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Abstract 
The Magneto Caloric Effect (MCE) describes the change of temperature of a material when 
exposed to a magnetic field and forms the basis of magnetocaloric refrigeration technologies. 
This utilization of the effect can offer a novel method for cooling that is economically feasible 
and ecologically friendly. In addition it can save around 20-30% of the needed energy in 
comparison with traditional vapor compression technology, and hence the effect attracts the 

ad) in an 
adiabatic process, iso) in an isothermal process.  

In the last years there has been an upsurge in the knowledge of the MCE and many materials 
have been investigated for their MCE characteristics. In the context of this project a single 
crystalline sample of the compositions Mn FexSi3 x=4 was prepared in order to analyze the 
MCE in these materials. X-ray powder diffraction, using a Huber G670 diffractometer, shows 
that there are no indications of impurity phases. The Laue method was used to define the 
orientation of the single crystal samples for measurements of the magnetic properties. The 
samples were characterized with magnetization measurements using a PPMS and PPMS-
Dynacool.  

The magnetization measurements confirm earlier results and show that MnFe4Si3 has a phase 
transition to a ferromagnetic ordered phase at approximately 300 K. A strong anisotropy of 
the magnetization and the magnetocaloric effect with the easy axis of magnetization in the a, 
b-plane is observed. The 
measured on single crystalline samples and derived on the basis of the Maxwell relation has a 
maximum of about 1.3 J/kgK for a field change of 1 T with an applied field along the a-axis, 
and a maximum of about 3.5 J/kgK for a field change of 6 T with an applied field along the c-
axis. 

The pulsed-field magnetization has been measured in fields up to 8 T, applying the field in 
[100] direction and up to 30 T with the field in [001] direction under nearly adiabatic 
conditions. The results obtained are in a good agreement with the data from steady-field 
isothermal measurements. 

The adiabatic temperature change of MnFe4Si3 single crystal sample was measured in the 
direction [100] in pulsed magnetic fields up to 50 T. For a field of 50 T an adiabatic 
temperature change of 9.45 K is observed at 320 K. For a field change of 20 T, a maximum 
adiabatic temperature change of 5.66 K is observed at 315 K, and for a field change of 2 T, a 
maximum adiabatic temperature change of 1.38 K is observed at the Curie temperature (TC = 
300 K). For the measurements in [001] direction, a test pulse of 10 T was applied at 340 K, 
The data was not satisfactory due to imperfect mounted sample, and because of the limited 
magnet time available, measurements with the field applied in the [001] direction were 
therefore stopped.  
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Introduction                                             1 

1.1 Motivation 

Room-temperature refrigeration for food storage and air conditioning is a necessary 

technology in our life and industries such as gaseous liquefaction. The gas 

compression/expansion refrigerators have been utilized everywhere since the first 

commercial refrigerator was successfully made [Zimm et al., 1998].  

 

The increasing concerns about global warming as a result of the rising energy usage makes 

solving the issue of environmental pollution a demanding task for research today. Possible 

solutions include utilization ecologically friendly techniques; develop efficient ways for 

energy utilization. 

The low efficiency of conventional vapor compression cooling techniques, in addition to 

their employment of the ozone-depleting chemicals (like chlorofluorocarbons (CFCs)), 

hazardous chemicals (as ammonia) and greenhouse gases (hydro chlorofluorocarbons 

(HCFCs), and hydro fluorocarbons (HFCs)) entails a high interest in replacing them by 

technologies that are energy-efficient and environmentally friendly [Tegus et al., 2002].  

 
Magnetic refrigeration as a new solid state cooling technology at room-temperature, with a 

possible energy saving of 20%-30% could be an option for the refrigeration sector. The 

magnetocaloric cooling is an energy-efficient and environmentally friendly technology based 

on the Magneto Caloric Effect. The MCE is based on entropy changes of magnetic materials 

under an applied magnetic field, which leads to a change in the temperature of the material. 

Besides its practical application, MCE studies can give an extra insight into the nature of 

magnetic phase transitions. 

 
The individual members of the series Mn5-xFexSi3 (x=0-5) are known for their 

magnetocaloric properties. Magnetization measurements were used to study the magnetic 
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phase transitions and the magnetocaloric properties of the individual compounds [Songlin et 

al., 2002]. Of particular interest of MnFe4Si3 system, it has a transition from the 

paramagnetic to a ferromagnetic ordered state at around 300 K [Hering et al., 2015]. 

 

1.2 Place of Research 

The experimental work presented in this thesis was done at the Forschungszentrum Jülich in 

Germany (GmbH), particularly at the Jülich Centre for Neutron Science (JCNS-2) 

(Figure1.1) and at Helmholtz Zentrum Dresden Rossendorf (HZDR), particularly at Dresden 

High Magnetic Field Laboratory (HLD) (Figure 1.2).  

 

The Jülich Centre for Neutron Science (JCNS) Forschungszentrum Jülich GmbH, was 

founded in 2006 to develop and operate neutron scattering instruments at several neutron 

sources worldwide. The in-house research focuses on correlated electron systems and nano-

magnetism as well as soft matter and biophysics. Within these areas of expertise, the JCNS 

offers expert support at the neutron instruments including specialized sample environment 

and ancillary laboratory access for external users from science and industry. 

 

 

Figure 1.1: Jülich Center for Neutron Science (JCNS). 

 

The JCNS includes the divisions: Neutron scattering (ICS-1 / JCNS-1) and Scattering 

methods (PGI-4 / JCNS-2), and the newly founded institute JCNS-
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Energy Research. Related to the institute are several outstations at most important neutron 

sources worldwide (FRM II Garching, ILL Grenoble, and SNS 4 Oak Ridge). 

 

The Dresden High Magnetic Field Laboratory (HLD) at the Helmholtz-Zentrum Dresden-

Rossendorf (HZDR; established in 2004) focuses on modern materials research in high 

magnetic fields. In particular, electronic properties of metallic, semiconducting, 

superconducting, and magnetic materials are investigated. The High Magnetic Field 

Laboratory serves as a research facility for both in-house and user projects and provides 

research opportunities for pulsed magnetic fields up to 90 T for routine operation. So far, 

they operate four magnets (A, B, D, and E). 

 

 
Figure 1.2: Dresden High Magnetic Field Laboratory (HLD) 
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Theory                                             2 

2.1 The Magnetocaloric Effect (MCE) 

2.1.1 Background (Introduction and history) 

The study of magnetic refrigeration started with the discovery of MCE 120 years ago. The 

MCE leads to a temperature change of a material due to the application or removal of a 

magnetic field [Yu et al., 2003]. Currently, there is a high interest in utilizing the MCE as an 

alternative technology for refrigeration, in particular for application close to room 

temperature. In addition, the magnetocaloric effect is frequently employed to reach very low 

temperatures (< 20 K) [Pecharsky and Gschneidner, 1999]. 

Magnetic refrigeration is expected to have great potential for applications due to a series of 

reasons. First, it does not employ ozone-depleting chemicals, hazardous chemicals, or 

greenhouse gases as refrigeration media. Secondly, electromagnets, superconductors or 

permanent magnets, could be used in the magnetic refrigeration with no need for 

compressors that have portable components at large rotational speed resulting in mechanical 

vibration, noise, poor stability and brief life. Finally, magnetic refrigerators working with Gd 

can yield a cooling efficiency of 60% of the theoretical limit, in comparison to just about 

40% in the perfect gas-compression refrigerators. A reduced consumption of fossil fuels and 

CO2 production will be the good news of using magnetic refrigerators with high efficiency 

[Tegus et al., 2002]. 

Figure 2.1 shows a schematic of a magnetic-refrigeration cycle. Yellow and green colors 

show the magnetic material in low and high magnetic fields, respectively. 

The application of the magnetic field aligns the randomly oriented magnetic moments 

reducing the magnetic entropy. In return the lattice entropy is increased and the magnetic 

material heats up. When the heat is removed by a heat-transfer medium and the magnetic 
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field is turned off, the magnetic moments randomize again, increasing the magnetic entropy. 

This in turn results in a decrease of the lattice entropy or a cooling of the magnetic material 

below the ambient temperature. Based on the operating temperature, the heat-transfer 

medium could be water (with antifreeze) or air for ordinary cooling, and helium or hydrogen 

for low temperatures [Brück, 2005]. 

 

Figure 2.1: Schematic of a magnetic-refrigeration cycle [Brück, 2005]. 

The interest in the MCE has been triggered by 

magnetic refrigerator [Brown,1976; Brown, 1978] and the discovery of the large MCE near 

room temperature in Gd5Si2Ge2 [Pecharsky and Gschneidner, 1997]. The effect has been 

extensively studied for many magnetic materials after those revolutionary works [Oliveira 

and Ranke, 2010]. 

History of the MCE 

In 1881 the thermal effect of metal iron was discovered by Warburg when he was testing it 

under a varying magnetic field. The nature of the MCE was explained by Debye [Debye, 

1926] and Giauque [Giauque, 1927] who suggested independently the possibility of reaching 

ultralow temperatures (lower than of liquid helium) in the adiabatic demagnetization. The 

method was successfully verified by [Giauque and MacDougall, 1933] and the first 

adiabatic demagnetization refrigerator that reached 0.25 K was experimentally demonstrated. 
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Giauque was awarded the Nobel Prize in physics for his work on magnetic refrigeration in 

1949 [Yu et al., 2003]. 

 

Advances in utilization of the MCE for cooling occurred between 1933 and 1997. Brown 

designed the first magnetic refrigerator working at room temperature in 1976. About 15 years 

later, Green et al. [Green et al., 1990] built a device that was able to cool a load besides the 

magnetocaloric material itself and the heat exchange fluid [Gschneidner et al., 2008]. 

 

The year 1997 witnessed two major millstones: The first on February 20, 1997 delivered the 

proof that room temperatures magnetic refrigeration is viable and competitive with possible 

energy savings of around 30% [Zimm et al., 1998]. The second event was on June 1997 

when the Giant MCE (GMCE) was discovered in Gd5 (Si2Ge2) [Gschneidner et al., 2005]. 

 

-temperature magnetic refrigerat

using permanent magnets was built. Many other designs followed afterwards. The current 

research is focused on the discovery of novel magnetocaloric materials, as the magnitude of 

MCE in the magnetic materials is the key to a high cooling capacity. In addition, the 

availability of suitable permanent magnets, and the overall design of the device is in the 

focus of attention [Gschneidner et al., 2008]. 

 

Figure 2.2: The number of papers published annually containing the term 'magnetocaloric' in their title 

over the past 50years. The 2017 value is for the year first five month [WEB OF SCIENCE]. 
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2.1.2 Thermodynamics of Magnetocaloric Materials 

The total entropy at constant pressure S(T, H) is a function of the magnetic field strength (H) 

and absolute temperature (T). It is composed of three parts: magnetic entropy (SM), lattice 

entropy (SL), and electronic entropy (SE) as shown in equation (1) 

S(T, H) = SM(T, H) + SLat(T) +SEI (T)      (1) 

SM is a function of H and T, yet SLat and SEI are functions of T only, which means that a 

change in the strength of the magnetic field only changes the magnetic entropy SM. The MCE 

results from the coupling of the magnetic sub lattice with the magnetic field. This is an 

intrinsic property of all magnetic materials. If the field is applied isothermally, the magnetic 

entropy of the paramagnetic or soft ferromagnetic materials decrease, they eject heat. 

Conversely, if the field is lowered isothermally the system will absorb heat and the magnetic 

entropy increases [Yu et al., 2003]. 

The thermodynamics of the MCE in ferromagnetic materials near the Curie temperature is 

illustrated in Figure 2.3. It shows the behavior of the total entropy S(T) of a ferromagnetic 

material vs. temperature under zero and non-zero magnetic fields. The solid lines represent 

the total entropy for two values of the magnetic field: H0=0 and H1 H0. The dotted line 

shows the non-magnetic entropy (lattice and electronic), and the dashed lines show the 

behavior of the magnetic entropy for the two fields. 

When the magnetic field is applied in a reversible adiabatic process the total entropy stays 

ad= T1-T0 represents the difference between 

the relevant S(T)H functions as shown by the horizontal arrow in Figure 2.3. Alternatively, if 

the magnetic field is applied isothermally, the MCE can be expressed in terms of the 

M = S1-S0. This representation is equivalent to the isothermal 

difference between the S(T)H functions and shown by the vertical arrow in F ad 

M represent the two characteristic values of the MCE. Both depend on the initial 

temperature T0 before the appli  = 

(H1-H0) [Pecharsky and Gschneidner, 1999]. 
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Figure 2.3: The S-T diagram illustrating the magneto caloric effect [Pecharsky and Gschneidner, 1999]. 

ns can be used to calculate Tad M [Morrish, 1965]: 

=        (2) 

Where, H is the magnetic field, M is the magnetization, and S is the entropy. Integration for 

an isothermal-isobaric process yields: 

(T, H)= dH     (3) 

This equation states that the magnetic entropy change is proportional to the derivative of 

magnetization with respect to temperature at constant field and to the magnetic field change. 

For adiabatic processes, the infinitesimal adiabatic temperature rise is obtained from 

combining  

dT= -   dH      (4) 

From this equation it follows that the adiabatic temperature rise is inversely proportional to 

the heat capacity, while it is directly proportional to the absolute temperature; the derivative 
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of magnetization with respect to temperature at constant field; and to the magnetic field 

change. By integrating Eq. (4) we get the indicator for the size of the MCE: 

Tad (T, H) = - dH   (5) 

These four equations play an essential role in understanding the behavior of the 

magnetocaloric effect in solids and looking for new materials with a large MCE. One should 

emphasize the following points [Pecharsky and Gschneidner, 1999]: 

 SM (T) H is negative (Eqs.(2), ad (T) H is positive (Eqs. (4), (5)) which is 

apparent from Figure 2.3. This is because the magnetization of paramagnets and simple 

Ferromagnets at constant field decreases with increasing H < 0]. 

 From equations (2) and (3) it follows that in Ferromagnets H| is maximum at TC, 

M(T) H| must have a peak at TC. 

 Tad(T) H in Ferromagnets shows a peak at TC 

what h M(T) H (Both values gradually reduce above and below TC).  

 
2.1.3 Measurement of the magnetocaloric effect 

The MCE can be measured directly or calculated indirectly. The direct method gives access 

ad). The ad(T) H 

M(T) H from magnetization measurements. 

2.1.3.1 Direct MCE measurements 

Direct methods always include the measurement of the initial T0 and final TF temperatures of 

the sample, when an external magnetic field is changed adiabatically from H0 to HF. The 

adiabatic temperature change is equal to 

Tad(T0, HF 0) = TF 0       (6) 

Direct MCE measurements can be performed by using contact and non-contact techniques, 

not. Contact techniques are suitable for large temperature changes and strong magnetic fields 

[Dan'kov et al., 1997; Gopal et al., 1997], while non-contact techniques are suitable for 

small changes in temperature and weak magnetic fields. The latter techniques are based on 
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the thermo-acoustic principle in which a sample with a periodically changing surface 

temperature induces exponentially decaying pressure waves, which can be detected by a 

sensitive microphone [Pecharsky and Gschneidner, 1999]. 

A fast change of the magnetic field is required to ensure adiabatic conditions. The field can 

be varied by moving the sample or the magnet, [Dan'kov et al., 1997; Gopal et al., 1997]. In 

this case, permanent or superconducting magnets are usually used, with a magnetic field 

range of 0.1-10 T, and for the electromagnets the field operates at less than 2 T [Pecharsky 

and Gschneidner, 1999]. 

A better alternative is to alter the field by using pulsed fields while leaving the sample and 

the magnet unmoved [Dan'kov et al., 1997; Gopal et al., 1997]. Direct MCE measurements 

from under 1 to 40 Tesla using this method have been reported. 

If one takes into account all possible error sources, the experimental accuracy of the direct 

methods is within 5-10%. Factors influencing the accuracy include errors in thermometry and 

in the field setting, the quality of the sample thermal insulation, the quality of the 

compensation scheme to eliminate the effect of the ultrafast magnetic field change (dB/dt 

contributions) on the temperature sensor reading and any other factors [Dan'kov et al., 1997; 

Gopal et al., 1997; Pecharsky and Gschneidner, 1999]. 

ad) directly which is an essential 

parameter for magnetic refrigeration, direct measurements are closer to the real process used 

in applications. The pulses lengths of the nondestructive pulsed-field facilities are in the 

range 10-100 ms and that agree with the targeted operation frequency of the magnetic 

refrigerators, 10-100 Hz  

 

A direct MCE measurement in pulsed magnetic fields provides the opportunity to examine 

the dynamics of the MCE in the suitable frequency range. Furthermore, the accessible 

magnetic field range is extended to beyond 70 T and the short pulse duration provides nearly 

adiabatic conditions during the measurement [Zavareh, 2016]. 
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2.1.3.2 Indirect measurements 

ad M  from heat capacity 

M(T, H) from magnetization measured as a function of temperature and 

magnetic field after a numerical integration of equation (3), and both methods show 

reasonable agreement with each other. Most of the MCE studies are based on magnetization 

M M(T, H) from magnetization 

data depends on the accuracy of the magnetic moment, temperature, and field measurements. 

Because of the substitution of the exact differentials (dM, dH and dT) by the measured 

the M(T, H) is reported to be within 3-10%, which 

makes the method popular [Foldeaki et al., 1995; Pecharsky and Gschneidner, 1999]. 

 

In this thesis, the MCE has been measured directly in pulsed magnetic fields up to 50 T using 

a contact technique (a thermocouple glued to the sample surface) and indirectly from 

magnetization measurements in DC fields up to 8.5 T. The techniques are described in 

Chapter 3. 

 

2.2 Scattering Theory and Diffraction Experiments 

2.2.1 Introduction 

Scattering is a method used for obtaining structural information on a material. Diffraction 

effects can occur when a beam of electromagnetic radiation is scattered by a periodic 

structure with a repeat distance similar to the wavelength of the radiation. X-rays are a 

suitable probe for diffraction in crystalline materials as they have wavelengths not exceeding 

a few angs  0.15 0.4 

nm). Constructive interference happens when the X-rays diffracted by different parallel 

lattice planes are in phase. If they are out of phase, destructive interference occurs and there 

is no reaction [Birkholz, 2006]. The occurrence of constructive interference is explained by 

Bragg's law given by:  

2dhkl  

Where dhkl is the spacing between parallel lattice planes with Miller indices (hkl), 

angle between -rays and n is an integer number. 
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tisfying 

the above equation, intensity maxima occur due to constructive interference of the scattered 

beam. Each observed peak in an X-ray diffraction diagram thus represents a certain set of 

parallel lattice plane (h k l). 

 

 
 

In this thesis X-ray powder diffraction was employed to check the phase purity, and Laue 

diffraction was used to determine the orientation of the measured crystal. 

2.2.2 Basics of x-ray diffraction on polycrystalline samples 

X-ray powder diffraction is a common technique mainly used for phase identification of a 

crystalline material and provides information on atomic spacing. The term powder means 

that the crystallites are randomly oriented in the sample so the powder can be seen as a 

polycrystalline material in which all possible orientations of a crystal lattice exist ideally in 

equal proportions. 

 

In a powder diffraction experiment, a monochromatic X-ray beam is directed toward a 

sample consisting of many small randomly oriented crystals and it is scattered by the 

electrons of the atoms inside the crystal. When Bragg´s Law is fulfilled and constructive 

interference occurs concentric cones emanate from the sample position as shown in (Figure 

2.5). These will then appear as a series of concentric rings on a detector placed normal to the 

X-ray beam. The 2-dimensional diffraction images can then be integrated to produce a one-
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Figure 2.5: Two-dimensional powder diffraction setup with flat plate detector [http://en.wikipedia.org]. 

Laue diffraction is used for the determination of crystal orientation. This method is different 

wavelengths, which means that a fixed crystal is irradiated with a wide range of wavelengths. 

constructive interference for the scattered beams of a set of parallel lattice planes can occur 

and a diffraction spot can then be recorded on the detector. This implies that each spot 

corresponds to a set of parallel lattice planes (hkl) and a particular wavelength [Cullity and 

Stock, 1956]. 

2.2.3 The Le Bail method 

The Le Bail method [Le Bail et al., 1988] determines the unit cell parameter and possible 

space groups of a crystalline compound. During the refinement, many parameters can be 

fitted simultaneously such as: the zero shift, background parameters and the parameters that 

describe the shape of the observed peaks (profile function). Many programs are available that 

perform refinement of powder data using Le Bail refinement. For this thesis, the program 

Jana 2006 [Petricek et al., 2006] was used. 

 
These following steps are executed in a Le Bail refinement (Figure 2.6): starting from the 

initial cell parameters, the diffraction diagram is calculated and compared with the observed 

data, then the difference is minimized at each point in the diagram by adjusting the 
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parameters of background, lattice and profile function. After this, a new diffraction diagram 

is calculated and again compared with the observed data. This is repeated until a good 

agreement between the two diagrams is satisfied. The so-called R-factors are used determine 

the fit quality. The two most important are: 

Weighted profile R-factor:   

Profile R-factor:    

 

Figure 2.6: Flow chart of the Le Bail process. 

 

2.3 Atomic and Magnetic Structure of Mn5-xFexSi3 compounds 

2. .1 Crystal structure 

The compounds in the series Mn5-xFexSi3 exhibit magnetocaloric effects at various 

temperatures depending on the x values. All compounds of the series possess a hexagonal 

symmetry at 293 K and 77 K. They crystallize in space group P63/mcm [Binczycka et al., 

1973]. Two sites M1 (Wyckoff position 6g) and M2 (Wyckoff position 4d) are filled by Mn 

and Fe with various ratios based on the parameter x. It was found that most of the Mn atoms 

are incorporated into the M1 site, while the M2 site is preferentially occupied by Fe atom 

[Johnson et al., 1972]. Atoms on the  M1 site are interconnected to form distorted octahedra 

which share common triangular faces and form chains of composition [(M1)3] along the c-

direction. The M2 site is surrounded by six silicon atoms at distances of approximately 2.4 Å 

in the form of a distorted octahedral. These octahedral share triangular faces with 

Least-squares fit 

a  

Set I(calc.)=I(obs.) Use newa ..         

Initialize I(calculated) and 

a
Calculate I(observed) 
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neighboring octahedra [M2Si6] and form infinite chains of composition [(M2)Si3] along the 

c-direction [Binczycka et al., 1973; Gourdon et al., 2014]. Table 2.1 shows the lattice 

parameters for the compounds of the series Mn5-xFexSi3 at room temperature as published in 

[Binczycka et al., 1973]. 

Table 2.1: The lattice parameters for the compounds of the series Mn5-xFexSi3 

x a0(Å) c0 (Å) v0(Å3) 

0 6.9077±0.00004 4.8131±0.00004 198.90 

1 6.8849±0.00009 4.7861±0.00008 196.49 

2 6.8538±0.00005 4.7579±0.00005 193.56 

3 6.8301±0.00004 4.7390±0.00004 191.46 

4 6.8054±0.00007 4.7290±0.00005 189.68 

 
Of particular interest is MnFe4Si3 system, which has lattice parameters of a = 6.80572(22) Å 

and c = 4.72965(16) Å at 300 K. By using x-ray and neutron single crystal diffraction 

refinements, a new structural model in space group was found, in which Mn and Fe atoms 

are  occupy one of the transition metal sites (M1a, M1b) in a partially ordered manner, while 

the other transition metal site (M2a, M2b) is completely filled by Fe atoms.  

Figure 2.7: Projection of the structure of MnFe4Si3 in space group P  at 380 K along the [001]-direction 

(left) and along the [120]-direction (right) [Hering et al., 2015]. 

 

Figure 2.7 shows the projection of the structure of MnFe4Si3 in space group P at 380 K 

along the [001]-direction (left) and along the [120]-direction (right). Sites occupied by Mn 

and Fe are shown in magenta (M1a) and gray (M1b); sites exclusively occupied by Fe are 

shown in orange; Si atoms are shown in blue, shortest distances between M1a and M1b sites 

are indicated in black, and [FeSi6]- octahedra are indicated in blue [Hering et al., 2015]. 
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2. .2 Magnetic properties of Mn5-xFexSi3 (Previous Studies) 

Depending on the stoichiometry, the compounds in the system Mn5-xFexSi3 (x = 

undergo various magnetic phase transitions at different temperatures. The magnetic 

transitions have been investigated by magnetization measurements as a function of 

temperature on polycrystalline samples and the magnetic transition temperatures are shown 

in Figure 2.8. Two different antiferromagnetic phases are observed for the Mn-rich 

compounds (x = 0, 1, 2, 3). The paramagnetic phase P transforms to a antiferromagnetic 

structure AF2.  At lower temperatures a second to an antiferromagnetic structure AF1 occurs 

in all 4 compounds. On the other hand, for the Fe-rich compounds only a Ferromagnetic 

ordered phase F is observed [Songlin et al., 2002; Binczycka et al., 1973]. 

 
Figure 2.8: Magnetic phase diagram of the Mn FexSi3 system (x=0,1,2,3,4,5) [Songlin et al., 2002]. 

 
The compound MnFe4Si3 which is studied in this thesis has a phase transition to a 

Ferromagnetic ordered phase at approximately 300 K [Hering et al., 2015; Gourdon et al., 

2014]. A refinement of the magnetic structure based  on neutron data measured on a 

MnFe4Si3 single crystal 

strong anisotropy of the magnetization (and consequently of  the magnetocaloric effect) with 

the easy axis of magnetization in the a,b-plane. It was shown that the spins on the sites with 

mixed occupancy of Mn and Fe are aligned in the a,b-plane, but it was not possible to refine 

a significant magnetic moment for the site exclusively occupied by iron (Figure 2.9) [Hering 

et al., 2015]. This is in clear contrast to the earlier results obtained from Rietveld refinements 
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performed in the magnetic space group P63

assumed that the magnetic spins order parallel to the [001]-direction [Gourdon et al., 2014]. 

 
 

Figure 2.9: Schematic diagram illustrating the ferromagnetic structure of MnFe4Si3 at 200 K in magnetic 

-direction; right, projection 

along [001]- direction [Hering et al., 2015]. 
 

With the field applied along the a-axis, the magnetic entropy change deduced from the 

hysteresis loops measured on single crystal samples using the Maxwell relation has a 

K for a field change of 2 T [Hering et al., 2015] which is slightly 

higher  than the values ob  2 J/kgK at a field change 

K for a field change from 0 to 5 T [Gourdon et al., 2014; Songlin 

et al., 2002]. With the field applied along the c-axis, the entropy change is considerably 

smaller K) [Hering et al., 2015]. 

2. .3 Why the system Mn FexSi3 is a good candidate for studies 

Even though the MCE in these materials is moderate, the materials could potentially perform 

well after some optimization through doping. In addition, they are made up of low-cost, 

abundant and non-toxic elements and they are less brittle compared to competing materials. 

Moreover, it is possible to synthesize these materials as large single crystal, which is 

impossible for the majority of other magnetocaloric materials (MCM) that are commonly 

available in polycrystalline form. This offers a major advantage for obtaining knowledge 

about the basic mechanism of the MCE because the availability of large single crystals 

enables to apply a series of experimental techniques not available for polycrystalline 

samples. 
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Experimental Setup and Techniques                  3 

3.1 Sample Preparation 

3.1.1 Synthesis of the polycrystalline samples of Mn FexSi3 with x=4 

Polycrystalline ingots of MnFe4Si3 were prepared using stoichiometric amounts of the 

elements using cold crucible induction melting under argon atmosphere.  

For a method a water cooled structure is used which is surrounded by induction coils 

[Stefanovsky et al., 2016]. The sample is placed in a crucible and heated by an electric field 

generated in it from high frequency alternating current (AC) that passes through the multi-

turn induction coils surrounding the glass tube that covers the copper crucible. The process is 

performed in vacuum for high purity of the final material.  

                                      (A)                                                                      (B) 

                                  

Figure 3.1: (A) Schematic of an apparatus for cold crucible induction melting (B) Principle of cold 

crucible induction melting [Beyss and Gier, 2014]. 
 

Figure 3.1(A) shows a schematic of a cold crucible induction melting apparatus, and Figure 

3.1(B) illustrates the principle. The crucible is divided into many segments; each is insulated 

from the next one and connected to a water pipe for cooling. The induced current IT cycles in 





20 

 

mechanically at the surface to remove any contamination. This polycrystalline material was 

then used as starting materials for the growth of a large single crystal. 

 
3.1.2 Single crystal growth of MnFe4Si3 (Czochralski method) 

A large single crystal of MnFe4Si3 was grown from the polycrystalline material by the 

Czochralski method in an aluminum oxide crucible using tungsten crystals as seed crystals. 

The method is used for large single crystal growth in an inert atmosphere [Czochralski, 

1918]. Figure 3.3 illustrates the setup. 

 
At the beginning of the growth procedure, polycrystalline pieces are filled in a crucible of a 

suitable material with a diameter larger than the one needed for the single crystal. This 

crucible is then inserted into another crucible which stands on a holder with copper coils 

surrounding it. For heating the sample, an alternating current passes through the coils and 

heats the solid in the crucible due to its electrical conductivity until the polycrystalline pieces 

in the crucible melted down. 

 
The rod with the tungsten seed crystals is lowered into the melt and at the interface between 

the seed and the melt the single crystal starts to grow while the rod is moved upwards with a 

specific speed. During this process the rod is rotating so that the resulting single crystal will 

have a cylindrical shape. The diameter of the single crystal can be controlled by controlling 

some factors such as the pulling and rotation speed and the power used for heating the 

crucible. 

 
Figure 3.3: Schematic drawing of an experimental setup for single crystal growth using the Czochralski 

Method. 
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For the synthesis of MnFe4Si3 83 g of polycrystalline material were filled into an aluminum 

oxide crucible, which was cleaned with ethanol prior to filling. The aluminum oxide crucible 

was inserted into a larger ceramic crucible and then put at the center of the furnace crucible 

to ensure that the heat was evenly distributed.  

After closing the system, the power supply was switched on and the samples were heated up 

in vacuum. After melting the material in argon atmosphere, the single crystal growth started 

with the seed crystal of tungsten mounted on a rod of 3 mm diameter, also made of tungsten. 

The necking method was used to obtain a crystal of good quality. In this method the diameter 

of the crystal is reduced at the beginning of the synthesis to remove undesired grains and 

dislocations. Once a single grain was obtained, the diameter was enlarged. 

The rod was then moved upwards with a speed of 10 mm/h and a rotation speed of 20 rev/m

(Figure 3.4, left). The changing in the diameter of the crystal between the neck and the rest of 

it was controlled by the heating power and therefore by the melt temperature. The final single 

crystal had a diameter of about 10 mm. Unfortunately, due to internal stress the neck of the 

crystal broke before taking it out of the crucible (Figure 3.4, right).  

 

                  
Figure 3.4: Photo showing the growth of the crystal and a picture of the final crystal. 

 
Some small pieces of the broken material were grounded further for x-ray powder diffraction 

experiment to check the quality of the sample. The larger part of the crystal was checked and 
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oriented with a Laue camera. Spark erosion was used to cut four equal samples 

(5mm×5mm×1mm) for pulsed field measurements, two of them with the shortest dimension 

in [100]-direction and the other two with the shortest dimension in [001]-direction. Pieces of 

remaining parts of the crystal were used for magnetization measurements in DC field.  

 

3.2 Scattering Techniques 

The Huber G670 powder diffractometer: Figure 3.5 shows a schematic view of the used 

Guinier geometry powder diffractometer. The diffractometer is equipped with a Cu X-ray 

tube. With the help of a monochromator the Cu-K  radiation (1.54 Å) is selected. To improve 

the divergence of the beam soller slits is introduced between the monochromator and the 

sample. The diffractometer has an integrated imaging plate detector with which the data can 

be acquired in a few minutes and only a small amount of the sample (several mg) is needed 

for the measurements. 

Inside the detector housing, there is a laser recording unit with photomultiplier and pre-

amplifier to read out the imaging plate. A halogen lamp is used to reset the information on 

the imaging plate after exposure and read out. The diffraction signal is stored as intensity 

data versus  

                                (A)                (B) 

    
 

Figure 3.5: (A) Schematic representation of a powder diffractometer with transmission geometry (B) A 

photo of the diffractometer used in this work.   

3.2.1 X-ray powder diffraction experiment 

For the powder diffraction experiments a few milligrams of the sample were crushed in a 

mortar to obtain a very fine powder. After cleaning the sample holder, a piece of cellophane 



23 

 

foil (Mylar-thin film) was used. The foil is visible in the powder diffraction diagram as a 

small increase in the background in the small angle area.  

 

A very small amount of the sample was put on the middle of the foil together with a few 

drops of isoproponol. The sample was then mixed with the isoproponol and distributed 

homogenously until a smooth flat surface was obtained. The mixture was left to dry and then 

covered with another piece of foil.  

 

The two foils were fixed together with a metal ring and mounted in a Huber G670 X-ray 

powder diffractometer (Figure 3.6). Measurements were carried out at room temperature in 

transmission geometry using Cu-K  radiation (1.54 Å). The sample was exposed for 240 

minutes. To obtain a better statistics the sample oscillated during exposure with a frequency 

of about 1 Hz and amplitude of 10 mm. 

 

Figure 3.6:  Photo of the sample used for the powder diffraction experiment. 

3.2.2 Laue diffraction 

Laue diffraction was used to check the larger segment of the synthesized single crystal. Two 

differently oriented grains were found within the segment and their locations were specified. 

Spark erosion was used to separate them and later on the same fraction was used to prepare 

all other samples. 

A Multi wire MWL100 Real-Time Back-Reflection Laue Camera System (MWL100 Camera 

System; Figure 3.7 A) was used to define the orientation of the crystals by viewing the back 

reflection images on a computer screen in real time.  

The crystal was mounted on a rotatable holder (Figure 3.7 B), then the holder with the crystal 

was installed in the instrument. The Orient Express software (Figure 3.7 C) was used to 
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simulate the Laue pattern and the crystal was rotated until the desired orientation was 

obtained (Figure 3.7 D). 

 

    (A)                                                                              (B) 

                            
                         

    (C)                                                                             (D)           

                             
 

Figure 3.7: (A) Photo of the MWL100 Camera System (B) the crystal fixed on the holder (C) a screenshot 

of the control software (D) an image from the Laue camera for the crystal of MnFe4Si3 oriented along the 

c-axis. 

 

3.3 Magnetization Measurements 

In this work two kinds of magnetization measurements were done on MnFe4Si3, the first one 

in DC field, which were carried out in the Jülich Center for Neutron Science (JCNS-2) and 

the other in pulsed field which were performed in Dresden High Magnetic Field Laboratory 

(HLD) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). 

3.3.1. Isothermal magnetization measurements in a DC field 

Direction dependent magnetization measurements M(H) on MnFe4Si3 single crystals in DC 

fields have been performed by using a vibrating sample magnetometer (VSM) manufactured 

by Quantum Design System PPMS and PPMS Dynacool. Measurements were made with the 
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magnetic field directed parallel to the crystallographic a-axis then with the field parallel to c-

axis. 

Quantum Design: Physical Property Measurement System (PPMS) 

PPMS can perform magnetic, thermal and electrical measurements using various options 

designed for it (in this work, VSM option was used). In our system the field can reach 9 T, 

the temperature can go down to 1.9 K, and the magnetization can be measured with a 

sensitivity of 10-6 emu. 

                             (A)                                                                      (B) 

                      
 

Figure 3.8: (A) VSM option of the PPMS setup (B) a photo of the PPMS at JCNS-2. 

The VSM option operation is  of induction. The sample oscillates 

inside inductive pick-up coils under the influence of a linear motor. The vibrating sample 

causes a change in the magnetic flux of the pickup coils, inducing a voltage in them that is 

proportional to the sample  (A) shows a schematic of a typical 

VSM and Figure 3.8 (B) shows a photo of the PPMS used in JCNS-2. 

The PPMS Dynacool, uses the same principle, a comparable magnetic field (9 T) and a lower 

temperature of 1.4 K can be reached compared QM PPMS (1.9 K). The main difference 

between the two designs is that QM PPMS uses an external supply of liquid cryogens for 

cooling while PPMS Dynacool has a water cooled He-compressor (closed-cycle), which 

expands He in a pulse tube cold head and liquefies a small amount of He for magnet and 

sample cooling  
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Figure 3.9: Photos of the used sample on the sample holder 

 
First, -axis were performed using PPMS-Dynacool. A 

small sample (18.3 mg) of MnFe4Si3 was used, checked with the Laue camera to define the 

orientation and then mounted with a small amount of GE varnish on the sample holder 

(Figure 3.9 left).  

Special care was taken to mount the sample at the correct location on the holder, to ensure 

the correct position inside the pickup coil. The holder with the sample was left under a lamp 

for at least half hour until the varnish dried and then it was covered with Teflon (Figure 3.9, 

right). The holder with the sample on it was inserted in the Dynacool. 

A scan for the sample position in the magnetic field within the Dynacool was done using a 

small field of 100 Oe to ensure the sample was in the right place (center of magnetic field). A 

file containing the sequence of the measurements was created to define the procedure. 

Hysteresis loop measurements (M(H)) were carried out in a field from -1 to 1 T with a sweep 

rate of 50 Oe/sec in the temperature range from 20 to 350 K with 10 K increase in each step 

(see appendix, Figure A1).  

After that, magnetization measurements in the other direction -axis) were performed on 

the QM PPMS. A sample of 5.8 mg was used and mounted on the holder the same way as 

mentioned before. Hysteresis loop measurements (M(H)) were carried out under a field from 

6 to 0.5 T (starting from 6 T at each temperature so that the sample was always saturated at 

the beginning of the measurement) with a sweep rate of 198 Oe/sec, then from 0.5 to -0.1 T 

with a sweep rate of 20 Oe/sec in a temperature range from 60 to 260 K with 20 K increase in 

each step, then from 260 to 340 K with a 2 K increase and from 340 to 380 K with 10 K steps 

(Appendix, Figure A2). Figure 3.10 shows a photo of the last sample mounted on the holder. 

At the end, two hysteresis loops were performed at low-temperature (5 K) to calibrate the 
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pulsed field measurements, one of them with the field parallel to the a-axis using sample of 

7.5 mg and the other with the field parallel to c-axis using a 5.8 mg sample. 

 
Figure 3.10: Photo of one of the used samples mounted on the sample holder. 

 
For the -axis measurement, the field was changed from 8 to 0.5 T with a sweep rate of 

198 Oe/sec, then from 0.5 to -0.5 T with a sweep rate of 20 Oe/sec and finally from -0.5 to -8 

T with a sweep rate of 198 Oe/sec. A similar procedure was applied -axis) 

measurement but with 8.5 T instead of 8 T.  

3.3.2 Adiabatic magnetization measurements in pulsed field 

For the first time, adiabatic magnetization measurements in pulsed fields were performed on 

MnFe4Si3 by using the induction method. As mentioned before, these measurements were 

carried out in Dresden High Magnetic Field Laboratory (HLD).  

                       (A)                                                                         (B) 

                                    
 

Figure 3.11: Magnetization measurements in pulsed magnetic field (A) A photo of the two samples, the 

holder and the tube (B) The samples after assembly. 

 

For these measurements, two small samples were used; the first one (7.3 mg) was cut in a 

way that when it is mounted, the magnetic field will be parallel to the c-axis and the second 

one (14.3 mg) was cut in a way that the field is parallel to the a-axis. 
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For the measurements, the sample was mounted in a very small holder, then the holder with 

the sample on it was entered into a tiny tube and installed at the center of a pickup coil 

(Figure 3.11). The coil is 4 mm long and consists of 2000 turns of 40 µm copper wire 

convoluted around the sample space which has 2 mm in diameter. 

 
Figure 3.12 shows the pickup-coil system used in the pulsed-field magnetometer with (left) 

the principal sketch, (middle) the electrical scheme, and (right) the actual set up. For 

measuring the magnetization by the pickup coil in a varying magnetic field, this coil must be 

connected to another coil to cancel the influence of induction dH/dt. Many arrangements are 

possible for the compensated pickup coil system. The coaxial geometry was selected because 

it is the least sensitive to the field gradient and vibrations. The compensation coil was wound 

around a support of 6.8 mm in diameter. The residual uncompensated part, which is caused 

by the temperature-dependent contribution, is reduced at each temperature by a fine-

compensation circuit using another additional coil [Figure 3.12; Skourski et al., 2011].  

 

 
 

Figure 3.12: The pickup-coil system used in the pulsed-field magnetometer with (left) the principal 

sketch, (middle) the electrical scheme, and (right) a photo of the original set up [Skourski et al., 2011].  

 

For measuring the magnetic field, two pick-up coils were used connected in series, and 

located at equal distance below and above the magnetization pick-up coil and sufficiently far 

(about 10 mm) to prevent the effect of the sample on the field measurement. 
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which is proportional to dH/dt was stored using a digitizer and later integrated numerically. 

The well-known magnetization curve of MnF2 which displays a temperature-independent 

spin-flop transition at 9.27 T was measured to calibrate the pick-up coil signal [Skourski et 

al., 2011]. 

The magnetization measurement for each sample involved measurements of the signal from 

the pick-up coil with the sample in it at the desired temperature, and the background (signal 

without the sample) under the same conditions.  then found 

by subtracting the background from the first signal [Skourski et al., 2011]. For the easy 

direction, the magnetization measurement was carried out in pulsed magnetic fields up to 8 T 

and for the c axis (hard direction), the magnetization was performed in pulsed fields up to 30 

T.  Both measurements were done at a temperature of 4.2 K.  

3.4 Direct Measurements of the MCE in a Pulsed Magnetic Field 

The direct measurements of the MCE were also performed at Dresden High Magnetic Field 

Laboratory (HLD) by using home-built experimental set-ups (Figure 3.14). Three major 

components are required: the magnetic field, a cryostat for cooling or heating the sample 

(Helium-4 (4He)) and a suitable thermometer   

      (A)                                                                                 (B) 

                     
 

Figure 3.13: (A) Time dependences of the magnetic fields obtained with different pulsed magnets 

operational at the HLD [Zherlitsyn et al., 2012] (B) a photo of the used coil.  
 

In this work, the small magnet used, designated  was used, which has a bore of 24 mm 

and operates with 1.5 MJ total energy, providing pulsed field up to 50 T and pulse length of 
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50 ms.  Figure 3.13 (A) shows the time dependences of the magnetic fields obtained with 

different pulsed magnets operational at the HLD. The green curve corresponds to the used 

magnet and figure 3.13 (B) shows a photo of the used coil.  

 

Figure 3.14 displays the set-up used in the measurements. A schematic drawing of the pulsed 

field experimental set-up containing the magnet, cryostat, sample holder, and electronic 

connections is shown and photos for both sides of the sample holder together with the local 

heater are provided. 

 
As mentioned before, four equal samples (5mm×5mm×1mm) were prepared for these 

measurements, two of them were cut so that the shortest dimension was in [100]-direction 

and the other two with the shortest dimension in [001]-direction (Figure 3.15 A). In the 

beginning, the samples with the shortest dimension in [001]-direction were mounted in such 

a way that the field was parallel to the a- axis (easy direction). 

A differential copper- constantan thermocouple was used to measure the temperature of the 

sample with wires diameter of 20 micrometers. The two wires (copper and constantan) were 

thoroughly twisted together to avoid any open loops (Figure 3.15 B), and then one leg of the 

 

 

inside 

voltage (Figure 3.14). 

 
To make the junction between the two samples, two kinds of thermal-conductive epoxy 

(EPO-TEKH20E) were mixed in equal proportions. A very small amount of the mixture was 

placed at the surface of the first sample, the junction was put at the center of the sample and 

then the second sample was put on top resulting in a sandwich with the junction in the 

middle. The sandwiched sample was put on a heater for about one and half hour at 130 Co to 

stiffen out the epoxy. This was necessary to ensure good thermal contact and to decrease the 

heat loss between the measuring junction and the sample.   
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Figure 3.14: (a) Schematic of the experimental set-up for MCE measurements in pulsed magnetic fields 

(b) Pictures of both sides of the sample holder together with the brass cylinder [Zavareh, 2016]. 
 
After this, the two samples with the thermocouple junction between them were installed on 

the holder using GE varnish glue (Figure 3.15 C). The other junction was also installed with 

GE varnish at the same height on the other side of the holder, so that both junctions were 

subject to the same magnetic field (Figure 3.15 D).The sample holder with the wires was 

connected to a G10 rod with a length of 1.5 m. All electrical contacts were made of copper 

wires and all materials and wires used were chosen in order to minimize eddy currents. 

After holding the system tightly, a local heater was placed around the sample to ensure 

uniform temperature distribution. The heater used was a brass cylinder with 0.5 mm thick 

wall and a diameter of about 12 mm with a longitudinal slit in it to prevent the production of 

eddy currents. Manganese wires of 50 µ diameter were bent and coiled around it as heating 

element and connected with the wires on the rod by solidification (Figure 3.15 E). Afterward, 
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the rod was covered by Teflon and enclosed in a thin-walled stainless-steel shield, and 

centered by spacers made from PEEK. During the mounting, four resistance measurements 

were regularly checked (heater, pick up coil, two lines of the thermometer, and thermocouple 

resistivity) to ensure that there was no open loop or shortage in the wires. Figure 3.15 (A) 

shows the four samples used in these measurements. Figure 3.15 (B) shows a schematic of 

the differential copper-constantan thermocouple and the front side of the sample holder with 

the samples mounted on it is shown in Figure 3.15 (C). The back side of the holder with the 

reference junction fixed on it is shown in figure 3.15 (D) and finally Figure 3.15 (E) shows 

the holder with the heater placed around the sample. 

As the measurements had to be performed under adiabatic conditions, a pump was used to 

evacuate the sample space inside the shield. As in the case of pulsed magnetic fields the 

measurements are very fast, a limited vacuum is sufficient. The whole assembly was inserted 

into Helium-4 cryostat and the resistances were checked again. 

 

           (A)                                                                       (B) 

     
                      
                     (C)                                           (D)                                             (E)                           

   
  

 

Figure 3.15: The experimental setup: (A) the four samples used in these measurements (B) a schematic 

drawing of the thermocouple (C) the holder with the samples mounted (D) the back side of the holder 

with the reference junction installed (E) the holder with the heater placed around the sample. 
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In the pulsed field measurements, it is very critical to measure the magnetic field precisely 

and in our work, this was done by measuring the induced voltage in a calibrated pick-up coil. 

In general, the pickup coil consists of a specific area (few mm2) with one or more turns of 

wires around it. In our case it was made of 15 turns of 60 µm isolated copper wire and 

situated at the end of the sample holder. The induced voltage was proportional to the time 

derivative of the enclosed magnetic flux, Uind(t)  dB(t)/dt, where B is the magnetic 

flux density. A digital oscilloscope (Yokogawa DL750 or DL850) with a sampling rate of up 

to 1 MHz was used for registering this voltage, then the digitized data were stored and 

integrated numerically to obtain  the magnetic field as a function of time [Zavareh, 2016]. 

For a calibrated thermocouple, both V(T) and T(V) are defined in the form of polynomials. 

So the initial temperature Ti results in an initial voltage Vi. When the initial voltage is 

f can be obtained from 

f-Ti can be calculated. For the conversion of the 

voltage difference in mV to the temperature change in K a Matlab program was used 

[Zavareh, 2016]. 

A large artificial voltage (dB/dt) may arise from a small loop in the thermocouple wires. The 

 

significantly smaller than the artificial voltage. To prevent this disruption two measures were 

taken. An extra compensation circuit was used where the pick-

was passed through a voltage divider and the appropriate part of it was taken and subtracted 

from the thermocouple signal. Secondly we made use of the fact that the MCE does not 

depend on the field direction. Therefore, averaging between positive and negative pulses 

allows extracting the required temperature-dependent part of the voltage signal. By using 

these two methods, it was possible to remove the effect of dB/dt from the measured results.  

After applying this procedure, the signals from the thermocouple were amplified and 

conditioned by a low-noise voltage amplifier (FEMTO-DLPVA).The time-dependent 

the  recorded by a digitizer and ad(t) with 

the already mentioned Matlab program [Zavareh, 2016]. 
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Initially, 2 T pulses (1 KV) were applied at different initial temperatures and the value of 

Tad was calculated for each temperature. Then the same procedure was performed with 20 T 

pulses (10 KV) at slightly different temperatures, and finally one 50 T pulse (24 KV) was 

ad at this high magnetic field. Table 3.1 shows the 

initial temperatures at which the pulses were applied. 

Table 3.1: The initial temperatures at which the pulses were applied. 

2T Pulses 20T Pulses 50T Pulses 

340 330 320 
330 320  
320 315  
310 310  
305 305  
300 300  
295 280  
290 260  
285   
275   
265   
255   

 

The second sample was mounted in place (with the field parallel to c-axis) after dismounting 

the first. A test pulse of 10 T, which was applied at 340 K, did not result in data of sufficient 

quality as the heat transfer between the sample and the thermocouple was too slow. This was 

evident from an offset between the measured temperature and the real temperature of the 

sample. Due to the limited magnetic time available, the measurements on this sample were 

stopped.  And the sample was pulled out and cut for magnetization measurements. 
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Data Analysis and Discussion                   4 

4.1 Le Bail Refinements of the Powder Diffraction Data 

LeBail refinements [LeBail et al., 1988] were performed with the program Jana 2006 

[Petricek et al., 2006]. According to the previous literature, the compound MnFe4Si3 

crystallizes in a hexagonal structure in the space group P63/mcm with lattice parameters a  b 

= 6.8043(4) Å, and c = 4.7254(2) Å [Gourdon et al., 2014] and these parameters were used 

for the starting model. A manual background was defined and for profile fitting the pseudo-

Voigt-function with parameters GW and LX was used. In addition, the zero shift was refined. 

 

Figure 4.1 displays the final Le Bail refinement. The difference between the observed and the 

calculated diffraction diagram is small (final wRP= 0.82%) and there are no indications of 

impurity phases.  

 

 
Figure 4.1: Observed intensities and the difference profile of MnFe4Si3 measured at room temperature 

from the LeBail refinement. 
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4.2 Macroscopic Properties 

4.2.1 Magnetization measurements 

4.2.1.1 Magnetization measurements in DC field 

The magnetic properties of the sample were investigated by measuring the magnetic moment 

vs. the magnetic field. The magnetization is calculated from the measured magnetic moment 

per unit mass (Am2/Kg). The errors in the measurements of sample masses yield an error in 

the magnetization of about ±1.0x10-5Am2/Kg. 

 
 

Figure 4.2: Hysteresis loops of MnFe4Si3 measured at temperatures from 20-350  

Figure 4.2 shows the MnFe4Si3 magnetization as a function of the applied magnetic field 

parallel to the crystallographic a-axis  for values up to 1T and the temperature 

range is shown. In the ordered phase one can distinguish a steep linear field dependence at 

small fields and a second linear region with a small slope at larger fields. I have analyzed 

each curve by fitting with a linear function in each region (Figure 4.3 as a case).  

Using the data I have calculated the magnetic susceptibility dM/dH in the region around zero 

field (Figure 4.4 top, where dM/dH changes drastically at the transition temperature) and the 

spontaneous magnetization by extrapolating the saturation data to zero field (Figure 4.4 
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bottom). Figure 4.4 middle shows the dM/dH slopes for the saturated data from a fit with a 

straight line. For low temperatures or ordered states the slope is constant, while close to the 

transition temperature the model breaks down, as we do not preserve saturation and the 

magnetization changes linearly. This is also the reason for the broadening of the transition as 

can be inferred from the spontaneous magnetization.  

For temperatures below 300 K, the slope around zero field is constant. The magnetization 

approaches 120.30(5) Am2/Kg at a field of 0.4 T and a temperature of 20 K. For higher 

fields, there is a small linear increase and up to 1 T there is no clear saturation. Upon 

increasing the temperature, the sharp transition is gradually broadened and the value of 

saturation magnetization decreases (Figure 4.4 bottom).  

 

 

Close to the transition temperature and above, the aforementioned model does not hold any 

more. The slope at small fields changes drastically and the saturation is not reached at 1 T. At 

330 K and above, the magnetic moment increases linearly with the field in the measured 

range and the sample shows a paramagnetic behavior. Comparing with [Hering et al., 2015], 

a good agreement can be seen with a slightly smaller values of the maximum magnetization 

and the field of saturation in our results. 
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Figure 4.4: Bottom: magnetization in the saturation region; Middle: slopes in the saturation region; Top: 

slopes in the region near zero field,  

Figure 4.5 shows the hysteresis loops of MnFe4Si3 with the field parallel to the 

crystallographic c- omparing with the hysteresis loops with the field 

parallel to a-axis, we can see a clear anisotropy of the magnetic response. Again, in the 

ordered phase one can distinguish the linear field dependence at small applied fields (albeit 

less steep than in [100] case) and a second linear region with a small slope at large fields. 



39 

 

However the model of two linear regions breaks down earlier than the [100] case. I also have 

analyzed each curve similar to the [100] direction (Figure 4.6 as a case).  

 

 
 

Figure 4.5: Hysteresis measured at temperatures from 60-380  

I calculated the magnetic susceptibility dM/dH in the region around zero field (Figure 4.7 

top), where a very sharp peak can be seen at the transition temperature and the spontaneous 

magnetization by extrapolating the high field data to zero field (Figure 4.7 bottom) 

 

 



40 

 

 
 

Figure 4.7: Bottom: magnetization in the saturation region; Middle: slopes in the saturation region; Top: 

slopes near zero field region. they exceed the symbols size.  

In these hysteresis loops, It can be seen that the of the magnetization field dependence 

increases slower and reaches smaller maxima compared to the [100] direction. For example 

the magnetization reaches about 103.64 (22) Am2/Kg at a field of 5 T at 60 K, and then at a 

higher fields, there is a small linear increase and up to 6 T there is no clear saturation. This 
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agrees with [Hering et al., 2015] as no saturation was obvious in a field up to 4 T. These 

observations confirm that for the compound MnFe4Si3, the magnetization easy axis is in the 

a,b-plane and the c-direction is the hard magnetization axis. 

After 300 K, the magnetization dependence on the field increases, the slopes of the saturation 

region increase, and the saturation starts to weaken (Figure 4.7, middle).  At 380 K, the 

magnetic moment loses saturation and increases linearly with the field. 

 

For the calculation of the MCE from the hysteresis measurements, the temperature dependent 

magnetic response for different field values applied parallel to [100] is shown in Figure 4.8. 

The response for the field parallel to [001] is shown in Figure 4.9 (see also, Figure A4). We 

can see the difference between the magnetization values for the two directions at the same 

field value. 

 

 
 

Figure 4.8: Temperature-dependent magnetization of MnFe4Si3 from hysteresis measurements  

 
The anisotropy is also visible in the temperature dependence. In the [100] direction, the 

magnetization quickly reaches a constant value for small applied fields (µ 0H < 0.2 T). For 

larger fields the typical temperature dependence of a ferromagnets develops, approaching 

saturation only at low temperatures. For the [001] direction the shape is completely different. 
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M(T) features a maximum, which shifts with increasing field to lower temperature. For the 

higher fields it becomes shallower and might finally disappear for µ 0H > 5T (as measurement 

below 60 K where not performed, it could also move to a lower temperature range). Even at 

the lowest temperature and highest field, the magnetization for [001] is still lower than the 

[100] direction. Please refer to the measurements in pulsed fields (4.2.1.2). 

For higher temperatures, the curves show the largest slope for an applied field parallel to 

[100] and hence lation 

S(T)=  

 

 
 

Figure 4.9: Temperature-dependent magnetization of MnFe4Si3  

 
With an applied field along the a-axis, the magnetic entropy change has a maximum of about 

1.3 J/kgK for a field change of 1 T, and with the field along the c-axis, the magnetic entropy 

change has a maximum of about 3.5 J/kgK for a field change of 6 T (or 0.583 J/kgK per 1 T) 

which is smaller than the a-axis value. This is consistent with the values reported by [Hering 

et al., 2015] which are 2.9 J/kgK and 1.3 J/kgK for 2 T along the a-axis and c-axis 

respectively. These observations demonstrate that the MCE in this compound is clearly 

dominated by the magnetic moments aligned in the a,b-plane. 
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of based on the measured magnetic hysteresis 

loops with fields along the [100] and [001] directions respectively. From the two curves the 

magnetocaloric effect also shows a significant anisotropy with a maximum value 

approximately at 300 K (i.e. largest at the temperature of the magnetic phase transition). 

 

 
 

Figure 4.10: MCE of MnFe4Si3 calculated from the temperature-dependent magnetization at a field of 1T 

 

 

 
 

Figure 4.11: MCE of  MnFe4Si3 calculated from the temperature-dependent magnetization at a field of 6T 
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4.2.1.2 Magnetization measurements in a pulsed field 

Figure 4.12 shows the field dependent magnetization M(H) obtained from the pulsed 

magnetic field experiment together with isothermal magnetization data measured in a field up 

to 8 T at 5 K in the [100] direction. The pulsed field magnetization measurement data was 

normalized to the DC field data at 8 T.  

It can be seen that there is an excellent agreement between the two curves. A steep rise in 

magnetization occurs in both curves and reaches about 126.41(30) Am2/Kg for the DC data 

and a slightly lower value in pulsed data (119.98(23) Am2/Kg at a field of 8 T).  The pulsed 

measurement reaches saturation at 0.25 T which is a slightly smaller field than the DC 

measurement (0.3 T). At higher fields, there is a small linear increase which is larger in the 

pulsed field curve (for the pulsed field the approach to saturation is smoother, and holds for 

both measurements a long [100] [001] directions). However we can say the two curves are 

comparable and the slope variation could be a result of the different instrumentations used.  

A first order transition is evident from the data measured along [100] direction and that 

clearly identifies [100] as the easy direction for magnetization. 

 

 

Figure 4.12: M(H) curves in pulsed magnetic field and DC field at 5 K in [100] direction. 

Figure 4.13 shows the field- dependent magnetization M(H) measured in pulsed magnetic 

field up to 30 T together with the isothermal magnetization measured in DC field up to 8.5 T 
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both at 5 K in [001] direction. The pulsed field magnetization measurement data was 

normalized to the DC field data at 8.5 T.  

Again an excellent match between the two curves can be seen. The magnetization increases 

slower compared to the [100] direction. It reaches about 114.16(7) Am2/kg at 5.5 T for the 

DC field and 116.59(1) Am2/kg at 7 T for the pulsed field, and at higher fields, there is a 

small linear increase. Comparing the pulsed field measurements in [100] and [001] 

directions, the magnetic anisotropy of the sample is obvious. 

 

 
 

Figure 4.13: M(H) curves in pulsed magnetic field and DC field at 5 K with the field applied in [001] 

direction. 

 

4.2.2 Direct measurements of the magnetocaloric effect in pulsed magnetic fields 

The main advantage of these measurements is that they are performed under adiabatic 

conditions ensured by the sufficiently fast magnetic-field change (short pulse duration). In 

addition, the accessible magnetic field range extends beyond 70 T. 

 

Figure 4.14 shows the adiabatic temperature change for the easy direction of a MnFe4Si3 

single crystal sample as obtained from the direct measurements in pulsed magnetic field of 2 
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T (black symbols) and 20 ad increases with increasing 

the applied magnetic field. 

 
A ad occurs at TC (300K) for a field change of 2 T. With increasing the 

magnetic field up to 20 T, the observed peak broadens, extending towards higher 

temperatures. This can be explained as follows: at temperatures below TC = 300 K, the 

sample is in a ferromagnetic state and applying a magnetic field only marginally changes the 

entropy of the system and consequently the change in Tad is comparatively small. Since at 

TC the magnetization changes quickly because of the field-induced first-order transition, an 

MCE maximum is expected around TC 

 Above TC, an applied magnetic field can induce the transition-provided the  

temperature is not too high above TC  resulting in an entropy jump.  

 

Depending on the field strength, the induced transition can be complete or incomplete. In the 

case of an incomplete transition, the transformation is partial ad is correspondingly 

ad above TC (2 T data in Fig. 4.14).  According to the 

magnetization data discussed before, a maximum field of 20 T is sufficient to complete the 

transition at any considered temperature. Thus, at 20 T the MCE maximum extends towards 

ad displays a broad maximum.  ad reduction above 315 K is 

because the height of the magnetization jump, and thus the associated transition entropy 

decreases considerably. This broad maximum is also reported in [Fujieda et al., 2002] for 

the La(Fe,Si)13 system and for the La(Fe,Si,Co)13 system [Zavareh, 2016]. 
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ad for MnFe4Si3 measured in pulsed magnetic fields of 2 T (black symbols), 

20 T (red symbols) and 50 T (blue symbol).  
 

ad were 1.38 and 5.66 K for field changes of 2 T and 20 T, 

respectively. The adiabatic temperature change increases only by a factor of 4 when the field 

increases by a factor 10. The MCE for the MnFe4Si3 single crystal measured under pulsed 

field up to 50 T for the temperature 320 K gave ad value of 9.45 K (blue symbol).  

Gd is considered as the benchmark for the magnetocaloric materials comparisons. This is 

because it has a Curie temperature close to room temperature ranging 289-295 K according 

to literature . It has small to no anisotropy; a negligible magnetic-

hysteresis losses; and more importantly a large MCE [Hansen, 2010]. For polycrystalline 

samples of Gd direct measurements in pulsed magnetic fields of 6.5 and 70 T under adiabatic 

conditions were performed. Aro ad were 13 and 

60 K, respectively [Zavareh,2016]. By comparing these values with our results values of 

Tad for MnFe4Si3, Gd has a much larger MCE, which is expected because the magnetic 

moment of Gd is much larger.  
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(A)                                                             (B) 

              
 

(C)                                                                 (D) 

     
    
Figure 4.15: field ad for different initial temperatures and a pulsed field change of (A, B) 

2 T (C) 20 T (D) 50 T. 
 
However, the interesting comparison would be at lower fields, e.g. 1 or 2 T as it is the used 

fields for applications, and according to [Gschneidner et al., 2012; Hansen, 2010] Tad for 

Gd in the field of 2 T is approximately 5.5 K (deduced from magnetization measurements) 

and that is larger for Gd by a factor of three compared to MnFe4Si3. However, if we count 

other factors important for the applicability of the material including cost, and mechanical 

stability, MnFe4Si3 might be a better candidate. 

 

Figure 4.15 shows the field dependence of the adiabatic temperature change for different 

initial temperatures around TC for a field change of (A and B) 2 T (C) 20 T (D) 50 T. From 

the figures it is clear that the magnetization and demagnetization curves nearly coincide, (the 
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short pulse time is not detrimental for the response time of the thermocouple) which 

underscores these measurements is reversible (adiabatic condition).  

 

 
 

Figure 4.16: Time dependences of the adiabatic temperature change in pulsed magnetic field of 10 T at 

340 K. 
 

ad(t) for the MnFe4Si3 sample at a 340 K 

under a pulsed field of 10 T in the [001] direction (blue curve) together with the 

corresponding pulse profile (black curve). It can be seen that the heat transfer between the 

sample and the thermocouple was too slow (imperfect sandwich), and the measured 

temperature measurement was slightly delayed which means it does not correspond to the 

real temperature of the sample and the measurement is not fully reversible. A bump 

appearing ad(t) curve, is a result of a small open loop in the 

thermocouple wires that acted as a magnetization pickup coil. 

 

Figure 4.17 shows how a reversal of the field polarity affects the sign and magnitude of the 

bump, confirming it is not related to the MCE response. To minimize this effect we took the 

average of two measurements taken for the positive and the negative of the field pulse. 
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ad with pulsed fields of +10 T and -10 T at 340 K and the average 

of the two. 
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Conclusions and Future Work                   5 

5.1 Conclusions 

In this thesis, a single crystalline sample of composition Mn FexSi3 x=4 was prepared. The 

phase purity was confirmed by a LeBail refinement of the x-ray powder diffraction diagram 

of the grinded sample. Laue diffraction was used to define the orientation of the crystal. The 

crystal was then cut in an oriented way for further characterization measurements.  

The magnetic and magnetocaloric properties of single crystalline MnFe4Si3were studied. The 

magnetization and MCE were measured in both constant and pulsed fields. As a strong 

magnetic anisotropy was observed, the measurements were done with an applied field along 

[100] direction and along [001] direction.  

Magnetization measurements in DC fields (hysteresis loops M(H)) confirm that the easy axis 

of magnetization lies in the a,b-plane. The field dependence of the magnetic moments shows 

that the compound undergoes transition to a ferromagnetic ordered phase at approximately 

300 K. 

s calculated 

based on the measured magnetic hysteresis loops. It was found that 

the MCE is larger with an applied field along the a-axis. In this case the magnetic entropy 

change has a maximum of about 1.3 J/kgK for a field change of 1 T. If the field is applied 

along the c-axis a maximum of about 3.5 J/kgK for a field change of 6 T is observed. 

Magnetization measurements in pulsed field up to 8 T in [100] direction and up to 30 T in 

[001] direction were also performed. The data was normalized to the DC field data at 8 T for 

[100] direction and 8.5 T for [001] direction. In general, a very good match between the data 

using static and pulsed magnetic fields was observed and only small apparatus dependent 

discrepancies were found.  
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We have investigated the magnetocaloric effect (MCE) of single crystalline MnFe4Si3 sample 

by direct magnetocaloric measurements in pulsed magnetic fields, providing the temperature 

and field dependence of the adiabatic temperature change. MnFe4Si3 displays a first-order 

phase transition with a Curie temperature of about 300 K. The MCE exhibits magnetic-field 

dependence, th ad are found to be 1.38 and 5.66 K for a field change of 2 and 

20 T, respectively. Also for the first time, we measured the MCE in a single crystalline 

MnFe4Si3 in pulsed magnetic fields up to 50 T and a large adiabatic temperature change of 

9.45 K was observed.  

5.2 Future Work 

For the future work, there will be a focus on the synthesis of materials in the ternary systems 

Mn-Fe-Si, Mn-Co-Sb and/or Ni-Mn-Si and aim at the optimization of the properties through 

doping with different elements. The materials will be investigated with elastic and inelastic 

neutron measurements at neutron instruments, macroscopic magnetization and specific heat 

measurements, synchrotron measurements (in particular x-ray magnetic circular dichroism to 

probe the magnetic ordering element specific) and the direct determination of the temperature 

change in the material by using pulsed magnetic fields at the high field facility of the 

Helmholtz Society in Dresden Rossendorf. In addition, an experimental setup for the in-

house measurement of the adiabatic temperature change will be developed. Finally suitable 

candidate materials will be identified to gain a deeper understanding of the coupling between 

the spin and lattice degree of freedom in these materials. 
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Appendix A 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure A1: Part of the command -axis which

was performed on PPMS-Dynacool. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2: Parts of the command sequence used in the last magnetization measurements in the direction 

-axis) which were performed on the PPMS. 

 Set Temperature 30K at 5K/min. No O'Shoot 

 Wait For Temperature, Delay 60 secs (1.0 mins), No Action 

 New Datafile "C:\QdDynacool\Data\Nour\MnFe4Si3_30K_MvsB.dat" 

 VSM Moment vs Field 4 Quadrants -10000 Oe to 10000 Oe Sweep Continuous Auto 
Center ON 

 Set Temperature 40K at 5K/min. No O'Shoot 

 Wait For Temperature, Delay 60 secs (1.0 mins), No Action 

 New Datafile "C:\QdDynacool\Data\Nour\MnFe4Si3_40K_MvsB.dat" 

 VSM Moment vs Field 4 Quadrants -10000 Oe to 10000 OeSweep Continuous  Auto 
Center ON 

 Set Magnetic Field 60000.0Oe at 200.0Oe/sec, Linear, Persistent 

 Set Temperature 60K at 5K/min. No O'Shoot 

 Wait For Temperature, Field, Delay 60 secs, No Action 

 New Datafile "C:\Messdaten\Data\Maraytta\repeate_lastmeasurements\60K.dat" 

 VSM Moment vs Field 1 Quadrant 60000 Oe to 5000 Oe Sweep Continuous  Auto 
Center ON 

 VSM Moment vs Field 1 Quadrant 5000 Oe to 80000 Oe Sweep Continuous  Auto 
Center ON 

 Set Magnetic Field 60000.0Oe at 200.0Oe/sec, Linear, Persistent 

 Set Temperature 80K at 5K/min. No O'Shoot 

 Wait For Temperature, Field, Delay 60 secs, No Action 

 New Datafile "C:\Messdaten\Data\Maraytta\repeate_lastmeasurements\80K.dat" 

 VSM Moment vs Field 1 Quadrant 60000 Oe to 5000 Oe Sweep Continuous  Auto 
Center ON 

 VSM Moment vs Field 1 Quadrant 5000 Oe to 60000 Oe Sweep Continuous  Auto 
Center ON 
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Figure A3: Python scripts which were used to plot the temperature-dependent magnetization curves of 

MnFe4Si3 00] ] respectively.  
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