001     837425
005     20210129231317.0
024 7 _ |a 10.21037/atm.2017.05.02
|2 doi
024 7 _ |a WOS:000408650700015
|2 WOS
037 _ _ |a FZJ-2017-06350
082 _ _ |a 610
100 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Positron emission tomography imaging in diffuse intrinsic pontine gliomaINM
260 _ _ |a Shatin, NT
|c 2017
|b AME Publishing Company
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1504532399_19578
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In pediatric patients with brain tumors, both the monitoring of brain tumor therapy and evaluation of treatment response is of paramount importance (1). In particular, the early identification of non-response allows the termination of an ineffective therapy to avoid possible side effects (e.g., bone marrow depression, nausea, fatigue, allergies, and polyneuropathy) and therefore to maintain or even improve life-quality. Furthermore, the early identification of non-response allows an earlier treatment change. For example, in the event of chemotherapy failure, negative side effects can be avoided and an earlier switch to another chemotherapeutic agent is possible before bone marrow reserves are exhausted. Moreover, identification of treatment failure may help reduce costs. To date, this is highly relevant because the expense of newer systemic treatment options (e.g., immunotherapy and targeted therapy options such as tyrosine kinase inhibitors, BRAF inhibitors, and MEK inhibitors) is considerably higher than conventional alkylating chemotherapy.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Stegmayr, Carina
|0 P:(DE-Juel1)156479
|b 1
|u fzj
700 1 _ |a Willuweit, Antje
|0 P:(DE-Juel1)144347
|b 2
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 3
|u fzj
773 _ _ |a 10.21037/atm.2017.05.02
|g Vol. 5, no. 15, p. 312 - 312
|0 PERI:(DE-600)2893931-1
|n 15
|p 312 - 312
|t Annals of translational medicine
|v 5
|y 2017
|x 2305-5839
856 4 _ |u https://juser.fz-juelich.de/record/837425/files/atm-05-15-312.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837425/files/atm-05-15-312.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837425/files/atm-05-15-312.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837425/files/atm-05-15-312.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837425/files/atm-05-15-312.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837425/files/atm-05-15-312.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837425
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156479
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131777
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21