Christopher$$b1
000837232 7001_ $$0P:(DE-HGF)0$$aNutschel, Christina$$b2
000837232 7001_ $$0P:(DE-HGF)0$$aHanke, Christian A.$$b3
000837232 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b4$$eCorresponding author
000837232 773__ $$0PERI:(DE-600)2599565-0$$a10.1002/wcms.1311$$n4$$pe1311$$tWiley interdisciplinary reviews / Computational Molecular Science$$v7$$x1759-0876$$y2017
000837232 909CO $$ooai:juser.fz-juelich.de:837232$$pVDB
000837232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b4$$kFZJ
000837232 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172663$$aics-6 $$b4
000837232 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000837232 9141_ $$y2017
000837232 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWIRES COMPUT MOL SCI : 2015
000837232 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837232 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837232 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837232 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837232 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837232 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837232 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bWIRES COMPUT MOL SCI : 2015
000837232 920__ $$lyes
000837232 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000837232 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000837232 980__ $$ajournal
000837232 980__ $$aVDB
000837232 980__ $$aI:(DE-Juel1)ICS-6-20110106
000837232 980__ $$aI:(DE-Juel1)JSC-20090406
000837232 980__ $$aUNRESTRICTED
000837232 981__ $$aI:(DE-Juel1)IBI-7-20200312