001     837460
005     20240711113725.0
024 7 _ |a 10.1016/j.nme.2016.12.029
|2 doi
024 7 _ |a 2128/15893
|2 Handle
024 7 _ |a WOS:000417293300014
|2 WOS
037 _ _ |a FZJ-2017-06373
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Bernert, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510757797_26916
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Future fusion reactors require a safe, steady state divertor operation. A possible solution for the power exhaust challenge is the detached divertor operation in scenarios with high radiated power fractions. The radiation can be increased by seeding impurities, such as N for dominant scrape-off-layer radiation, Ne or Ar for SOL and pedestal radiation and Kr for dominant core radiation.Recent experiments on two of the all-metal tokamaks, ASDEX Upgrade (AUG) and JET, demonstrate operation with high radiated power fractions and a fully-detached divertor by N, Ne or Kr seeding with a conventional divertor in a vertical target geometry. For both devices similar observations can be made. In the scenarios with the highest radiated power fraction, the dominant radiation originates from the confined region, in the case of N and Ne seeding concentrated in a region close to the X-point.Applying these seed impurities for highly radiative scenarios impacts local plasma parameters and alters the impurity transport in the pedestal region. Thus, plasma confinement and stability can be affected. A proper understanding of the effects by these impurities is required in order to predict the applicability of such scenarios for future devices.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wischmeier, M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Huber, A.
|0 P:(DE-Juel1)173012
|b 2
700 1 _ |a Reimold, F.
|0 P:(DE-Juel1)166412
|b 3
700 1 _ |a Lipschultz, B.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lowry, C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 6
700 1 _ |a Dux, R.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Eich, T.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kallenbach, A.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Lebschy, A.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Maggi, C.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a McDermott, R.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Pütterich, T.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Wiesen, S.
|0 P:(DE-Juel1)5247
|b 14
773 _ _ |a 10.1016/j.nme.2016.12.029
|g p. S2352179116302174
|0 PERI:(DE-600)2808888-8
|p 111-118
|t Nuclear materials and energy
|v 12
|y 2017
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/837460/files/1-s2.0-S2352179116302174-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/837460/files/1-s2.0-S2352179116302174-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/837460/files/1-s2.0-S2352179116302174-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/837460/files/1-s2.0-S2352179116302174-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/837460/files/1-s2.0-S2352179116302174-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/837460/files/1-s2.0-S2352179116302174-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:837460
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173012
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166412
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)5247
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21