000837279 001__ 837279
000837279 005__ 20240711113649.0
000837279 0247_ $$2doi$$a10.1016/j.nme.2016.10.025
000837279 0247_ $$2Handle$$a2128/16319
000837279 0247_ $$2WOS$$aWOS:000417293300027
000837279 037__ $$aFZJ-2017-06248
000837279 082__ $$a333.7
000837279 1001_ $$0P:(DE-Juel1)145480$$aPanayotis, S.$$b0$$eCorresponding author
000837279 245__ $$aSelf-castellation of tungsten monoblock under high heat flux loading and impact of material properties
000837279 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000837279 3367_ $$2DRIVER$$aarticle
000837279 3367_ $$2DataCite$$aOutput Types/Journal article
000837279 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1514899969_30395
000837279 3367_ $$2BibTeX$$aARTICLE
000837279 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837279 3367_ $$00$$2EndNote$$aJournal Article
000837279 520__ $$aIn the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highlighted that the higher the recrystallization resistance, the lower the number of cracks detected during high heat flux tests. Thermo-mechanical finite element modelling demonstrated that the maximum surface temperature ranges from 1800 °C to 2200 °C and in this range recrystallization of tungsten occurred. Furthermore, it indicated that loss of strength due to recrystallization is responsible for the development of macro-cracks in the tungsten monoblock.
000837279 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000837279 588__ $$aDataset connected to CrossRef
000837279 7001_ $$0P:(DE-HGF)0$$aHirai, T.$$b1
000837279 7001_ $$0P:(DE-HGF)0$$aBarabash, V.$$b2
000837279 7001_ $$0P:(DE-HGF)0$$aDurocher, A.$$b3
000837279 7001_ $$0P:(DE-HGF)0$$aEscourbiac, F.$$b4
000837279 7001_ $$0P:(DE-Juel1)129747$$aLinke, J.$$b5
000837279 7001_ $$0P:(DE-Juel1)129751$$aLoewenhoff, Th.$$b6
000837279 7001_ $$0P:(DE-HGF)0$$aMerola, M.$$b7
000837279 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b8
000837279 7001_ $$0P:(DE-Juel1)130175$$aUytdenhouwen, I.$$b9
000837279 7001_ $$0P:(DE-Juel1)129811$$aWirtz, Marius$$b10$$ufzj
000837279 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2016.10.025$$gp. S2352179116300874$$p200-204$$tNuclear materials and energy$$v12$$x2352-1791$$y2017
000837279 8564_ $$uhttps://juser.fz-juelich.de/record/837279/files/1-s2.0-S2352179116300874-main.pdf$$yOpenAccess
000837279 8564_ $$uhttps://juser.fz-juelich.de/record/837279/files/1-s2.0-S2352179116300874-main.gif?subformat=icon$$xicon$$yOpenAccess
000837279 8564_ $$uhttps://juser.fz-juelich.de/record/837279/files/1-s2.0-S2352179116300874-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837279 8564_ $$uhttps://juser.fz-juelich.de/record/837279/files/1-s2.0-S2352179116300874-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837279 8564_ $$uhttps://juser.fz-juelich.de/record/837279/files/1-s2.0-S2352179116300874-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837279 8564_ $$uhttps://juser.fz-juelich.de/record/837279/files/1-s2.0-S2352179116300874-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837279 909CO $$ooai:juser.fz-juelich.de:837279$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000837279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129747$$aForschungszentrum Jülich$$b5$$kFZJ
000837279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129751$$aForschungszentrum Jülich$$b6$$kFZJ
000837279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b8$$kFZJ
000837279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130175$$aForschungszentrum Jülich$$b9$$kFZJ
000837279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b10$$kFZJ
000837279 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000837279 9141_ $$y2017
000837279 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837279 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000837279 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000837279 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000837279 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837279 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000837279 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837279 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837279 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000837279 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000837279 9801_ $$aFullTexts
000837279 980__ $$ajournal
000837279 980__ $$aVDB
000837279 980__ $$aUNRESTRICTED
000837279 980__ $$aI:(DE-Juel1)IEK-4-20101013
000837279 980__ $$aI:(DE-Juel1)IEK-2-20101013
000837279 981__ $$aI:(DE-Juel1)IMD-1-20101013
000837279 981__ $$aI:(DE-Juel1)IFN-1-20101013