001     837458
005     20240711113724.0
024 7 _ |a 10.1016/j.nme.2016.12.003
|2 doi
024 7 _ |a 2128/15892
|2 Handle
024 7 _ |a WOS:000417293300012
|2 WOS
024 7 _ |a altmetric:15914640
|2 altmetric
037 _ _ |a FZJ-2017-06371
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Reinke, M. L.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Expanding the role of impurity spectroscopy for investigating the physics of high-Z dissipative divertors
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510757626_26908
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a New techniques that attempt to more fully exploit spectroscopic diagnostics in the divertor and pedestal region during highly dissipative scenarios are demonstrated using experimental results from recent low-Z seeding experiments on Alcator C-Mod, JET and ASDEX Upgrade. To exhaust power at high parallel heat flux, q∥ > 1 GW/m2, while minimizing erosion, reactors with solid, high-Z plasma facing components (PFCs) are expected to use extrinsic impurity seeding. Due to transport and atomic physics processes which impact impurity ionization balance, so-called ‘non-coronal’ effects, we do not accurately know and have yet to demonstrate the maximum q∥ which can be mitigated in a tokamak. Radiation enhancement for nitrogen is shown to arise primarily from changes in Li- and Be-like charge states on open field lines, but also through transport-driven enhancement of H- and He-like charge states in the pedestal region. Measurements are presented from nitrogen seeded H-mode and L-mode plasmas where emission from N through N are observed. Active charge exchange spectroscopy of partially ionized low-Z impurities in the plasma edge is explored to measure N and N within the confined plasma, while passive UV and visible spectroscopy is used to measure N-N in the boundary. Examples from recent JET and Alcator C-Mod experiments which employ nitrogen seeding highlight how improving spectroscopic coverage can be used to gain empirical insight and provide more data to validate boundary simulations.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Meigs, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Delabie, E.
|0 P:(DE-Juel1)129994
|b 2
700 1 _ |a Mumgaard, R.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Reimold, F.
|0 P:(DE-Juel1)166412
|b 4
700 1 _ |a Potzel, S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bernert, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Brunner, D.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Canik, J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Cavedon, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Coffey, I.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Edlund, E.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Harrison, J.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a LaBombard, B.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Lawson, K.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Lomanowski, B.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Lore, J.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Stamp, M.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Terry, J.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Viezzer, E.
|0 P:(DE-HGF)0
|b 19
773 _ _ |a 10.1016/j.nme.2016.12.003
|g p. S2352179116302034
|0 PERI:(DE-600)2808888-8
|p 91-99
|t Nuclear materials and energy
|v 12
|y 2017
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/837458/files/1-s2.0-S2352179116302034-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/837458/files/1-s2.0-S2352179116302034-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/837458/files/1-s2.0-S2352179116302034-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/837458/files/1-s2.0-S2352179116302034-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/837458/files/1-s2.0-S2352179116302034-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/837458/files/1-s2.0-S2352179116302034-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:837458
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129994
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166412
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21