000837515 001__ 837515
000837515 005__ 20240619091229.0
000837515 0247_ $$2doi$$a10.1063/1.4982963
000837515 0247_ $$2WOS$$aWOS:000404340600003
000837515 0247_ $$2Handle$$a2128/18157
000837515 0247_ $$2altmetric$$aaltmetric:23665701
000837515 0247_ $$2pmid$$apmid:28798855
000837515 037__ $$aFZJ-2017-06411
000837515 082__ $$a530
000837515 1001_ $$00000-0001-9566-6275$$aBilatto, Stanley E. R.$$b0
000837515 245__ $$aPrinted microfluidic filter for heparinized blood
000837515 260__ $$aMelville, NY$$bAIP$$c2017
000837515 3367_ $$2DRIVER$$aarticle
000837515 3367_ $$2DataCite$$aOutput Types/Journal article
000837515 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524039228_9437
000837515 3367_ $$2BibTeX$$aARTICLE
000837515 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837515 3367_ $$00$$2EndNote$$aJournal Article
000837515 520__ $$aA simple lab-on-a-chip method for blood plasma separation was developed by combining stereolithographic 3D printing with inkjet printing, creating a completely sealed microfluidic device. In some approaches, one dilutes the blood sample before separation, reducing the concentration of a target analyte and increasing a contamination risk. In this work, a single drop (8 μl) of heparinized whole blood could be efficiently filtered using a capillary effect without any external driving forces and without dilution. The blood storage in heparin tubes during 24 h at 4 °C initiated the formation of small crystals that formed auto-filtration structures in the sample upon entering the 3D-printed device, with pores smaller than the red blood cells, separating plasma from the cellular content. The total filtration process took less than 10 s. The presented printed plasma filtration microfluidics fabricated with a rapid prototyping approach is a miniaturized, fast and easy-to-operate device that can be integrated into healthcare/portable systems for point-of-care diagnostics.
000837515 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000837515 588__ $$aDataset connected to CrossRef
000837515 7001_ $$0P:(DE-Juel1)161548$$aAdly, Nouran$$b1
000837515 7001_ $$0P:(DE-HGF)0$$aCorrea, Daniel S.$$b2
000837515 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b3
000837515 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b4
000837515 7001_ $$0P:(DE-Juel1)138367$$aYakushenko, Alexey$$b5$$eCorresponding author$$ufzj
000837515 773__ $$0PERI:(DE-600)2265444-6$$a10.1063/1.4982963$$gVol. 11, no. 3, p. 034101 -$$n3$$p034101 -$$tBiomicrofluidics$$v11$$x1932-1058$$y2017
000837515 8564_ $$uhttps://juser.fz-juelich.de/record/837515/files/1.4982963.pdf$$yPublished on 2017-05-02. Available in OpenAccess from 2018-05-02.
000837515 8564_ $$uhttps://juser.fz-juelich.de/record/837515/files/1.4982963.gif?subformat=icon$$xicon$$yPublished on 2017-05-02. Available in OpenAccess from 2018-05-02.
000837515 8564_ $$uhttps://juser.fz-juelich.de/record/837515/files/1.4982963.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2017-05-02. Available in OpenAccess from 2018-05-02.
000837515 8564_ $$uhttps://juser.fz-juelich.de/record/837515/files/1.4982963.jpg?subformat=icon-180$$xicon-180$$yPublished on 2017-05-02. Available in OpenAccess from 2018-05-02.
000837515 8564_ $$uhttps://juser.fz-juelich.de/record/837515/files/1.4982963.jpg?subformat=icon-640$$xicon-640$$yPublished on 2017-05-02. Available in OpenAccess from 2018-05-02.
000837515 8564_ $$uhttps://juser.fz-juelich.de/record/837515/files/1.4982963.pdf?subformat=pdfa$$xpdfa$$yPublished on 2017-05-02. Available in OpenAccess from 2018-05-02.
000837515 909CO $$ooai:juser.fz-juelich.de:837515$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000837515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161548$$aForschungszentrum Jülich$$b1$$kFZJ
000837515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128745$$aForschungszentrum Jülich$$b3$$kFZJ
000837515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b4$$kFZJ
000837515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138367$$aForschungszentrum Jülich$$b5$$kFZJ
000837515 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837515 9141_ $$y2017
000837515 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837515 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000837515 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837515 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000837515 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMICROFLUIDICS : 2015
000837515 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837515 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837515 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837515 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837515 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837515 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837515 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837515 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837515 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837515 920__ $$lyes
000837515 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000837515 9801_ $$aFullTexts
000837515 980__ $$ajournal
000837515 980__ $$aVDB
000837515 980__ $$aUNRESTRICTED
000837515 980__ $$aI:(DE-Juel1)ICS-8-20110106
000837515 981__ $$aI:(DE-Juel1)IBI-3-20200312