000837515 001__ 837515 000837515 005__ 20240619091229.0 000837515 0247_ $$2doi$$a10.1063/1.4982963 000837515 0247_ $$2WOS$$aWOS:000404340600003 000837515 0247_ $$2Handle$$a2128/18157 000837515 0247_ $$2altmetric$$aaltmetric:23665701 000837515 0247_ $$2pmid$$apmid:28798855 000837515 037__ $$aFZJ-2017-06411 000837515 082__ $$a530 000837515 1001_ $$00000-0001-9566-6275$$aBilatto, Stanley E. R.$$b0 000837515 245__ $$aPrinted microfluidic filter for heparinized blood 000837515 260__ $$aMelville, NY$$bAIP$$c2017 000837515 3367_ $$2DRIVER$$aarticle 000837515 3367_ $$2DataCite$$aOutput Types/Journal article 000837515 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524039228_9437 000837515 3367_ $$2BibTeX$$aARTICLE 000837515 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000837515 3367_ $$00$$2EndNote$$aJournal Article 000837515 520__ $$aA simple lab-on-a-chip method for blood plasma separation was developed by combining stereolithographic 3D printing with inkjet printing, creating a completely sealed microfluidic device. In some approaches, one dilutes the blood sample before separation, reducing the concentration of a target analyte and increasing a contamination risk. In this work, a single drop (8 μl) of heparinized whole blood could be efficiently filtered using a capillary effect without any external driving forces and without dilution. The blood storage in heparin tubes during 24 h at 4 °C initiated the formation of small crystals that formed auto-filtration structures in the sample upon entering the 3D-printed device, with pores smaller than the red blood cells, separating plasma from the cellular content. The total filtration process took less than 10 s. The presented printed plasma filtration microfluidics fabricated with a rapid prototyping approach is a miniaturized, fast and easy-to-operate device that can be integrated into healthcare/portable systems for point-of-care diagnostics. 000837515 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0 000837515 588__ $$aDataset connected to CrossRef 000837515 7001_ $$0P:(DE-Juel1)161548$$aAdly, Nouran$$b1 000837515 7001_ $$0P:(DE-HGF)0$$aCorrea, Daniel S.$$b2 000837515 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b3 000837515 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b4 000837515 7001_ $$0P:(DE-Juel1)138367$$aYakushenko, Alexey$$b5$$eCorresponding author$$ufzj 000837515 773__ $$0PERI:(DE-600)2265444-6$$a10.1063/1.4982963$$gVol. 11, no. 3, p. 034101 -$$n3$$p034101 -$$tBiomicrofluidics$$v11$$x1932-1058$$y2017 000837515 8564_ $$uhttps://juser.fz-juelich.de/record/837515/files/1.4982963.pdf$$yPublished on 2017-05-02. Available in OpenAccess from 2018-05-02. 000837515 8564_ $$uhttps://juser.fz-juelich.de/record/837515/files/1.4982963.gif?subformat=icon$$xicon$$yPublished on 2017-05-02. Available in OpenAccess from 2018-05-02. 000837515 8564_ $$uhttps://juser.fz-juelich.de/record/837515/files/1.4982963.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2017-05-02. Available in OpenAccess from 2018-05-02. 000837515 8564_ $$uhttps://juser.fz-juelich.de/record/837515/files/1.4982963.jpg?subformat=icon-180$$xicon-180$$yPublished on 2017-05-02. Available in OpenAccess from 2018-05-02. 000837515 8564_ $$uhttps://juser.fz-juelich.de/record/837515/files/1.4982963.jpg?subformat=icon-640$$xicon-640$$yPublished on 2017-05-02. Available in OpenAccess from 2018-05-02. 000837515 8564_ $$uhttps://juser.fz-juelich.de/record/837515/files/1.4982963.pdf?subformat=pdfa$$xpdfa$$yPublished on 2017-05-02. Available in OpenAccess from 2018-05-02. 000837515 909CO $$ooai:juser.fz-juelich.de:837515$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000837515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161548$$aForschungszentrum Jülich$$b1$$kFZJ 000837515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128745$$aForschungszentrum Jülich$$b3$$kFZJ 000837515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b4$$kFZJ 000837515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138367$$aForschungszentrum Jülich$$b5$$kFZJ 000837515 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0 000837515 9141_ $$y2017 000837515 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000837515 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000837515 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000837515 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000837515 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMICROFLUIDICS : 2015 000837515 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000837515 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000837515 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000837515 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000837515 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000837515 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000837515 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000837515 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000837515 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000837515 920__ $$lyes 000837515 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0 000837515 9801_ $$aFullTexts 000837515 980__ $$ajournal 000837515 980__ $$aVDB 000837515 980__ $$aUNRESTRICTED 000837515 980__ $$aI:(DE-Juel1)ICS-8-20110106 000837515 981__ $$aI:(DE-Juel1)IBI-3-20200312