000837521 001__ 837521
000837521 005__ 20210129231347.0
000837521 0247_ $$2doi$$a10.1088/1361-6560/aa858f
000837521 0247_ $$2ISSN$$a0031-9155
000837521 0247_ $$2ISSN$$a1361-6560
000837521 0247_ $$2Handle$$a2128/15265
000837521 0247_ $$2WOS$$aWOS:000409379600007
000837521 0247_ $$2altmetric$$aaltmetric:23861113
000837521 0247_ $$2pmid$$apmid:28796644
000837521 037__ $$aFZJ-2017-06416
000837521 082__ $$a570
000837521 1001_ $$0P:(DE-HGF)0$$ade Saint Victor, M.$$b0
000837521 245__ $$aMagnetic targeting to enhance microbubble delivery in an occluded microarterial bifurcation
000837521 260__ $$aBristol$$bIOP Publ.$$c2017
000837521 3367_ $$2DRIVER$$aarticle
000837521 3367_ $$2DataCite$$aOutput Types/Journal article
000837521 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522164791_11611
000837521 3367_ $$2BibTeX$$aARTICLE
000837521 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837521 3367_ $$00$$2EndNote$$aJournal Article
000837521 520__ $$aUltrasound and microbubbles have been shown to accelerate the breakdown of blood clots both in vitro and in vivo. Clinical translation of this technology is still limited, however, in part by inefficient microbubble delivery to the thrombus. This study examines the obstacles to delivery posed by fluid dynamic conditions in occluded vasculature and investigates whether magnetic targeting can improve microbubble delivery. A 2D computational fluid dynamic model of a fully occluded Y-shaped microarterial bifurcation was developed to determine: (i) the fluid dynamic field in the vessel with inlet velocities from 1–100 mm s−1 (corresponding to Reynolds numbers 0.25–25); (ii) the transport dynamics of fibrinolytic drugs; and (iii) the flow behavior of microbubbles with diameters in the clinically-relevant range (0.6–5 µm). In vitro experiments were carried out in a custom-built microfluidic device. The flow field was characterized using tracer particles, and fibrinolytic drug transport was assessed using fluorescence microscopy. Lipid-shelled magnetic microbubbles were fluorescently labelled to determine their spatial distribution within the microvascular model. In both the simulations and experiments, the formation of laminar vortices and an abrupt reduction of fluid velocity were observed in the occluded branch of the bifurcation, severely limiting drug transport towards the occlusion. In the absence of a magnetic field, no microbubbles reached the occlusion, remaining trapped in the first vortex, within 350 µm from the bifurcation center. The number of microbubbles trapped within the vortex decreased as the inlet velocity increased, but was independent of microbubble size. Application of a magnetic field (magnetic flux density of 76 mT, magnetic flux density gradient of 10.90 T m−1 at the centre of the bifurcation) enabled delivery of microbubbles to the occlusion and the number of microbubbles delivered increased with bubble size and with decreasing inlet velocity.
000837521 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000837521 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000837521 588__ $$aDataset connected to CrossRef
000837521 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000837521 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1
000837521 65027 $$0V:(DE-MLZ)SciArea-190$$2V:(DE-HGF)$$aMedicine$$x2
000837521 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000837521 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000837521 7001_ $$0P:(DE-HGF)0$$aCarugo, D.$$b1
000837521 7001_ $$0P:(DE-Juel1)172014$$aBarnsley, L. C.$$b2
000837521 7001_ $$0P:(DE-HGF)0$$aOwen, J.$$b3
000837521 7001_ $$0P:(DE-HGF)0$$aCoussios, C-C$$b4
000837521 7001_ $$0P:(DE-HGF)0$$aStride, E.$$b5$$eCorresponding author
000837521 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/aa858f$$gVol. 62, no. 18, p. 7451 - 7470$$n18$$p7451 - 7470$$tPhysics in medicine and biology$$v62$$x1361-6560$$y2017
000837521 8564_ $$uhttps://juser.fz-juelich.de/record/837521/files/de_Saint_Victor_2017_Phys._Med._Biol._62_7451.pdf$$yOpenAccess
000837521 8564_ $$uhttps://juser.fz-juelich.de/record/837521/files/de_Saint_Victor_2017_Phys._Med._Biol._62_7451.gif?subformat=icon$$xicon$$yOpenAccess
000837521 8564_ $$uhttps://juser.fz-juelich.de/record/837521/files/de_Saint_Victor_2017_Phys._Med._Biol._62_7451.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837521 8564_ $$uhttps://juser.fz-juelich.de/record/837521/files/de_Saint_Victor_2017_Phys._Med._Biol._62_7451.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837521 8564_ $$uhttps://juser.fz-juelich.de/record/837521/files/de_Saint_Victor_2017_Phys._Med._Biol._62_7451.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837521 8564_ $$uhttps://juser.fz-juelich.de/record/837521/files/de_Saint_Victor_2017_Phys._Med._Biol._62_7451.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837521 909CO $$ooai:juser.fz-juelich.de:837521$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000837521 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172014$$aForschungszentrum Jülich$$b2$$kFZJ
000837521 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000837521 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000837521 9141_ $$y2017
000837521 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000837521 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837521 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000837521 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837521 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2015
000837521 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837521 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837521 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837521 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000837521 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837521 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837521 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837521 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000837521 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837521 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837521 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837521 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000837521 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000837521 980__ $$ajournal
000837521 980__ $$aVDB
000837521 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000837521 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000837521 980__ $$aUNRESTRICTED
000837521 9801_ $$aFullTexts