000837460 001__ 837460
000837460 005__ 20240711113725.0
000837460 0247_ $$2doi$$a10.1016/j.nme.2016.12.029
000837460 0247_ $$2Handle$$a2128/15893
000837460 0247_ $$2WOS$$aWOS:000417293300014
000837460 037__ $$aFZJ-2017-06373
000837460 041__ $$aEnglish
000837460 082__ $$a333.7
000837460 1001_ $$0P:(DE-HGF)0$$aBernert, M.$$b0$$eCorresponding author
000837460 245__ $$aPower exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET
000837460 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000837460 3367_ $$2DRIVER$$aarticle
000837460 3367_ $$2DataCite$$aOutput Types/Journal article
000837460 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510757797_26916
000837460 3367_ $$2BibTeX$$aARTICLE
000837460 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837460 3367_ $$00$$2EndNote$$aJournal Article
000837460 520__ $$aFuture fusion reactors require a safe, steady state divertor operation. A possible solution for the power exhaust challenge is the detached divertor operation in scenarios with high radiated power fractions. The radiation can be increased by seeding impurities, such as N for dominant scrape-off-layer radiation, Ne or Ar for SOL and pedestal radiation and Kr for dominant core radiation.Recent experiments on two of the all-metal tokamaks, ASDEX Upgrade (AUG) and JET, demonstrate operation with high radiated power fractions and a fully-detached divertor by N, Ne or Kr seeding with a conventional divertor in a vertical target geometry. For both devices similar observations can be made. In the scenarios with the highest radiated power fraction, the dominant radiation originates from the confined region, in the case of N and Ne seeding concentrated in a region close to the X-point.Applying these seed impurities for highly radiative scenarios impacts local plasma parameters and alters the impurity transport in the pedestal region. Thus, plasma confinement and stability can be affected. A proper understanding of the effects by these impurities is required in order to predict the applicability of such scenarios for future devices.
000837460 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000837460 588__ $$aDataset connected to CrossRef
000837460 7001_ $$0P:(DE-HGF)0$$aWischmeier, M.$$b1
000837460 7001_ $$0P:(DE-Juel1)173012$$aHuber, A.$$b2
000837460 7001_ $$0P:(DE-Juel1)166412$$aReimold, F.$$b3
000837460 7001_ $$0P:(DE-HGF)0$$aLipschultz, B.$$b4
000837460 7001_ $$0P:(DE-HGF)0$$aLowry, C.$$b5
000837460 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b6
000837460 7001_ $$0P:(DE-HGF)0$$aDux, R.$$b7
000837460 7001_ $$0P:(DE-HGF)0$$aEich, T.$$b8
000837460 7001_ $$0P:(DE-HGF)0$$aKallenbach, A.$$b9
000837460 7001_ $$0P:(DE-HGF)0$$aLebschy, A.$$b10
000837460 7001_ $$0P:(DE-HGF)0$$aMaggi, C.$$b11
000837460 7001_ $$0P:(DE-HGF)0$$aMcDermott, R.$$b12
000837460 7001_ $$0P:(DE-HGF)0$$aPütterich, T.$$b13
000837460 7001_ $$0P:(DE-Juel1)5247$$aWiesen, S.$$b14
000837460 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2016.12.029$$gp. S2352179116302174$$p111-118$$tNuclear materials and energy$$v12$$x2352-1791$$y2017
000837460 8564_ $$uhttps://juser.fz-juelich.de/record/837460/files/1-s2.0-S2352179116302174-main.pdf$$yOpenAccess
000837460 8564_ $$uhttps://juser.fz-juelich.de/record/837460/files/1-s2.0-S2352179116302174-main.gif?subformat=icon$$xicon$$yOpenAccess
000837460 8564_ $$uhttps://juser.fz-juelich.de/record/837460/files/1-s2.0-S2352179116302174-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837460 8564_ $$uhttps://juser.fz-juelich.de/record/837460/files/1-s2.0-S2352179116302174-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837460 8564_ $$uhttps://juser.fz-juelich.de/record/837460/files/1-s2.0-S2352179116302174-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837460 8564_ $$uhttps://juser.fz-juelich.de/record/837460/files/1-s2.0-S2352179116302174-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837460 909CO $$ooai:juser.fz-juelich.de:837460$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000837460 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173012$$aForschungszentrum Jülich$$b2$$kFZJ
000837460 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166412$$aForschungszentrum Jülich$$b3$$kFZJ
000837460 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b6$$kFZJ
000837460 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5247$$aForschungszentrum Jülich$$b14$$kFZJ
000837460 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000837460 9141_ $$y2017
000837460 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837460 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000837460 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000837460 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000837460 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837460 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000837460 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837460 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837460 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000837460 9801_ $$aFullTexts
000837460 980__ $$ajournal
000837460 980__ $$aVDB
000837460 980__ $$aUNRESTRICTED
000837460 980__ $$aI:(DE-Juel1)IEK-4-20101013
000837460 981__ $$aI:(DE-Juel1)IFN-1-20101013