001     837515
005     20240619091229.0
024 7 _ |a 10.1063/1.4982963
|2 doi
024 7 _ |a WOS:000404340600003
|2 WOS
024 7 _ |a 2128/18157
|2 Handle
024 7 _ |a altmetric:23665701
|2 altmetric
024 7 _ |a pmid:28798855
|2 pmid
037 _ _ |a FZJ-2017-06411
082 _ _ |a 530
100 1 _ |a Bilatto, Stanley E. R.
|0 0000-0001-9566-6275
|b 0
245 _ _ |a Printed microfluidic filter for heparinized blood
260 _ _ |a Melville, NY
|c 2017
|b AIP
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524039228_9437
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A simple lab-on-a-chip method for blood plasma separation was developed by combining stereolithographic 3D printing with inkjet printing, creating a completely sealed microfluidic device. In some approaches, one dilutes the blood sample before separation, reducing the concentration of a target analyte and increasing a contamination risk. In this work, a single drop (8 μl) of heparinized whole blood could be efficiently filtered using a capillary effect without any external driving forces and without dilution. The blood storage in heparin tubes during 24 h at 4 °C initiated the formation of small crystals that formed auto-filtration structures in the sample upon entering the 3D-printed device, with pores smaller than the red blood cells, separating plasma from the cellular content. The total filtration process took less than 10 s. The presented printed plasma filtration microfluidics fabricated with a rapid prototyping approach is a miniaturized, fast and easy-to-operate device that can be integrated into healthcare/portable systems for point-of-care diagnostics.
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Adly, Nouran
|0 P:(DE-Juel1)161548
|b 1
700 1 _ |a Correa, Daniel S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wolfrum, Bernhard
|0 P:(DE-Juel1)128745
|b 3
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 4
700 1 _ |a Yakushenko, Alexey
|0 P:(DE-Juel1)138367
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1063/1.4982963
|g Vol. 11, no. 3, p. 034101 -
|0 PERI:(DE-600)2265444-6
|n 3
|p 034101 -
|t Biomicrofluidics
|v 11
|y 2017
|x 1932-1058
856 4 _ |u https://juser.fz-juelich.de/record/837515/files/1.4982963.pdf
|y Published on 2017-05-02. Available in OpenAccess from 2018-05-02.
856 4 _ |u https://juser.fz-juelich.de/record/837515/files/1.4982963.gif?subformat=icon
|x icon
|y Published on 2017-05-02. Available in OpenAccess from 2018-05-02.
856 4 _ |u https://juser.fz-juelich.de/record/837515/files/1.4982963.jpg?subformat=icon-1440
|x icon-1440
|y Published on 2017-05-02. Available in OpenAccess from 2018-05-02.
856 4 _ |u https://juser.fz-juelich.de/record/837515/files/1.4982963.jpg?subformat=icon-180
|x icon-180
|y Published on 2017-05-02. Available in OpenAccess from 2018-05-02.
856 4 _ |u https://juser.fz-juelich.de/record/837515/files/1.4982963.jpg?subformat=icon-640
|x icon-640
|y Published on 2017-05-02. Available in OpenAccess from 2018-05-02.
856 4 _ |u https://juser.fz-juelich.de/record/837515/files/1.4982963.pdf?subformat=pdfa
|x pdfa
|y Published on 2017-05-02. Available in OpenAccess from 2018-05-02.
909 C O |o oai:juser.fz-juelich.de:837515
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128745
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)138367
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMICROFLUIDICS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21