001     837521
005     20210129231347.0
024 7 _ |a 10.1088/1361-6560/aa858f
|2 doi
024 7 _ |a 0031-9155
|2 ISSN
024 7 _ |a 1361-6560
|2 ISSN
024 7 _ |a 2128/15265
|2 Handle
024 7 _ |a WOS:000409379600007
|2 WOS
024 7 _ |a altmetric:23861113
|2 altmetric
024 7 _ |a pmid:28796644
|2 pmid
037 _ _ |a FZJ-2017-06416
082 _ _ |a 570
100 1 _ |a de Saint Victor, M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Magnetic targeting to enhance microbubble delivery in an occluded microarterial bifurcation
260 _ _ |a Bristol
|c 2017
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522164791_11611
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ultrasound and microbubbles have been shown to accelerate the breakdown of blood clots both in vitro and in vivo. Clinical translation of this technology is still limited, however, in part by inefficient microbubble delivery to the thrombus. This study examines the obstacles to delivery posed by fluid dynamic conditions in occluded vasculature and investigates whether magnetic targeting can improve microbubble delivery. A 2D computational fluid dynamic model of a fully occluded Y-shaped microarterial bifurcation was developed to determine: (i) the fluid dynamic field in the vessel with inlet velocities from 1–100 mm s−1 (corresponding to Reynolds numbers 0.25–25); (ii) the transport dynamics of fibrinolytic drugs; and (iii) the flow behavior of microbubbles with diameters in the clinically-relevant range (0.6–5 µm). In vitro experiments were carried out in a custom-built microfluidic device. The flow field was characterized using tracer particles, and fibrinolytic drug transport was assessed using fluorescence microscopy. Lipid-shelled magnetic microbubbles were fluorescently labelled to determine their spatial distribution within the microvascular model. In both the simulations and experiments, the formation of laminar vortices and an abrupt reduction of fluid velocity were observed in the occluded branch of the bifurcation, severely limiting drug transport towards the occlusion. In the absence of a magnetic field, no microbubbles reached the occlusion, remaining trapped in the first vortex, within 350 µm from the bifurcation center. The number of microbubbles trapped within the vortex decreased as the inlet velocity increased, but was independent of microbubble size. Application of a magnetic field (magnetic flux density of 76 mT, magnetic flux density gradient of 10.90 T m−1 at the centre of the bifurcation) enabled delivery of microbubbles to the occlusion and the number of microbubbles delivered increased with bubble size and with decreasing inlet velocity.
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 0
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 1
650 2 7 |a Medicine
|0 V:(DE-MLZ)SciArea-190
|2 V:(DE-HGF)
|x 2
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Carugo, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Barnsley, L. C.
|0 P:(DE-Juel1)172014
|b 2
700 1 _ |a Owen, J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Coussios, C-C
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Stride, E.
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1088/1361-6560/aa858f
|g Vol. 62, no. 18, p. 7451 - 7470
|0 PERI:(DE-600)1473501-5
|n 18
|p 7451 - 7470
|t Physics in medicine and biology
|v 62
|y 2017
|x 1361-6560
856 4 _ |u https://juser.fz-juelich.de/record/837521/files/de_Saint_Victor_2017_Phys._Med._Biol._62_7451.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837521/files/de_Saint_Victor_2017_Phys._Med._Biol._62_7451.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837521/files/de_Saint_Victor_2017_Phys._Med._Biol._62_7451.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837521/files/de_Saint_Victor_2017_Phys._Med._Biol._62_7451.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837521/files/de_Saint_Victor_2017_Phys._Med._Biol._62_7451.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837521/files/de_Saint_Victor_2017_Phys._Med._Biol._62_7451.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:837521
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172014
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 0
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS MED BIOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21