001     837529
005     20240619091229.0
024 7 _ |a 10.1002/pssa.201600729
|2 doi
024 7 _ |a 0031-8965
|2 ISSN
024 7 _ |a 1521-396X
|2 ISSN
024 7 _ |a 1862-6300
|2 ISSN
024 7 _ |a 1862-6319
|2 ISSN
024 7 _ |a WOS:000409906900004
|2 WOS
037 _ _ |a FZJ-2017-06417
082 _ _ |a 530
100 1 _ |a Dang, Ka My
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Fabrication of precisely aligned microwire and microchannel structures: Toward heat stimulation of guided neurites in neuronal cultures
260 _ _ |a Weinheim
|c 2017
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1505741528_31854
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Microwire arrays are a powerful tool for the exertion of localized thermal stress on cellular networks. Combining microwire arrays with a set of orthogonal axon-guiding microchannels on-chip allows for the positioning of neurites, as well as control over their polarity. In this paper, we present a new fabrication approach, based on standard clean room fabrication and sacrificial layer etching, for the integration of microwire arrays into neurite guiding structures. The system permits the application of strong temperature gradients, enabling localized thermal stimulation inside microchannels.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rinklin, Philipp
|0 P:(DE-Juel1)140264
|b 1
700 1 _ |a Schnitker, Jan
|0 P:(DE-Juel1)140152
|b 2
700 1 _ |a Haberkorn, Bastian
|0 P:(DE-Juel1)172078
|b 3
700 1 _ |a Zobel, Kathrin
|0 P:(DE-Juel1)164316
|b 4
700 1 _ |a Gribaudo, Simona
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Perrier, Anselme L.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Carolus, Jorne
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Daenen, Michaël
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Weigel, Stefan
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Luksch, Harald
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 11
700 1 _ |a Wolfrum, Bernhard
|0 P:(DE-Juel1)128745
|b 12
|e Corresponding author
773 _ _ |a 10.1002/pssa.201600729
|g p. 1600729 -
|0 PERI:(DE-600)1481091-8
|n 9
|p 1600729 -
|t Physica status solidi / A
|v 214
|y 2017
|x 1862-6300
856 4 _ |u https://juser.fz-juelich.de/record/837529/files/Dang_et_al-2017-physica_status_solidi_%28a%29.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837529/files/Dang_et_al-2017-physica_status_solidi_%28a%29.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837529/files/Dang_et_al-2017-physica_status_solidi_%28a%29.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837529/files/Dang_et_al-2017-physica_status_solidi_%28a%29.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837529/files/Dang_et_al-2017-physica_status_solidi_%28a%29.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837529/files/Dang_et_al-2017-physica_status_solidi_%28a%29.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837529
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a ICS-8
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)140152
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161190
910 1 _ |a ICS-8
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)161190
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)164316
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)128745
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI A : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21