001     837318
005     20210129231302.0
024 7 _ |a 10.1021/acsnano.7b02449
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 2128/15229
|2 Handle
024 7 _ |a WOS:000404808000107
|2 WOS
024 7 _ |a altmetric:20575197
|2 altmetric
024 7 _ |a pmid:28541656
|2 pmid
037 _ _ |a FZJ-2017-06283
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Hollerer, Michael
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Charge Transfer and Orbital Level Alignment at Inorganic/Organic Interfaces: The Role of Dielectric Interlayers
260 _ _ |a Washington, DC
|c 2017
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1504269405_10279
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a It is becoming accepted that ultrathin dielectric layers on metals are not merely passive decoupling layers, but can actively influence orbital energy level alignment and charge transfer at interfaces. As such, they can be important in applications ranging from catalysis to organic electronics. However, the details at the molecular level are still under debate. In this study, we present a comprehensive analysis of the phenomenon of charge transfer promoted by a dielectric interlayer with a comparative study of pentacene adsorbed on Ag(001) with and without an ultrathin MgO interlayer. Using scanning tunneling microscopy and photoemission tomography supported by density functional theory, we are able to identify the orbitals involved and quantify the degree of charge transfer in both cases. Fractional charge transfer occurs for pentacene adsorbed on Ag(001), while the presence of the ultrathin MgO interlayer promotes integer charge transfer with the lowest unoccupied molecular orbital transforming into a singly occupied and singly unoccupied state separated by a large gap around the Fermi energy. Our experimental approach allows a direct access to the individual factors governing the energy level alignment and charge-transfer processes for molecular adsorbates on inorganic substrates.
536 _ _ |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141)
|0 G:(DE-HGF)POF3-141
|c POF3-141
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lüftner, Daniel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hurdax, Philipp
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ules, Thomas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Soubatch, Serguei
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Tautz, Frank Stefan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Koller, Georg
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Puschnig, Peter
|0 0000-0002-8057-7795
|b 7
700 1 _ |a Sterrer, Martin
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
700 1 _ |a Ramsey, Michael G.
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1021/acsnano.7b02449
|g Vol. 11, no. 6, p. 6252 - 6260
|0 PERI:(DE-600)2383064-5
|n 6
|p 6252 - 6260
|t ACS nano
|v 11
|y 2017
|x 1936-086X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/837318/files/acsnano.7b02449.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/837318/files/acsnano.7b02449.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/837318/files/acsnano.7b02449.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/837318/files/acsnano.7b02449.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/837318/files/acsnano.7b02449.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/837318/files/acsnano.7b02449.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:837318
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-141
|2 G:(DE-HGF)POF3-100
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Free to read
|0 LIC:(DE-HGF)PublisherOA
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2015
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS NANO : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21