000837458 001__ 837458
000837458 005__ 20240711113724.0
000837458 0247_ $$2doi$$a10.1016/j.nme.2016.12.003
000837458 0247_ $$2Handle$$a2128/15892
000837458 0247_ $$2WOS$$aWOS:000417293300012
000837458 0247_ $$2altmetric$$aaltmetric:15914640
000837458 037__ $$aFZJ-2017-06371
000837458 041__ $$aEnglish
000837458 082__ $$a333.7
000837458 1001_ $$0P:(DE-HGF)0$$aReinke, M. L.$$b0$$eCorresponding author
000837458 245__ $$aExpanding the role of impurity spectroscopy for investigating the physics of high-Z dissipative divertors
000837458 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000837458 3367_ $$2DRIVER$$aarticle
000837458 3367_ $$2DataCite$$aOutput Types/Journal article
000837458 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510757626_26908
000837458 3367_ $$2BibTeX$$aARTICLE
000837458 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837458 3367_ $$00$$2EndNote$$aJournal Article
000837458 520__ $$aNew techniques that attempt to more fully exploit spectroscopic diagnostics in the divertor and pedestal region during highly dissipative scenarios are demonstrated using experimental results from recent low-Z seeding experiments on Alcator C-Mod, JET and ASDEX Upgrade. To exhaust power at high parallel heat flux, q∥ > 1 GW/m2, while minimizing erosion, reactors with solid, high-Z plasma facing components (PFCs) are expected to use extrinsic impurity seeding. Due to transport and atomic physics processes which impact impurity ionization balance, so-called ‘non-coronal’ effects, we do not accurately know and have yet to demonstrate the maximum q∥ which can be mitigated in a tokamak. Radiation enhancement for nitrogen is shown to arise primarily from changes in Li- and Be-like charge states on open field lines, but also through transport-driven enhancement of H- and He-like charge states in the pedestal region. Measurements are presented from nitrogen seeded H-mode and L-mode plasmas where emission from N through N are observed. Active charge exchange spectroscopy of partially ionized low-Z impurities in the plasma edge is explored to measure N and N within the confined plasma, while passive UV and visible spectroscopy is used to measure N-N in the boundary. Examples from recent JET and Alcator C-Mod experiments which employ nitrogen seeding highlight how improving spectroscopic coverage can be used to gain empirical insight and provide more data to validate boundary simulations.
000837458 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000837458 588__ $$aDataset connected to CrossRef
000837458 7001_ $$0P:(DE-HGF)0$$aMeigs, A.$$b1
000837458 7001_ $$0P:(DE-Juel1)129994$$aDelabie, E.$$b2
000837458 7001_ $$0P:(DE-HGF)0$$aMumgaard, R.$$b3
000837458 7001_ $$0P:(DE-Juel1)166412$$aReimold, F.$$b4
000837458 7001_ $$0P:(DE-HGF)0$$aPotzel, S.$$b5
000837458 7001_ $$0P:(DE-HGF)0$$aBernert, M.$$b6
000837458 7001_ $$0P:(DE-HGF)0$$aBrunner, D.$$b7
000837458 7001_ $$0P:(DE-HGF)0$$aCanik, J.$$b8
000837458 7001_ $$0P:(DE-HGF)0$$aCavedon, M.$$b9
000837458 7001_ $$0P:(DE-HGF)0$$aCoffey, I.$$b10
000837458 7001_ $$0P:(DE-HGF)0$$aEdlund, E.$$b11
000837458 7001_ $$0P:(DE-HGF)0$$aHarrison, J.$$b12
000837458 7001_ $$0P:(DE-HGF)0$$aLaBombard, B.$$b13
000837458 7001_ $$0P:(DE-HGF)0$$aLawson, K.$$b14
000837458 7001_ $$0P:(DE-HGF)0$$aLomanowski, B.$$b15
000837458 7001_ $$0P:(DE-HGF)0$$aLore, J.$$b16
000837458 7001_ $$0P:(DE-HGF)0$$aStamp, M.$$b17
000837458 7001_ $$0P:(DE-HGF)0$$aTerry, J.$$b18
000837458 7001_ $$0P:(DE-HGF)0$$aViezzer, E.$$b19
000837458 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2016.12.003$$gp. S2352179116302034$$p91-99$$tNuclear materials and energy$$v12$$x2352-1791$$y2017
000837458 8564_ $$uhttps://juser.fz-juelich.de/record/837458/files/1-s2.0-S2352179116302034-main.pdf$$yOpenAccess
000837458 8564_ $$uhttps://juser.fz-juelich.de/record/837458/files/1-s2.0-S2352179116302034-main.gif?subformat=icon$$xicon$$yOpenAccess
000837458 8564_ $$uhttps://juser.fz-juelich.de/record/837458/files/1-s2.0-S2352179116302034-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837458 8564_ $$uhttps://juser.fz-juelich.de/record/837458/files/1-s2.0-S2352179116302034-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837458 8564_ $$uhttps://juser.fz-juelich.de/record/837458/files/1-s2.0-S2352179116302034-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837458 8564_ $$uhttps://juser.fz-juelich.de/record/837458/files/1-s2.0-S2352179116302034-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837458 909CO $$ooai:juser.fz-juelich.de:837458$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000837458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129994$$aForschungszentrum Jülich$$b2$$kFZJ
000837458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166412$$aForschungszentrum Jülich$$b4$$kFZJ
000837458 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000837458 9141_ $$y2017
000837458 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837458 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000837458 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000837458 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000837458 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837458 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000837458 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837458 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837458 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000837458 9801_ $$aFullTexts
000837458 980__ $$ajournal
000837458 980__ $$aVDB
000837458 980__ $$aUNRESTRICTED
000837458 980__ $$aI:(DE-Juel1)IEK-4-20101013
000837458 981__ $$aI:(DE-Juel1)IFN-1-20101013