001     837447
005     20240711113723.0
024 7 _ |a 10.1016/j.fusengdes.2017.03.167
|2 doi
024 7 _ |a 0920-3796
|2 ISSN
024 7 _ |a 1873-7196
|2 ISSN
024 7 _ |a 2128/15866
|2 Handle
024 7 _ |a WOS:000418992000139
|2 WOS
037 _ _ |a FZJ-2017-06360
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Huber, Alexander
|0 P:(DE-Juel1)130040
|b 0
|e Corresponding author
245 _ _ |a Response of the imaging cameras to hard radiation during JET operation
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510582258_28469
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The analysis of the radiation damage of imaging systems is based on all different types of analogue/digital cameras with uncooled as well as actively cooled image sensors in the VIS/NIR/MWIR spectral ranges. The Monte Carlo N-Particle (MCNP) code has been used to determine the neutron fluence at different camera locations in JET. An explicit link between the sensor damage and the neutron fluence has been observed. Sensors show an increased dark-current and increased numbers of hot-pixels. Uncooled cameras must be replaced once per year after exposure to a neutron fluence of ∼1.9–3.2 × 1012neutrons/cm2. Such levels of fluence will be reached after ≈14-22 ELMy H-mode pulses during the future D-T campaign. Furthermore, dynamical noise seen as a random pattern of bright pixels was observed in the presence of hard radiation (neutrons and gammas). Failure of the digital electronics inside the cameras as well as of industrial controllers is observed beyond a neutron fluence of about ∼4 × 109 neutrons/cm2. The impact of hard radiation on the different types of electronics and possible application of cameras during future D-T campaign is discussed.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sergienko, Gennady
|0 P:(DE-Juel1)130158
|b 1
700 1 _ |a Kinna, David
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Huber, Valentina
|0 P:(DE-Juel1)132145
|b 3
700 1 _ |a Milocco, Alberto
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mercadier, Laurent
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Balboa, Itziar
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Conroy, Sean
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Cramp, Simon
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kiptily, Vasili
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kruezi, Uron
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Lambertz, Horst Toni
|0 P:(DE-Juel1)130081
|b 11
700 1 _ |a Linsmeier, Christian
|0 P:(DE-Juel1)157640
|b 12
700 1 _ |a Matthews, Guy
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Popovichev, Sergey
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Mertens, Philippe
|0 P:(DE-Juel1)4596
|b 15
700 1 _ |a Silburn, Scott
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Zastrow, Klaus-Dieter
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.1016/j.fusengdes.2017.03.167
|g p. S0920379617303915
|0 PERI:(DE-600)1492280-0
|p 669-673
|t Fusion engineering and design
|v 123
|y 2017
|x 0920-3796
856 4 _ |u https://juser.fz-juelich.de/record/837447/files/1-s2.0-S0920379617303915-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837447/files/1-s2.0-S0920379617303915-main.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837447/files/1-s2.0-S0920379617303915-main.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837447/files/1-s2.0-S0920379617303915-main.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837447/files/1-s2.0-S0920379617303915-main.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837447/files/1-s2.0-S0920379617303915-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:837447
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130040
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132145
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130081
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)4596
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUSION ENG DES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21