000837532 001__ 837532
000837532 005__ 20240619091229.0
000837532 0247_ $$2doi$$a10.1039/C6LC00887A
000837532 0247_ $$2ISSN$$a1473-0189
000837532 0247_ $$2ISSN$$a1473-0197
000837532 0247_ $$2Handle$$a2128/15259
000837532 0247_ $$2WOS$$aWOS:000391429300015
000837532 0247_ $$2altmetric$$aaltmetric:14908813
000837532 0247_ $$2pmid$$apmid:27847939
000837532 037__ $$aFZJ-2017-06420
000837532 082__ $$a004
000837532 1001_ $$0P:(DE-Juel1)140264$$aRinklin, Philipp$$b0
000837532 245__ $$aOn-chip electromagnetic tweezers – 3-dimensional particle actuation using microwire crossbar arrays
000837532 260__ $$aCambridge$$bRSC$$c2016
000837532 3367_ $$2DRIVER$$aarticle
000837532 3367_ $$2DataCite$$aOutput Types/Journal article
000837532 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1504774789_9606
000837532 3367_ $$2BibTeX$$aARTICLE
000837532 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837532 3367_ $$00$$2EndNote$$aJournal Article
000837532 520__ $$aEmerging miniaturization technologies for biological and bioengineering applications require precise control over position and actuation of microparticles. While many of these applications call for high-throughput approaches, common tools for particle manipulation, such as magnetic or optical tweezers, suffer from low parallelizability. To address this issue, we introduce a chip-based platform that enables flexible three-dimensional control over individual magnetic microparticles. Our system relies on microwire crossbar arrays for simultaneous generation of magnetic and dielectric forces, which actuate the particles along highly localized traps. We demonstrate the precise spatiotemporal control of individual particles by tracing complex trajectories in three dimensions and investigate the forces that can be generated along different axes. Furthermore, we show that our approach for particle actuation can be parallelized by simultaneously controlling the position and movement of 16 particles in parallel.
000837532 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000837532 588__ $$aDataset connected to CrossRef
000837532 7001_ $$0P:(DE-Juel1)128697$$aKrause, Hans-Joachim$$b1
000837532 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b2$$eCorresponding author
000837532 773__ $$0PERI:(DE-600)2056646-3$$a10.1039/C6LC00887A$$gVol. 16, no. 24, p. 4749 - 4758$$n24$$p4749 - 4758$$tLab on a chip$$v16$$x1473-0189$$y2016
000837532 8564_ $$uhttps://juser.fz-juelich.de/record/837532/files/c6lc00887a.pdf$$yOpenAccess
000837532 8564_ $$uhttps://juser.fz-juelich.de/record/837532/files/c6lc00887a.gif?subformat=icon$$xicon$$yOpenAccess
000837532 8564_ $$uhttps://juser.fz-juelich.de/record/837532/files/c6lc00887a.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837532 8564_ $$uhttps://juser.fz-juelich.de/record/837532/files/c6lc00887a.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837532 8564_ $$uhttps://juser.fz-juelich.de/record/837532/files/c6lc00887a.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837532 8564_ $$uhttps://juser.fz-juelich.de/record/837532/files/c6lc00887a.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837532 909CO $$ooai:juser.fz-juelich.de:837532$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000837532 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140264$$aForschungszentrum Jülich$$b0$$kFZJ
000837532 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)140264$$a ics-8$$b0
000837532 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128697$$aForschungszentrum Jülich$$b1$$kFZJ
000837532 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128745$$aForschungszentrum Jülich$$b2$$kFZJ
000837532 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837532 9141_ $$y2017
000837532 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837532 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000837532 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837532 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLAB CHIP : 2015
000837532 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bLAB CHIP : 2015
000837532 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000837532 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837532 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837532 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837532 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837532 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000837532 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837532 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837532 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837532 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000837532 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837532 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837532 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837532 920__ $$lyes
000837532 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000837532 9801_ $$aFullTexts
000837532 980__ $$ajournal
000837532 980__ $$aVDB
000837532 980__ $$aUNRESTRICTED
000837532 980__ $$aI:(DE-Juel1)ICS-8-20110106
000837532 981__ $$aI:(DE-Juel1)IBI-3-20200312