000837282 001__ 837282 000837282 005__ 20240711113728.0 000837282 0247_ $$2doi$$a10.1088/1741-4326/57/3/036011 000837282 0247_ $$2ISSN$$a0029-5515 000837282 0247_ $$2ISSN$$a1741-4326 000837282 0247_ $$2WOS$$aWOS:000391470100004 000837282 037__ $$aFZJ-2017-06251 000837282 082__ $$a530 000837282 1001_ $$0P:(DE-HGF)0$$aOgorodnikova, O. V.$$b0$$eCorresponding author 000837282 245__ $$aSurface modification and deuterium retention in reduced-activation steels under low-energy deuterium plasma exposure. Part II: steels pre-damaged with 20 MeV W ions and high heat flux 000837282 260__ $$aVienna$$bIAEA$$c2017 000837282 3367_ $$2DRIVER$$aarticle 000837282 3367_ $$2DataCite$$aOutput Types/Journal article 000837282 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1504178500_31192 000837282 3367_ $$2BibTeX$$aARTICLE 000837282 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000837282 3367_ $$00$$2EndNote$$aJournal Article 000837282 520__ $$aThe reduced-activation ferritic/martensitic (RAFM) steels including Eurofer (9Cr) and oxide dispersion strengthened (ODS) steels by the addition of Y2O3 particles investigated in Part I were pre-damaged either with 20 MeV W ions at room temperature at IPP (Garching) or with high heat flux at FZJ (Juelich) and subsequently exposed to low energy (~20–200 eV per D) deuterium (D) plasma up to a fluence of 2.9 × 1025 D m−2 in the temperature range from 290 K to 700 K. The pre-irradiation with 20 MeV W ions at room temperature up to 1 displacement per atom (dpa) has no noticeable influence on the steel surface morphology before and after the D plasma exposure. The pre-irradiation with W ions leads to the same concentration of deuterium in all kinds of investigated steels, regardless of the presence of nanoparticles and Cr content. It was found that (i) both kinds of irradiation with W ions and high heat flux increase the D retention in steels compared to undamaged steels and (ii) the D retention in both pre-damaged and undamaged steels decreases with a formation of surface roughness under the irradiation of steels with deuterium ions with incident energy which exceeds the threshold of sputtering. The increase in the D retention in RAFM steels pre-damaged either with W ions (damage up to ~3 µm) or high heat flux (damage up to ~10 µm) diminishes with increasing the temperature. It is important to mention that the near surface modifications caused by either implantation of high energy ions or a high heat flux load, significantly affect the total D retention at low temperatures or low fluences but have a negligible impact on the total D retention at elevated temperatures and high fluences because, in these cases, the D retention is mainly determined by bulk diffusion. 000837282 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0 000837282 588__ $$aDataset connected to CrossRef 000837282 7001_ $$0P:(DE-Juel1)169315$$aZhou, Z.$$b1 000837282 7001_ $$0P:(DE-HGF)0$$aSugiyama, K.$$b2 000837282 7001_ $$0P:(DE-HGF)0$$aBalden, M.$$b3 000837282 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b4 000837282 7001_ $$0P:(DE-HGF)0$$aGasparyan, Yu.$$b5 000837282 7001_ $$0P:(DE-HGF)0$$aEfimov, V.$$b6 000837282 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/57/3/036011$$gVol. 57, no. 3, p. 036011 -$$n3$$p036011 -$$tNuclear fusion$$v57$$x1741-4326$$y2017 000837282 8564_ $$uhttps://juser.fz-juelich.de/record/837282/files/Ogorodnikova_2017_Nucl._Fusion_57_036011.pdf$$yRestricted 000837282 8564_ $$uhttps://juser.fz-juelich.de/record/837282/files/Ogorodnikova_2017_Nucl._Fusion_57_036011.pdf?subformat=pdfa$$xpdfa$$yRestricted 000837282 909CO $$ooai:juser.fz-juelich.de:837282$$pVDB 000837282 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169315$$aForschungszentrum Jülich$$b1$$kFZJ 000837282 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b4$$kFZJ 000837282 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0 000837282 9141_ $$y2017 000837282 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000837282 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000837282 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2015 000837282 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000837282 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000837282 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000837282 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000837282 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000837282 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000837282 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000837282 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000837282 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000837282 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0 000837282 980__ $$ajournal 000837282 980__ $$aVDB 000837282 980__ $$aI:(DE-Juel1)IEK-4-20101013 000837282 980__ $$aUNRESTRICTED 000837282 981__ $$aI:(DE-Juel1)IFN-1-20101013