000837450 001__ 837450
000837450 005__ 20240711113723.0
000837450 0247_ $$2doi$$a10.1088/1361-6587/aa759b
000837450 0247_ $$2ISSN$$a0032-1028
000837450 0247_ $$2ISSN$$a0368-3281
000837450 0247_ $$2ISSN$$a0741-3335
000837450 0247_ $$2ISSN$$a1361-6587
000837450 0247_ $$2ISSN$$a1879-2979
000837450 0247_ $$2WOS$$aWOS:000406839500002
000837450 0247_ $$2altmetric$$aaltmetric:21163633
000837450 037__ $$aFZJ-2017-06363
000837450 082__ $$a530
000837450 1001_ $$0P:(DE-HGF)0$$aWindisch, T.$$b0$$eCorresponding author
000837450 245__ $$aPoloidal correlation reflectometry at W7-X: radial electric field and coherent fluctuations
000837450 260__ $$aBristol$$bIOP Publ.$$c2017
000837450 3367_ $$2DRIVER$$aarticle
000837450 3367_ $$2DataCite$$aOutput Types/Journal article
000837450 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1504609729_29069
000837450 3367_ $$2BibTeX$$aARTICLE
000837450 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837450 3367_ $$00$$2EndNote$$aJournal Article
000837450 520__ $$aPoloidal correlation reflectometry measurements during the first plasma campaign of the optimized stellarator Wendelstein-7X are presented. The radial electric field is determined and a comparison with neoclassical calculations and shows good qualitative agreement. The measured density fluctuation spectrum exhibits coherent low- and high-frequency modes. Magneto-hydrodynamic (MHD) modeling results suggest that the coherent fluctuations are caused by stable MHD-modes and Alfvén waves.
000837450 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000837450 588__ $$aDataset connected to CrossRef
000837450 7001_ $$0P:(DE-Juel1)130075$$aKrämer-Flecken, A.$$b1
000837450 7001_ $$0P:(DE-HGF)0$$aVelasco, JL$$b2
000837450 7001_ $$0P:(DE-HGF)0$$aKönies, A.$$b3
000837450 7001_ $$0P:(DE-HGF)0$$aNührenberg, C.$$b4
000837450 7001_ $$0P:(DE-HGF)0$$aGrulke, O.$$b5
000837450 7001_ $$0P:(DE-HGF)0$$aKlinger, T.$$b6
000837450 773__ $$0PERI:(DE-600)1473144-7$$a10.1088/1361-6587/aa759b$$gVol. 59, no. 10, p. 105002 -$$n10$$p105002 -$$tPlasma physics and controlled fusion$$v59$$x1361-6587$$y2017
000837450 8564_ $$uhttps://juser.fz-juelich.de/record/837450/files/Windisch_2017_Plasma_Phys._Control._Fusion_59_105002.pdf$$yRestricted
000837450 8564_ $$uhttps://juser.fz-juelich.de/record/837450/files/Windisch_2017_Plasma_Phys._Control._Fusion_59_105002.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837450 909CO $$ooai:juser.fz-juelich.de:837450$$pVDB
000837450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130075$$aForschungszentrum Jülich$$b1$$kFZJ
000837450 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000837450 9141_ $$y2017
000837450 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837450 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000837450 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837450 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLASMA PHYS CONTR F : 2015
000837450 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837450 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837450 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837450 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837450 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837450 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837450 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837450 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837450 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000837450 980__ $$ajournal
000837450 980__ $$aVDB
000837450 980__ $$aI:(DE-Juel1)IEK-4-20101013
000837450 980__ $$aUNRESTRICTED
000837450 981__ $$aI:(DE-Juel1)IFN-1-20101013