000837530 001__ 837530
000837530 005__ 20240619091229.0
000837530 0247_ $$2doi$$a10.1002/adbi.201600016
000837530 0247_ $$2WOS$$aWOS:000446956600003
000837530 0247_ $$2altmetric$$aaltmetric:18116600
000837530 037__ $$aFZJ-2017-06418
000837530 082__ $$a570
000837530 1001_ $$0P:(DE-Juel1)161548$$aAdly, Nouran$$b0
000837530 245__ $$aFlexible Microgap Electrodes by Direct Inkjet Printing for Biosensing Application
000837530 260__ $$aWeinheim$$bWiley-VCH$$c2017
000837530 3367_ $$2DRIVER$$aarticle
000837530 3367_ $$2DataCite$$aOutput Types/Journal article
000837530 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1504766906_9615
000837530 3367_ $$2BibTeX$$aARTICLE
000837530 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837530 3367_ $$00$$2EndNote$$aJournal Article
000837530 520__ $$aA rapid fabrication method of microgap electrodes using inkjet printing is described. In this approach, the lateral spacing between two printed electrode lines is precisely controlled down to 1 µm without any surface modification or substrate patterning. The strong confinement, well below typical resolution of inkjet printing, relies on complete solvent evaporation between the printing of adjacent electrode structures, which is achieved by controlling the printing speed and temperature profiles. The feasibility of this method is demonstrated by writing electrode structures with two distinct inks, based on carbon and silver nanoparticles, with comparable results. As an application proof-of-principle, arrays of microgap electrodes are fabricated using a carbon nanoparticle ink for electrochemical detection based on redox-cycling, a technique in which the sensitivity of the device depends on the distance between the two electrodes. The redox-cycling amplification of electrochemical signals is demonstrated and it is shown that the printed microgap device can be used as an electrochemical biosensor for the determination of human immunodeficiency virus (HIV)-related single-stranded DNA. This work presents a promising new approach for fabricating low-cost and label-free redox-cycling biosensors using all-inkjet-printed electrodes.
000837530 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000837530 588__ $$aDataset connected to CrossRef
000837530 7001_ $$0P:(DE-Juel1)157885$$aFeng, Lingyan$$b1
000837530 7001_ $$0P:(DE-Juel1)156197$$aKrause, Kay$$b2
000837530 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b3
000837530 7001_ $$0P:(DE-Juel1)138367$$aYakushenko, Alexey$$b4
000837530 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b5
000837530 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b6$$eCorresponding author
000837530 773__ $$0PERI:(DE-600)2880980-4$$a10.1002/adbi.201600016$$gVol. 1, no. 3, p. 1600016 -$$n3$$p1600016 -$$tAdvanced biosystems$$v1$$x2366-7478$$y2017
000837530 8564_ $$uhttps://juser.fz-juelich.de/record/837530/files/Adly_et_al-2017-Advanced_Biosystems.pdf$$yRestricted
000837530 8564_ $$uhttps://juser.fz-juelich.de/record/837530/files/Adly_et_al-2017-Advanced_Biosystems.gif?subformat=icon$$xicon$$yRestricted
000837530 8564_ $$uhttps://juser.fz-juelich.de/record/837530/files/Adly_et_al-2017-Advanced_Biosystems.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837530 8564_ $$uhttps://juser.fz-juelich.de/record/837530/files/Adly_et_al-2017-Advanced_Biosystems.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837530 8564_ $$uhttps://juser.fz-juelich.de/record/837530/files/Adly_et_al-2017-Advanced_Biosystems.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837530 8564_ $$uhttps://juser.fz-juelich.de/record/837530/files/Adly_et_al-2017-Advanced_Biosystems.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837530 909CO $$ooai:juser.fz-juelich.de:837530$$pVDB
000837530 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161548$$aForschungszentrum Jülich$$b0$$kFZJ
000837530 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157885$$aForschungszentrum Jülich$$b1$$kFZJ
000837530 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)157885$$a ICS-8$$b1
000837530 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
000837530 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a ICS-8$$b2
000837530 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b3$$kFZJ
000837530 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138367$$aForschungszentrum Jülich$$b4$$kFZJ
000837530 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b5$$kFZJ
000837530 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128745$$aForschungszentrum Jülich$$b6$$kFZJ
000837530 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837530 9141_ $$y2017
000837530 920__ $$lyes
000837530 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000837530 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x1
000837530 980__ $$ajournal
000837530 980__ $$aVDB
000837530 980__ $$aI:(DE-Juel1)ICS-8-20110106
000837530 980__ $$aI:(DE-Juel1)PGI-8-20110106
000837530 980__ $$aUNRESTRICTED
000837530 981__ $$aI:(DE-Juel1)IBI-3-20200312